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hematological malignancies. While historically bone mar-
row was collected for HSCT, today, hematopoietic stem 
cells (HSC) are most commonly harvested from the periph-
eral blood following mobilization with G-CSF, although 
bone marrow is still preferred in some settings [1]. Less 
commonly, and often as a result of the lack of a suitable 
donor, cord blood may be used [2].

HSC and their progenitors (HSPC) are retained within 
the bone marrow in specific niches where proliferation and 
survival are closely regulated (reviewed in [3, 4]). Consid-
erable information regarding the nature of the HSC niche 
has been obtained over the last two decades, but the pre-
cise makeup remains undefined. HSC exit the bone marrow 
and travel through the circulation only rarely under resting 
conditions; however, a range of physiological and pharma-
cological factors can increase the number of circulating 
HSPC [5–8]. G-CSF is by far the most commonly used 
agent for the mobilization of HSPC for transplantation. 
In the autologous setting, various chemotherapy regimens 
are used in conjunction with G-CSF and increasingly the 
CXCR4 antagonist plerixafor (reviewed in [9]). In addition, 
numerous agents from various chemical classes, including 
other cytokines, such as GM-CSF, SCF, Groβ, IL8, and sul-
phated glycans, such as fucoidan, hormones, such as para-
thyroid hormone, and neurotransmitters, such as norepi-
nephrine, are known to mobilize HSPC [10–13]. Although 
the mechanisms involved are not identical [14], key fea-
tures appear to be common. Discussion in this review has 
been limited to mobilizing agents currently used clinically.

CXCL12

CXCL12 is the best-characterized factor involved in the 
retention of HSC in the bone marrow. It is a member of the 
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Introduction

Hematopoietic stem cell transplantation (HSCT) is a life 
saving therapeutic modality used to treat a range of malig-
nant and genetic conditions, the most common being 
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CXC chemokine family that binds two receptors, CXCR4 
and CXCR7 (reviewed in [15]). Of these, CXCR4 plays 
the predominant role in HSC biology [16]. HSC are highly 
responsive to CXCL12 which is arguably the most potent 
naturally occurring chemoattractant for these cells [17], 
inducing directed (chemotaxis) but not random (chemoki-
nesis) movement [18]. CXCL12 enhances HSPC adhesion 
to both cellular (e.g., VCAM-1) and matrix components 
(e.g., fibronectin) via activation of integrins [19]. HSC pro-
liferation is also regulated by CXCL12 in a manner that 
is affected by the micro-environment [20, 21]. CXCL12 
is produced by a number of micro-environmental cells, 
including CXCL12-abundant reticular (CAR) cells [22], 
nestin+ cells [23], cells of the osteoid lineage [24], arte-
riolar pericytes [25], and endothelial cells [26]. Once pro-
duced, CXCL12 may be bound to matrix components, 
including fibronectin [27], collagen IV [28], and heparan 
sulfate [29] expressed within the niche [30, 31] potentially 
refining the activity of this chemokine. Therefore, CXCL12 
has the potential to facilitate the retention of HSC in multi-
ple niches within the bone marrow.

The role of CXCL12 in controlling HSPC interactions 
with the bone marrow niche was first reported by Lapidot 
et al. [32], and then definitely demonstrated by Foudi and 
co-workers [33] using mice chimeric for CXCR4−/− HSC. 
These mice have dramatically increased numbers of circu-
lating HSC. Pharmacological disruption of CXCL12 bind-
ing to its receptor rapidly mobilizes HSC into the circula-
tion in mice and humans [34–36]. This finding has resulted 
in the introduction of pharmacological antagonists of 
CXCR4 being developed for HSPC mobilization, with the 
lead compound plerixafor (AMD3100) now used in clinical 
practice in combination with other standard mobilization 
protocols, most commonly G-CSF.

Disruption of CXCL12 binding to CXCR4 is a com-
mon feature of mobilization strategies, occurring in 
G-CSF, Flt-3L, SCF, LECT2, plerixafor, and chemother-
apy-driven mechanisms [36–38]. The importance of the 
loss of CXCL12/CXCR4 interactions in G-CSF-mediated 
mobilization is highlighted by the complete absence of 
G-CSF induced mobilization in CXCR4−/− bone marrow 
chimeric mice [37]. CXCL12 protein concentrations and 
mRNA expression within the bone marrow are dramati-
cally reduced during mobilization by G-CSF or chemother-
apy [36, 39, 40]. This profound reduction in bone marrow 
appears to result in the reversal of the CXCL12 gradient 
between the blood and bone marrow providing a potential 
gradient to facilitate the egress of HSC [39]. However, in 
humans, the expression of the essential amino-terminal 
region of CXCR4 on HSPC is cleaved by proteases render-
ing the cells at least temporarily unresponsive to CXCL12 
[36]. Although demonstrated in mice, evidence to show 
increased plasma CXCL12 levels during mobilization with 

G-CSF or plerixafor in humans is lacking [41]. Interest-
ingly, the chemotactic activity of plasma from autologous 
stem cell donors is increased at the time of leukapheresis 
following chemotherapy and G-CSF [42]. While this activ-
ity was CXCR4-dependent, CXCL12 plasma concen-
trations pre- and post-mobilization were not examined. 
The previous studies failed to detect an increase in total 
plasma CXCL12 in similarly patients [41]. Furthermore, 
the CXCL12 in the plasma was largely degraded into inac-
tive forms [42]. Despite lacking chemotactic activity, some 
of the truncated forms induced HSPC mobilization when 
injected retro-orbitally in mice. It has been proposed that 
this relates to competition for proteoglycan binding. While 
reduced CXCL12 activity in the bone marrow is clearly 
important for HSPC mobilization, whether increased 
plasma concentrations play requires further confirmation in 
humans.

Proteases

During cytokine and chemotherapy-induced HSC mobiliza-
tion, the dramatic reduction in CXCL12 protein concentra-
tion in the bone marrow is thought to be mediated, at least 
in part, by proteolytic degradation of the chemokine. A 
number of active proteases, including neutrophil elastase, 
cathepsin G, matrix metalloproteinase (MMP)-9, MMP14, 
and plasmin, are increased in the bone marrow following 
G-CSF or chemotherapy administration, largely secondary 
to the dramatic increase in maturing myeloid cells [43–45]. 
Furthermore, endogenous protease inhibitors, such as ser-
pin A1 and serpin A3, are significantly reduced in the bone 
marrow following G-CSF administration [46] resulting 
in a highly proteolytic environment. In addition to cleav-
ing and inactivating CXCL12 [36], bone marrow proteases 
also cleave other molecules thought to be involved in HSC 
retention in the bone marrow. Perhaps, the most prominent 
of these are adhesion molecules important for the retention 
of HSC, including CD44 and VCAM-1, and the cytokine 
receptor c-kit (Table 1) [45, 47, 48].

However, despite the clear evidence of increased pro-
tease activity during mobilization and the ability of these 
enzymes to cleave chemokine and adhesive targets, the 
identity of the proteases involved in HSC mobilization 
remains to be defined. Conflicting data regarding the role 
individual proteases has been obtained. Perhaps, the most 
notable surrounds the role of MMP-9 in G-CSF induced 
mobilization with different groups obtaining opposing 
results using MMP-9 null mice [49–51], while a study in 
rhesus monkeys showed a partial inhibition of IL-8-induced 
mobilization using antibodies directed against MMP-9 [52]. 
Perhaps, unexpectedly, the CXCL12 degradation product 
produced by MMP-9 was not detected in the plasma of 
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mobilized patients, while those of neutrophil elastase, cath-
epsin G, and CD26 were abundant [42]. The use of serine 
protease deficient mice failed to demonstrate any effect on 
G-CSF-induced HSC mobilization, even in the presence of 
a broad-spectrum matrix metalloproteinase inhibitor [51]. 
Of note, cleavage of VCAM-1 was completely inhibited in 
this study, suggesting that loss of VCAM-1 function is suf-
ficient [53] but not essential for HSC mobilization. In con-
trast, CXCL12 was still degraded in the absence of cathep-
sin G and neutrophil elastase. Considering the large number 
of proteases capable of cleaving and inactivating CXCL12 
(Table 1), this is, perhaps, not surprising.

Of the remaining potential proteases, CD26 is a high 
priority candidate. Mice lacking CD26 [54] and those 
treated with CD26 inhibitors, such as Diprotin A [55], dem-
onstrated reduced progenitor cell mobilization, although 
definitive studies on transplantable HSC remain to be pub-
lished. Furthermore, CD26 deficient mice still significantly 
mobilized progenitors in response to G-CSF, suggesting 
that other factors are involved in the process. It is possible 
that the above-discussed serine and metalloproteinases are 
responsible for the CD26-independent mobilization.

Other candidate proteases include carboxypeptidase 
M and carboxypeptidase N. Carboxypeptidase N, which 
cleaves the carboxy-terminal lysine from CXCL12, has 
been shown to be largely responsible for the reduced activ-
ity of this chemokine in the peripheral blood [56], but there 
is no evidence to suggest that this liver produced enzyme is 
regulated by G-CSF or other mobilizing agents. In contrast, 
carboxypeptidase M, which similarly cleaves the carboxy-
terminal lysine of CXCL12, is located on the cell surface 
of hematopoietic cells. Furthermore, it is upregulated by 
G-CSF [57] placing it in the right location and with appro-
priate regulation, making it a candidate for involvement in 
HSC mobilization. Whether carboxypeptidase M plays a 
significant role in the process remains to be demonstrated.

While plasmin does not directly cleave CXCL12, it 
can degrade a number of factors with potential roles in 
HSPC mobilization, including extracellular matrix pro-
teins [58] and components of the complement cascade [59], 
as well as activate MMPs [60], which can, in turn, cleave 
CXCL12. Deletion of plasminogen impairs mobilization 
[44] and this appears to be at least partially dependent on 
reduced MMP-9 activation [61]. Increasing the activity of 
the fibrinolytic pathway enhanced G-CSF-mediated HSPC 
mobilization, although increasing MMP-9 concentrations 
failed to replicate this effect leaving the underlying mecha-
nism uncertain [62]. Plasmin is also thought to cleave mem-
brane bound uPAR [44], releasing soluble fragments into 
the circulation [63]. These soluble uPAR-derived peptides 
are chemotactic for HSPC, and antagonize the response 
of HSPC cells to CXCL12 [63]. When injected into mice, 
uPAR-derived peptides induced progenitor cell mobiliza-
tion [64]. Whether plasmin and the fibrinolytic pathway 
play a role in G-CSF-induced mobilization remains to be 
determined. Interestingly, fibrinolysis was also activated 
when plerixafor was the mobilizing agent [65].

It has also been proposed that the coagulation pathway, 
in particular thrombin, may play a role in HSPC mobiliza-
tion. Although thrombin can induce HSPC mobilization 
in mice [66], whether it is involved in G-CSF, chemother-
apy or plerixafor-mediated mobilization is not clear with 
G-CSF making small but significant increases in some pro-
thrombotic features while reducing others [67].

S1P

Sphingosine 1-phosphate (S1P) is a bioactive lipid pro-
duced by two enzymes, sphingosine kinase 1 and 2. There 
are five G-protein coupled receptors for S1P, S1P1–S1P5, of 
which S1P1 plays the dominant role on HSC [86, 87]. S1P 

Table 1  Cleavage of extracellular molecules by proteases

* Not all enzymes and components are listed

Marrow component* Function Protease*

CXCL12 Chemokine Cathepsin G, Neutrophil elastase [36], Cathepsin K [68], DPP4 [69], MMP1, MMP2, MMP9, 
MMP13, MMP14 [70], Carboxypeptidase M [57], Carboxypeptidase N [56],

c-kit Cytokine/adhesion Cathepsin G, Neutrophil elastase, MMP9 [71], ADAM17 [72]

CXCR4 Chemokine receptor Cathepsin G, Neutrophil elastase [36]

VCAM1 Adhesion Cathepsin G, Neutrophil elastase [47], ADAM17 [73]

CD44 Adhesion MMP9 [74], MMP14 [75]

CD29 Adhesion MMP2 [76]

Collagen I Extracellular matrix DPP4 [77], Cathepsin K [78], MMP1 [79], MMP2 [80], MMP9 [79], MMP13 [80], MMP14 [81]

Collagen XIV Extracellular matrix MMP13 [82]

Tenascin-C Extracellular matrix Neutrophil elastase [83], MMP9 [84], MMP13 [82], MMP19 [85].

Laminin Extracellular Matrix MMP14 [81]



121Extracellular molecules in hematopoietic stem cell mobilisation

1 3

is a chemoattractant for many hematopoietic cell types, 
including HSC, and exists in a gradient between the bone 
marrow, where concentrations are kept low by degradative 
enzymes, such as sphingosine lyase [88], and the periph-
eral blood [89]. The concentration of S1P in resting plasma 
is sufficient for it to provide a suitable chemo-attractive 
gradient to facilitate HSC egress. While mechanisms for 
increasing plasma S1P during mobilization have been dem-
onstrated in mice and primates [90, 91], S1P plasma con-
centrations are not significantly changed in humans during 
CXCR4 antagonist or G-CSF-induced mobilization [41]. 
Regardless of whether plasma S1P is modulated during 
mobilization, this lipid is ideally position to provide a gra-
dient that could be used to actively direct HSC out of the 
marrow into the peripheral circulation (Fig. 1).

HSC mobilization by CXCR4 antagonists is diminished 
in settings where the S1P gradient is compromised by rais-
ing bone marrow S1P concentrations or reducing plasma 
S1P concentrations [41, 90, 91]. Furthermore, internali-
zation of the receptor S1P1 rendering HSPC insensitive 
to exogenous S1P, also inhibits mobilization by CXCR4 
antagonists. Together, this provides a strong case for the 
involvement of S1P in HSC mobilization by CXCR4 antag-
onists. Whether exaggeration of the S1P gradient using an 
S1P mimetic, such as SEW2871, during plerixafor-induced 
mobilization is clinically feasible with currently available 
agents is unlikely. While one study demonstrated a further 
increase in the mobilization of progenitors and transplant-
able HSC [41] another showed at best an insignificant 
trend only for phenotypic HSC [92]. The disparity between 

these studies could be due to differences in the route of 
drug administration with intravenous injection being used 
in the first, while an intra-peritoneal route was used in the 
latter study. FTY720 and most new generation S1P1 ago-
nists induce bradycardia [93] that may not be tolerated 
when administered acutely by the intravenous route. Fur-
thermore, an S1P1 antagonist, W146, was found to enhance 
plerixafor-mediated mobilization of progenitors and pheno-
typic HSC. A mechanism to explain this observation was 
not provided by the authors.

The involvement of S1P in G-CSF-mediated mobiliza-
tion is less clear. Inhibition of the S1P receptor S1P1 by 
FTY-720 was unable to modulate G-CSF-induced mobili-
zation in two studies [41, 94], while another found an inhib-
itory effect using this same antagonist [91]. Furthermore, 
this same study showed reduced mobilization in sphingo-
sine kinase 1 and S1P1-deficient mice, which have reduced 
plasma S1P concentrations and HSPC unable to respond to 
S1P, respectively. Further work is required to determine the 
role of S1P in G-CSF-mediated HSPC mobilization.

SNS neurotransmitters

Various stresses are known to increase the number of circu-
lating HSPC [95, 96]. While G-CSF directly acts on myeloid 
progenitor cells to expand granulocyte numbers resulting in 
a proteolytic environment, the other key cellular feature of 
mobilization, the reduction in osteoblasts cannot be a direct 
consequence of G-CSF as these cells lack the G-CSF recep-
tor [13]. The mediators of this effect are thought to be adr-
energic neurotransmitters released from the sympathetic 
nervous system. At present, the focus is on norepinephrine 
(aka noradrenalin), which is synthesized and released by 
sympathetic neurones. G-CSF receptors are expressed on 
peripheral sympathetic neurons [13, 97], suggesting that 
these cells can respond directly to G-CSF. Perhaps, surpris-
ingly, G-CSF does not induce the release of norepinephrine, 
but rather inhibits reuptake resulting in higher concentra-
tions remaining in the tissues [98]. A role for norepineph-
rine in HSPC mobilization is supported by experiments 
showing mobilization in mice injected with norepinephrine 
[65, 99]. Norepinephrine acts on niche cells, including oste-
oblasts, nestin+ mesenchymal cells, and endothelial cells 
via binding adrenergic receptors. This results in reduced 
synthesis of niche retention factors, including CXCL12, 
SCF and VCAM1, by osteoblasts and mesenchymal cells 
[13, 23, 100]. However, in endothelial cells, norepineph-
rine increases CXCL12 production [65, 101]. Norepineph-
rine also likely acts on bone marrow macrophages as they 
express the appropriate receptors and are known to respond 
to adrenergic stimulation [102]. In addition to effects on 
micro-environmental elements, norepinephrine has been 

Fig. 1  Schematic diagram showing the role of S1P in CXCR4 antag-
onist-mediated mobilization. Under resting conditions, CXCL12 
strongly attracts and retains HSPC in the bone marrow, while the 
effect of S1P in the blood is relatively weak. A CXCR4 antagonist 
blocks the ability of HSPC to detect CXCL12, the attraction to the 
bone marrow is lost/reduced and HSPC now responds to the S1P pre-
sent in the blood, facilitating entry into the circulation. The need for 
increased S1P in the blood and the involvement of S1P in G-CSF-
mediated mobilization are not clear
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reported to have chemotactic effects on HSPC [99]. How-
ever, humans treated with either noradrenalin reuptake 
inhibitors or β-receptor blockers mobilize with equivalent 
efficiency as untreated donors [103]. This suggests that 
there could be differences between the human and murine 
systems, or alternatively that the long-term administration 
of these agents for chronic conditions may result in adaptive 
changes that counter the effect. Whether norepinephrine or 
related compounds play a role in the mobilization of human 
HSPC awaits further investigation.

Recently, another neurotransmitter has been implicated 
in HSPC mobilization. Mice lacking neuropeptide Y have 
impaired mobilization in response to various mediators, 
including G-CSF, plerixafor and the chemotherapeutic 
agent 5 fluoro-uracil. Receptors for neuropeptide Y are 
expressed by a number of bone marrow micro-environmen-
tal cells, including stromal cells, osteoblasts, and endothe-
lial cells [104, 105]. Intravenous injection of neuropep-
tide Y in mice rapidly (less than 1 h) mobilized HSC and 
was associated with a small but significant reduction in 
CXCL12 concentrations in the bone marrow and recipro-
cal increase in the peripheral blood. Reduced gene expres-
sion of osteoblast, but not nestin+ MSC-derived HSC reten-
tion factors was also observed in neuropeptide Y treated 
mice. Mice lacking the neuropeptide Y receptor, Y1, in 
osteoblasts failed to mobilize in response to exogenous 
neuropeptide Y. However, in vitro treatment of culture-
induced osteoblasts with neuropeptide Y could required 
3 days rather than the less than 60 min observed in vivo to 

reduce the expression of retention factors, suggesting that 
other factors may be involved. Perhaps, surprisingly, an 
antibody to MMP9 blocked the effects of neuropeptide Y 
on the expression of bone marrow retention factors. Since 
MMP9 is unlikely to directly modulate gene expression, 
it appears that the change in gene expression depends on 
altered osteoblast behaviour secondary to MMP9-medi-
ated changes to the micro-environment. Since MMP9 can 
degrade many micro-environmental factors, the mechanism 
remains unclear. The source of neuropeptide Y has not been 
firmly established. Although it is produced by sympathetic 
neurones [106], other bone marrow cells, including mye-
loid cells and bone marrow-derived macrophages, [107] 
also synthesize neuropeptide Y.

Compliment cascade

The complement cascade is part of the innate immune sys-
tem, facilitating the clearance of microbes and damaged 
cells by antibodies and phagocytic cells (see [108] for an 
overview). Consisting of a number of small proteins that 
are sequentially recruited, it can be activated in response to 
antibody-binding antigen on a surface, recognition of sugars 
present on microbes, or binding of C3 convertase, gener-
ated from spontaneously hydrolysed C3, to a cell that lacks 
mammalian protective proteins (Fig. 2). The complement 
system can be activated in the bone marrow in response to 
damage by for example radiation or cytotoxic agents, or 

Fig. 2  Potential effects of 
the complement, fibrinolysis, 
and coagulation pathways in 
HSPC mobilization. Increased 
C3 activation is seen in the 
bone marrow during G-CSF 
mobilization. Several potential 
explanations for this have been 
provided (activation of the 
classical, lectin, or alternative 
pathways or cleavage of C3 by 
plasmin). Activation further 
downstream by C5 convertase 
activity could be provided by 
C5 convertase from the comple-
ment pathway, or by plasmin, 
thrombin, or neutrophil elastase. 
Plasmin also has the potential to 
inhibit the complement cascade 
by degrading and inactivating 
C3b and C5b. Note that for 
clarity, not all components of all 
pathways have been shown
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by mobilizing agents, such as G-CSF [109–111]. How the 
complement system regulates mobilization is complex and 
not entirely clear. C5-deficient mice have impaired G-CSF 
and plerixafor-induced mobilization [111, 112], suggest-
ing that the stable active form of C5, desArgC5a, plays a 
positive role in HSC mobilization. Indeed, the concentra-
tion of desArgC5a in plasma weakly correlates with mobi-
lized CD34+ counts in donors [113]. However, desArgC5a 
does not directly interact with HSC as these cells lack the 
receptor but instead activates mature granulocytes [112]. 
In this model, G-CSF- or plerixaphor-activated granulo-
cytes migrate into bone marrow sinusoids where released 
proteases cleave and activate additional C5. Increased 
desArgC5a, which is a chemoattractant for granulocytes, 
encourages the egress of additional granulocytes from the 
extravascular compartment into sinusoids, theoretically 
clearing the way for the HSPC.

Downstream components of the complement cascade, 
C5b-C9, also known as the membrane attack complex 
(MAC) lyse red blood cells [90, 91]. Since red blood cells 
contain high concentrations of S1P [114], this is thought 
to elevate plasma S1P concentrations, augmenting the 
egress-promoting gradient between the blood and marrow. 
Although increased S1P has been shown in mice [90], this 
has not been demonstrated in humans despite reduced RBC 
numbers [41], although it is possible that the timing of 
sampling may not have optimal as the window where S1P 
is elevated is narrow in mice.

In contrast to C5, which is activated in the plasma, C3 is 
activated by cleavage in the bone marrow during G-CSF-
induced mobilization [111]. Activated C3 (C3a) interacts 
directly with HSC, increasing chemotactic responses to 
CXCL12 [115] and antagonising G-CSF-mediated mobi-
lization [116]. Consistently, C3-deficient mice mobilize 

Fig. 3  Schematic diagram for 
G-CSF induced mobilization 
of HSPC. The upper panel 
shows resting bone marrow and 
the lower panel bone marrow 
following G-CSF treatment. 
G-CSF directly results in 
expansion of granulocytes and a 
proteolytic micro-environment. 
G-CSF also induces the release 
of norepinephrine from the 
sympathetic nervous system. 
Norepinephrine contributes to 
the suppression the produc-
tion of retentive factors (e.g., 
CXCL12) by micro-environ-
mental cells, while proteases 
cleave proteins already present 
in the micro-environment, 
including VCAM1, CXCL12, 
and extracellular matric com-
ponents. This permits HSPC to 
escape from the bone marrow. 
In addition activation, the 
complement cascade may result 
in formation of the membrane 
attack complex and red blood 
cell lysis. The released S1P 
may then provide a chemotactic 
gradient for HSPC, attracting 
them into the periphery. Further 
study is required to confirm the 
roles of S1P and the comple-
ment cascade
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HSPC very efficiently when administered G-CSF. This 
contrasts with the poor mobilization seen in C5-deficient 
mice and demonstrates opposing effects of different com-
ponents of the complement cascade.

The mechanism by which the complement cascade is 
activated during G-CSF or plerixafor-mediated mobiliza-
tion is not certain. Some immunoglobulin-deficient mice 
(Rag2, SCID, Jh) are poor mobilizers [111], but others are 
not (Rag1, IL7Ra) [13]. Exogenous immunoglobulins can 
enhance mobilization and this is associated with the activa-
tion of C3 and to a lesser extent C5, but an essential role 
for immunoglobulins has not yet been shown [111]. It has 
recently been reported that there is crosstalk between the 
complement cascade and the fibrinolysis and coagulation 
cascades to further enhance HSPC mobilization [117]. The 
activation of these cascades would be consistent with the 
drop in platelet counts seen during G-CSF-induced mobi-
lization [41]. The primary mechanism was suggested to be 
via the provision of C5 convertase activity by thrombin and 
plasmin. Thrombin can also activate MMP2, promoting 
degradation of matrix components [118]; however, plasmin 
has been reported to inhibit the complement cascade at sev-
eral levels leading to reduced red blood cell lysis [59]. It 
also remains possible that neutrophil elastase released from 
an expanded granulocyte pool could contribute to comple-
ment activation during mobilization by activating C5 [119].

Summary

A number of extracellular components play key roles in 
the retention and mobilization of hematopoietic stem cells 
(an overview summary is provided in Fig. 3). Of these, 
CXCL12 is clearly the most important, but other mol-
ecules, such as S1P, proteases, and members of the com-
plement, coagulation, and fibrinolysis pathways, appear to 
have roles that are remain to be fully elucidated. Manipula-
tion of the concentrations of these molecules or targeting 
their cellular receptors has the potential to improve stem 
cell mobilization strategies in the future.
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