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Introduction

Stem cells derived from human somatic tissue are used in 
the treatment of a variety of diseases and injuries. Somatic 
stem cells exhibit tissue organization and contribute to 
homeostasis in multiple organs. The most popular cell 
source is bone marrow (BM) stem cells, which consist of 
hematopoietic stem cells (HSCs) and mesenchymal stem/
stromal cells (MSCs). HSCs are present in the BM niche in 
a state of quiescence [1–3]. MSCs reside in the non-hemat-
opoietic fraction and can be cultured to form fibroblast-like 
colonies (colony-forming unit fibroblasts: CFU-Fs) in vitro 
[4–7]. MSCs are found in the BM [8, 9], umbilical cord 
blood [10, 11], placenta [12, 13], dental pulp [14, 15], adi-
pose tissue [16–19], and synovium [20–22]. BM-MSCs are 
thought to function in the maintenance of BM homeosta-
sis, restoration of injured bone, and regulation of differen-
tiation in HSCs [23]. The definition of MSCs depends on 
in vitro culture conditions, and thus varies among research-
ers in the stem cell field. In general, MSC refers to adherent 
cultured cells that can differentiate into bone, fat, and car-
tilage [24]. However, adherent culture conditions on plastic 
dishes inevitably change the expression of surface markers 
and the biological properties of stem cells [25, 26]. Indeed, 
most MSC marker information is obtained from cultured 
MSCs [27], which makes it difficult to identify MSC-spe-
cific markers and analyze physiological functions in vivo.

Recently, a number of studies have addressed such prob-
lems using flow cytometry and transgenic mouse (Fig. 1). Tis-
sues are dissected or crushed to make them physically small, 
and the pieces of tissue are incubated for a few hours in the 
presence of enzymes that degrade the matrix component of 
tissues. It is common to use a collagenase reagent to acquire 
cells from tissue samples. However, obtaining different 
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populations depends on the collagenase concentration and 
treatment time. In tissues containing red blood cells, the 
enzyme-treated cells are resuspended in water or lysis buffer 
to remove the red blood cells. At this stage, the cell popula-
tion is heterogeneous (see enzymatic treatment in Fig. 1). In 
the case of the BM, whole BM cell populations may contain 
various mature cells, such as fat cells, macrophages, endothe-
lial cells, blood cells, and fibroblasts. Stem cell-specific mark-
ers are needed to isolate tissue stem cells from these hetero-
geneous cell populations. The cells are stained with a stem 
cell-specific monoclonal antibody on ice (see surface marker 
in Fig. 1). In mouse tissue, stem cells are prospectively iso-
lated and identified according to fluorescence generated by 
tissue-specific-promoter-Cre/Floxed reporter mice (see spe-
cific reporter in Fig.  1). Stem cell-specific markers can be 
used to obtain uniform MSCs and trace cell fate in vivo.

MSCs are defined as self‑renewing populations 
in multiple organs

MSCs are selected based on adherent potency in culture 
conditions containing fetal bovine serum. Friedenstein and 
others reported the existence of MSCs by CFU-F in the BM 
[4, 5, 28, 29]. Pittenger confirmed that MSCs have multipo-
tency for adipocytes, chondrocytes, and osteoblasts, clon-
ally [24]. Thereafter, a large number of studies correlated 
MSC phenotypic features and investigated the therapeu-
tic potential of MSCs. Elahi et  al. reported that the term 

“mesenchymal stem cell” yielded more than 357,000 hits in 
Google Scholar (Google Scholar; July 2015) [30]. Colony-
forming cells have since been called “mesenchymal stem 
cells” or “mesenchymal stromal cells.” It appears that the 
term “stem cell” has become more popular than the term 
“stromal cell” in the last 20 years in MSCs studies. Inter-
estingly, “stemness” has been shown to be a stricter term 
for MSCs involved in tissue repair (Fig. 2) [30]. Recently, 
“skeletal stem cells (SSCs)” has supplanted the term “tissue 
stem cells” as the new term for these cells [31, 32]. A web 
search showed that the term “skeletal stem cell(s)” yielded 
more than 46 hits in article titles in November 2015. SSCs 
self-renew and generate osteoblasts, chondrocytes, and 
reticular marrow stromal cells, but not adipocytes [33, 34].

Fig. 1   Prospective isolation 
methods for MSCs from mul-
tiple tissues. Traditional MSC 
isolation uses adherent cultures 
on the dish (left). Prospective 
identification of MSCs using 
flow cytometric identification 
of cell surface markers (center) 
and transgenic mouse express-
ing tissue-specific reporters 
allows the isolation of a pure 
population of multipotent MSCs 
(right)

Fig. 2   The term of “mesenchymal stem cells” vs “mesenchymal 
stromal cells”. Numerous articles use the word “stem”; however, 
“stemness” has been used as a stricter term to define MSCs with tis-
sue repair ability in vivo
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Recently, many reports have demonstrated the presence 
of neural crest stem cells in various adult tissues, and sug-
gested that they are present not only in embryos but also 
in multiple organs during adulthood [35, 36]. The neural 
crest is a transient embryonic tissue that originates at neu-
ral folds during vertebrate development. Neural crest cells 
migrate from the dorsal neural tube and migrate to various 
locations, where they differentiate into a vast range of cells, 
including neurons and glial cells of the peripheral nerv-
ous system, smooth muscle cells, bone, and cartilage cells. 
The characteristics of neural crest stem cells are similar to 
those of MSCs [37]. Cre/loxP-mediated lineage analysis 
also suggests that a subpopulation of adult BM-MSCs may 
have a developmental origin in the murine neural crest [38, 
39]. Furthermore, neural crest-derived cells have been con-
firmed to exist in skin [40], cornea [41], and heart [42] in 
adult mouse. These organs may, thus, represent additional 
sources for the supply of MSCs. In order to avoid problems 
related to culture procedures, it is important to identify spe-
cific markers for MSCs to enable their rapid isolation and 
to define the common features of MSCs [43].

Prospective identification and isolation of human 
MSCs

Various surface makers have been used to isolate human 
MSCs (Table 1). The first isolation method used a mono-
clonal antibody against Stro-1 to efficiently isolate fibro-
blast-like cells from fresh BM [44]. The Stro-1-positive 
compartment includes non-hematopoietic cells, but the 
antibody is also reactive with red blood cells. A number 

of studies have examined MSC isolation using CD73-pos-
itive [45], CD49a-positive [45], CD105-positive [46], and 
MSCA-1-positive [47], SSEA4-positive [48, 49] popu-
lations. In 2002, a direct isolation method for MSCs was 
performed using an antibody against CD271 (low-affinity 
nerve growth factor receptor: LNGFR) [50]. LNGFR is 
not reactive to red blood cells and hematopoietic progeni-
tor cells, which has made LNGFR one of the more popu-
lar markers for the isolation of human MSCs. Some studies 
have used the LNGFR marker in combination with MSCA-
1-positive [51], CD56-positive [52, 53], CD140b-positive 
[54], CD146-positive/negative [55], and SSEA4-positive 
[56] populations. In addition, high CFU-F frequency is 
associated with a population double-positive for CD106 
(VCAM-1) and Stro-1 antibodies [57]. These cells differ-
entiate into bone and fat on ectopic transplantation in vivo. 
In 2013, our group reported that the LNGFR and THY-1 
double-positive population (i.e., the LT population) have a 
high CFU-F frequency in the BM [8]. CFU-F can be clas-
sified into three different cell groups based on proliferation 
ability. Rapidly expanding MSC clones (RECs) are undif-
ferentiated cells with proliferation and differentiation abil-
ity that are maintained during long-term subculture in vitro. 
RECs are highly associated with the VCAM-1hi-positive 
population. Aomatsu et  al. recently demonstrated that the 
novel SCRG1/BST1 axis determines the fate of hMSCs by 
regulating their kinetic and differentiation potentials [58]. 
SCRG1/BST1 preserves self-renewal potential and the 
expression of stem cell markers such as LNGFR, THY-1 
and VCAM-1 [58]. Cell–cell adhesion in human MSCs 
enhances the expression of VCAM-1 via PDGFRb [59].

Table 1   Surface markers, 
existence, and CFU-F potential 
of human BM-MSCs

The ratios of marker population to CFU-F formation in the BM based on the reported data are shown. 
LNGFR: CD271, MSCA-1: STRO-3 Tissue non-specific alkaline phosphatase, VCAM-1: CD106, PDG-
FRb: CD140b, and THY-1: CD90

Marker Percentage in BM CFU-F References

STRO-1+ 5.0 % (Glycophorin A− gated) 1/90,909 Simmons et al. [44]

CD73+ 5.2 % (CD45−CD14− gated) 1/39,062 Boiret et al. [45]

CD49a+ 4.4 % (CD45−CD14− gated) 1/28,011 Boiret et al. [45]

CD105+ 2.3 % 1/15,873 Aslan et al. [46]

MSCA-1+ 2.8 % 1/833 Gronthos et al. [47]

LNGFR+ 2.3 % 1/631 Quirici et al. [50]

LNGFR+, CD146+ 0.02 % (CD45− gated) 1/64 Tormin et al. [55]

LNGFRBright+, PDGFRb+ – % 1/52 Buhring et al. [54]

LNGFR+, CD146−/low 0.01 % (CD45− gated) 1/32 Tormin et al. [55]

LNGFRBright+, MSCA-1+, CD56+ 8.5 % (MSCA-1+ gated) 1/14 Battula et al. [52]

STRO-1Bright+, VCAM-1+ 1.4 % 1/11 Gronthos et al. [57]

LNGFR+, SSEA4+ 0.1 % (Lin−CD45− gated) 1/6 Matsuoka et al. [56]

LNGFR+, THY-1+ 0.04 % 1/6 Mabuchi et al. [8]

LNGFR+, THY-1+, VCAM-1hi+ 0.004 % 1/3 Mabuchi et al. [8]
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Based on a study of BM-MSCs, we found that LNGFR 
and THY-1 markers can be used to effectively isolate these 
cells from other tissues. In one study, we isolated LNGFR+ 
THY-1+ MSCs from synovium using flow cytometry [20]. 
The synovium contains a higher percentage of LNGFR+ 
THY-1+ MSCs. We examined the colony formation and 
differentiation abilities of BM- and synovium-derived 
MSCs isolated from the same patients. Both MSC types 
exhibit a marked propensity to differentiate into specific 
lineages. BM-MSCs preferentially differentiated into 
bone, while in the synovium-MSC culture, we observed 
enhanced adipogenic and chondrogenic differentiation. In 
another study, we examined human dental pulp stem/pro-
genitor cells (hDPSCs) [14]. hDPSCs are attractive candi-
dates for regenerative therapy because they can be easily 
expanded to generate CFU-Fs [15, 60, 61]. We identified 
a dental pulp tissue-specific cell population based on the 
expression profiles of two cell-surface markers, LNGFR 
and THY-1. Prospectively isolated dental pulp-derived 
LNGFRLow+ THY-1High+ cells represent a highly enriched 
population of clonogenic cells; notably, isolated cells 
exhibit long-term proliferation and multilineage differen-
tiation potential in  vitro. These cells also express known 
mesenchymal cell markers and promote new bone forma-
tion reparative of critically sized calvarial defects in vivo. 
These findings suggest that LNGFRLow+ THY-1High+ dental 
pulp-derived cells provide an excellent source of material 
for bone regeneration strategies. These data suggest that 
the tissue from which MSCs are isolated should be tailored 
according to their intended clinical therapeutic application. 
In human MSCs, the LNGFR marker has been validated by 
many researchers (Table 1) [62, 63], the next step should 
be improved selection and characterization of human MSC 
populations using comprehensive analysis [64].

MSC lineage tracking in vivo

In past reports describing the use of mouse MSCs, MSCs 
accumulated at injury sites and released trophic factors, such 
as prostaglandin E2 [65], TNF-α stimulated gene/protein 6 
[66–68], and soluble TNF receptor 1 [69]. It is thought that 
MSCs respond to inflammation and have specific roles in 
immune regulation, lymphopoiesis, and bone homeostasis 
[70, 71]. These reports used cultured MSCs; accordingly, it is 
unknown whether the response is similar under physiologi-
cal conditions. To investigate the physiological role of MSCs 
in vivo, two in vivo tracing strategies can be employed (Fig. 1); 
one method is to transplant the purified MSCs isolated using 
specific surface markers [43]. We used phenotypic, morpho-
logical, and functional criteria to identify and prospectively iso-
late a subset of MSCs (PDGFRα+ Sca-1+ CD45− TER119−: 
PaS cells) from adult mouse BM [72, 73]. PaS cells mainly 

differentiate into fat cells in adipose tissue, hematopoiesis sup-
port cells (CAR cells) [74], and osteoblasts in the BM [73]. 
The other method uses lineage tracing in transgenic mice, 
using transcription markers such as Nestin-GFP/cre [75], Ebf2-
cre [76], and LepR-cre [77]. These techniques and histologic 
analyses have been used to identify MSCs locally, examine cell 
fate, and evaluate their physiological role in vivo. The cultured 
MSCs are trapped in pulmonary capillaries. However, freshly 
isolated MSCs survive in the BM and adipose tissue [73]. In 
an analysis of LepR-cre and Ebf2-cre mice, the group found 
that MSCs participate in turnover in bone and adipose tissue in 
adult BM [77, 78]. Worthley and colleagues demonstrated that 
the expression of the bone morphogenetic protein antagonist 
gremlin 1 defines a population of SSCs in the BM [79]. Chan 
and colleagues searched for unique gene expression patterns in 
the transcriptome of stem/progenitor cells to identify potential 
regulators of mouse SSC lineage commitment [80]. Inducing 
SSC formation with soluble factors and subsequently regulat-
ing the SSC niche to specify its differentiation toward bone, 
cartilage, or stromal cells could represent a paradigm shift in 
the therapeutic regeneration of skeletal tissues. Additional stud-
ies are needed to clarify the physiological role of the mesen-
chymal (or skeletal) lineage in vivo [81].

Conclusions

Many clinical studies have been performed using MSCs. 
However, cultured MSCs include heterogeneous cell 
groups, which have an effect on therapeutic outcomes. Iso-
lation methods should be adapted such that only true MSCs 
are obtained. It is extremely important to determine the 
physiological functions of homogeneous MSC populations 
directly isolated and analyzed from multiple organs.
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