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Abstract Gene transfer into the hematopoietic stem cell

has shown curative potential for a variety of hematological

disorders. Primary immunodeficiency diseases have led to

the way in this field of gene therapy as an example and a

model. Clinical results from the past 15 years have shown

that significant improvement and even cure can be

achieved for diseases such as X-linked severe combined

immunodeficiency, adenosine deaminase deficiency,

chronic granulomatous disease and Wiskott–Aldrich syn-

drome. Unfortunately, with the initial clear clinical bene-

fits, the first serious complications of gene therapy have

also occurred. In a significant number of patients treated

using vectors based on murine gamma-retroviruses and

carrying powerful viral enhancer elements, insertional

oncogenesis events have resulted in acute leukemias that,

in some cases, have had fatal outcomes. These serious

adverse events have sparked a revision of the assessment of

risks and benefits of integrating gene transfer for hemato-

logical diseases and prompted the development and appli-

cation of new generations of viral vectors with

recognized superior safety characteristics. This review

summarizes the clinical experience of gene therapy for

primary immunodeficiencies and discusses the likely ave-

nues of progress in the future development of this

expanding field of clinical investigations.
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Introduction

In the past two decades, technical progress has allowed

gene transfer into hematopoietic stem cells (HSCs) to reach

levels of efficiency compatible with clinical benefit for an

increasing number of human conditions, including hemo-

globinopathies, primary immunodeficiencies (PIDs), and

degenerative neurological disorders [1–10]. PIDs have

played a major role in this process as they have provided

the first pieces of evidence that gene therapy can be cura-

tive for inherited genetic diseases [11, 12]. A series of

advantageous characteristics have made PIDs initial

attractive target diseases for gene therapy. First, they are

often curable by allogeneic hematopoietic stem cell trans-

plantation (HCT), which provides a testing platform for the

prospects of efficacy of treatments based on transplantation

of autologous, gene-corrected HSCs. In addition, the target

HSCs are readily accessible and amenable to in vitro cul-

ture and ex vivo gene transfer, a procedure that currently

offers the best chance of success. Finally, for several PIDs,

gene-corrected progenitors and mature cells are expected to

show survival advantage over the unmodified, affected cell

populations, which translates into the possibility that even

low gene transfer efficiency may have therapeutic effects.

At the same time, performing gene therapy for PIDs

involves a series of specific difficulties, starting with the

challenging task of targeting the HSC. These cells are extre-

mely infrequent in the hematopoietic tissues and their specific

cellular phenotype is yet undefined, thus making their col-

lection and enrichment laborious and inefficient. In addition,
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the biological process of differentiation of HSCs into mature

hematopoietic progenies is characterized by several rounds of

cell divisions, during which the transferred gene needs to be

duplicated and passed on to daughter cells. This necessity

requires stable integration of the therapeutic gene in the host

genome, which can be achieved with current technologies, but

that also exposes target cells to insertional oncogenesis

complications. Finally, gene transfer into HSCs is facilitated

by active cell division, which, however, can also induce cell

differentiation and loss of long-term repopulating ability. The

identification of appropriate combinations of cytokines and

growth factors [e.g., interleukin (IL)-3, IL-6, stem cell factor

(SCF), thrombopoietin, and Flt-3 ligand], together with cul-

ture supports such as fibronectin, has resulted in major

improvements in our ability to efficiently introduce genes into

HSCs in large animal models [13, 14] that have translated

successfully in the first successful clinical protocols for lethal

forms of PIDs, such as X-linked severe combined immuno-

deficiency (SCID) and adenosine deaminase (ADA) defi-

ciency [11, 12]. As anticipated, the notions gathered by the

early experimentations in PIDs have posed the bases for

extending gene correction procedures to more frequent

genetic disorders of hematopoiesis, such as thalassemia [3],

and are expected to be applied in the near future to a variety of

common disease, including malignancies and HIV infection.

Results of recent gene therapy trials for PIDs

A general design for a gene therapy trial for PIDs is

illustrated in Fig. 1 and, briefly, it includes collection of

HSCs through bone marrow harvest or leukoapheresis after

pharmacological mobilization with granulocyte colony-

stimulating factor (G-CSF). HSCs are usually enriched by

recovery of CD34-expressing cells that are then cultured

in vitro in the presence of cytokines and growth factors, such

as stem cells factor (SCF), thrombopoietin (TPO), interleu-

kin-3 (IL-3), and flt-3 ligand. Activated cells are exposed to

viral gene transfer vectors that are able to stably integrate

their genome into the target cell DNA and subsequently

infused intravenously to the patients, who may or may not

have previously received myeloreductive chemotherapy, in

most cases with busulfan [5, 8, 9, 11, 12, 15–18].

One of the important distinctive features of any clinical

trial is the type of viral vector used (Fig. 2). Vectors based

on murine gamma-retroviruses were used in the most

successful protocols to date. These vectors, however, have

led to the occurrence of hematological malignancies in

several X-SCID, CGD and Wiskott–Aldrich syndrome

(WAS) patients treated with gene therapy [19–22], which

has prompted the field to introduce safety modifications in

these constructs [23] or adopt vectors based on different

retroviruses with increased safety profile, such as HIV-1

and Foamy virus [9, 24].

Results of gene therapy trials for ADA deficiency

Genetic deficiency of ADA results in an extreme reduction

of lymphocyte numbers and impairment of immune func-

tions that can lead to SCID and early death of affected

individuals from overwhelming infections [25]. HCT and

Fig. 1 Schematic representation of a gene therapy protocol for PIDs.

Bone marrow cells are collected from patients and CD34? hemato-

poietic progenitors enriched by immune-magnetic separation.

Enriched progenitors are cultured in the presence of cytokines and

growth factors before being exposed to viral vector preparations.

After several cycles of transduction, gene-corrected cells are collected

for infusion to the patients who may/may not have received prior

myelo-reduction chemotherapy
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enzyme replacement therapy (ERT) are available forms of

treatment for this disease, but each has drawbacks that limit

their efficacy [26] [27]. For these reasons, in the mid-

1980s, ADA deficiency was identified as an ideal candidate

disorder for trials of gene therapy. A series of pioneering

clinical trials explored the feasibility of gamma-retroviral

vector-mediated transfer of the ADA cDNA sequence into

patients’ peripheral blood T lymphocytes [28–33], bone

marrow or cord blood HSCs [34, 35], but failed at pro-

viding long-term improvements of the disease in treated

patients.

The first conclusive evidence that gene therapy can cure

ADA deficiency was obtained when the experimental

protocols were changed to add steps aimed at increasing

the initial advantage of gene-corrected HSC. These inclu-

ded the administration of mild myeloreductive chemo-

therapy (e.g., 4 mg/kg Busulfan or 140 mg/m2 Melphalan)

and the withholding of ERT. For Aiuti and collaborators [1,

12] in Italy, this approach revealed extremely effective

with nine out of ten treated patients showing immune

reconstitution with increases in T-cell counts and normal-

ization of T-cell function, five patients demonstrating res-

toration of B-cell function after vaccination, and eight

patients remaining off ERT in the long term.

While the Italian trial was ongoing, our own investiga-

tions were proceeding in a two-site trial (Children’s Hos-

pital Los Angeles and NIH) that aimed at comparing the

relative efficacy of two different gamma-retroviral vectors.

In the first phase of this trial, patients were maintained on

ERT and no chemotherapy was administered, which

resulted in long-term, low-level marking in two of four

treated patients, but no immunological improvement. In its

second phase, the trial involved low-dose busulfan che-

motherapy (75–90 mg/m2) and withdrawal of ERT. Six

patients were enrolled, with three achieving adequate

immune reconstitution. These results demonstrated that the

use of reduced-intensity conditioning favored engraftment

of gene-modified stem cells and the generation of ADA-

expressing lymphocytes, which, in turn, resulted in

immune reconstitution [8].

Concomitantly, a similar gene therapy trial was con-

ducted in the UK and enrolled six patients who were

treated following withdrawal of ERT and administration

of nonmyeloablative chemotherapy with melphalan

(140 mg/m2) or busulfan (4 mg/kg). In two of these

patients, PEG-ADA was restarted due to the absence of

measurable gene marking in peripheral blood cells. The

other patients showed increase in T-cell and B-cell num-

bers, with normalization of in vitro lymphocyte responses

and adequate immunoglobulin production in three patients

[7, 16].

In summary, based on cumulative data from more than

40 ADA deficient patients treated with gene therapy, it can

be concluded that gene therapy approaches can be effective

and to date maintain a record of safety. We have also

learned that, in this disease, selective advantage of gene-

corrected cells alone is not sufficient to provide immune

reconstitution in the absence of preparative chemotherapy.

This observation is corroborated by the results of a Japa-

nese clinical trial started in 2003 in which two patients who

received gene-corrected CD34? bone marrow cells after

discontinuation of PEG-ADA in the absence of chemo-

therapy did not achieve full immune reconstitution [36].

Future applications of gene therapy for ADA deficiency

will use vectors based on HIV-1, which are expected to

afford more efficient and safer gene transfer into HSC.

Results of gene therapy trials for chronic

granulomatous disease

Genetic defects affecting the expression of the gp91phox,

p22phox, p47phox, or p67phox molecules can cause the

impaired superoxide production in phagocytic cells that is

characteristic of CGD and that can result in severe and life-

threatening abscesses and/or granuloma formations in the

skin, liver, lungs, or bone of affected patients. Current

management options include antibiotic prophylaxis,

administration of IFN-c, and HCT [37]. A gene therapy

option, however, would be a beneficial additional alterna-

tive for many patients.

Early clinical trials were performed by the groups of

Malech at the NIH and Dinauer at the University of

Indiana Medical School. In these trials, gamma-retroviral

Fig. 2 Schematic representation of viral transfer vectors used for

gene therapy of PIDs: GCsapM-ADA gamma-retroviral vector [8],

the SRS11 EFS cc self-inactivating gamma-retroviral vector [23], and

the CL20-I4-EF1a-hgc-OPT HIV-1-based lentiviral vector [58]. LTR

long terminal repeat; 3 U3 LTR region, R R LTR region, 5 U5 LTR

region, hADA human ADA cDNA, SFFV spleen focus-forming virus,

D3 U3 LTR region deleted of promoter and enhancer sequences,

EF1a promoter of elongation factor 1-a gene, hcc human common cc

cDNA, WPRE woodchuck hepatitis virus post-transcriptional regula-

tory element, HIV-1 human immunodeficiency virus type-1, Ins

400-bp insulator fragment from the chicken b-globin locus, hcc-OPT

codon optimized human common cc cDNA
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vectors were used to transfer the p47phox or gp91phox

cDNA sequences into G-CSF-mobilized peripheral blood

CD34? hematopoietic progenitors that were then rein-

fused into the patients without prior myelosuppression. A

total of eleven patients were treated under these studies

that unfortunately only resulted in the transitory func-

tional correction of B0.5 % of peripheral blood granulo-

cytes [38–40].

More recent trials have introduced nonmyeloablative

conditioning. In one trial, the use of low-dose busulfan

(10 mg/kg) prior to infusion of gamma-retroviral vector-

transduced, mobilized CD34? cells in three X-CGD

patients resulted in 4–24 % of functionally neutrophils.

However, the effects remained detectable in the long term

at levels of around 1 % in only one subject [41].

A trial performed in Germany in 2004 used a gamma-

retroviral vector expressing gp91phox under the tran-

scriptional control of the spleen focus-forming virus LTR

and targeted G-CSF-mobilized CD34? progenitor cells of

two patients with X-CGD who received 8 mg/kg of

busulfan before the infusion of gene-corrected cells.

Around 15 % of neutrophils were found to be functionally

corrected early after treatment. This fraction increased

due to insertional activation of the PRDM16 and MDS1/

EVI1 genes in clonal cell populations that expanded with

time. Ultimately, epigenetic inactivation of the vector

gradually reduced the NAPDH-positive neutrophils to less

than 5 % by 1–2 years after treatment. Unfortunately,

however, activation of the EVI1 gene due to retroviral

insertion resulted in myelodysplasia with monosomy 7

that had lethal complications for both treated patients [17,

21, 42]. The same protocol was used in Switzerland to

enroll a X-CGD boy with severe Aspergillus infection.

NAPDH-positive neutrophils were detected at levels up to

30 %, and the procedure resulted in eradication of the

fungal infection [43]. Unfortunately, also this patient

developed MDS and has undergone allogeneic stem cell

transplantation [42].

Another gene therapy trial using a gamma-retroviral

vector was conducted in South Korea and enrolled two

X-CGD patients. Mobilized peripheral blood CD34? cells

were transduced and infused after a conditioning regimen

of fludarabine and busulfan. The level of NAPDH-positive

cells reached 6–14 % of neutrophils, but the correction was

short term and declined to less than 1 % in both patients

3 years after treatment [44].

Additional, unpublished experience of gene therapy for

CGD has been generated in the UK where conditioning

with melphalan (140 mg/m2) and either the vector

employed in the German trial or the NIH construct were

used. Similar to other trials, only in the short term, low

levels of gp91phox expression were detected in treated

patients [45].

In summary, the current experience with gene therapy of

CGD points to a yet unexplained difficulty in achieving

long-term engraftment of significant levels of transduced

cells. The lack of a strong selective advantage of gene-

corrected populations in this disease may play a major role

and may indicate that more significant levels of HSC

transduction and engraftment will be needed to obtain

clinical benefit.

More efficient methods of gene transfer are also being

developed based on HIV-1 vectors [46, 47] that are hoped

to improve the outcome and safety of future clinical trials.

Results of gene therapy trials for X-linked severe

combined immunodeficiency

Mutations of the common gamma chain (cc) of the

receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 cause

X-SCID, a profound immunodeficiency with a combined

impairment of T- and B-cell immunity. HCT can be

curative for affected boys; however, especially in the case

of haploidentical donors, transplanted patients often

achieve only partial chimerism of hematopoietic lineages,

with persistent impairment of humoral immune function

[48]. Such unsatisfactory results have fostered the devel-

opment of gene therapy approaches for this disease.

Based on successful preclinical in vivo experiments in

mouse models of X-SCID [49–53], the first gene therapy

trial for X-SCID, launched in 1999 in France, followed by

a very similar experimentation carried out in the UK. Both

trials involved gamma-retroviral cc gene transfer into

CD34? bone marrow cells harvested from X-SCID

patients who lacked HLA-identical bone marrow donors.

Ten typical X-SCID patients were treated at each site. The

results from these trials have been impressive for the quick

kinetics of reconstitution of normal levels of circulating,

cc-expressing, polyclonal and functional T lymphocytes in

the majority of treated patients. Improvement of humoral

immunity was also observed allowing discontinuation of

prophylactic immunoglobulin replacement treatment in

eleven of the twenty patients. Although the restoration was

incomplete with regard to the numbers of gene-corrected B

and NK cells, the effects of the treatment were sufficient to

provide protective immunity and to allow most patients to

return home and lead a normal life [4, 6, 11, 15, 54, 55].

Altogether, these data demonstrate that gene therapy can be

curative for X-SCID with long-lasting ([10 years) bene-

ficial effects.

Unfortunately, four patients in the French trial and one

patient in the British cohort developed T-cell leukemia

between 2 and 5 years after gene therapy. In all cases, the

adverse event was the result of insertional oncogenesis due

to the aberrant expression of the LMO2 (LIM domain only-
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2) or CCND2 (cyclin D2) oncogenes induced by the inte-

gration of the cc retroviral vector in the proximity of the

gene regulatory regions. Conventional treatment for T

acute lymphoblastic leukemia was administered, in one

case followed by matched unrelated HCT. Despite this

aggressive therapy, one patient succumbed to the disease,

while the others remain in remission up to 10 years after

the occurrence of the severe adverse events [19, 20, 56].

One additional trial was begun at the NIH in 2003 to

offer a rescue treatment option for older X-SCID patients

who had failed to respond to HCT. Three patients (11, 10,

and 14 years old) were enrolled in this trial that used a

gamma-retroviral vector and targeted G-CSF-mobilized

peripheral blood CD34? cells. T-cell numbers and func-

tion significantly improved in the youngest subject, but no

immunological improvement was observed in the other two

subjects, perhaps due to age-dependent loss of thymic

function [18].

Our understanding of the mechanisms leading to LMO2-

and CCND2-mediated lymphoproliferation in the first

French and British trials remains incomplete. However, it

is widely accepted that the enhancer activity of the gamma-

retroviral vector promoter was responsible for the activa-

tion of the LMO2 and CCND2 promoters and consequent

deregulated LMO2 and CCND2 gene expression. Vigorous

cell proliferation of LMO2- and CCND2-expressing cells

due to the selective advantage conferred to them by the

concomitant expression of the cc gene may have provided

a ‘‘second hit’’ and favored secondary changes leading to

the onset of the overt malignancies.

Alternative gene transfer constructs have been devel-

oped to improve the safety of gene therapy for X-SCID. An

enhancer-less gamma-retroviral vector was found to be

effective in the mouse model of X-SCID [23] and is used in

a consortium study including centers in London, Paris,

Boston, Cincinnati, and Los Angeles that had enrolled nine

patients as of December 2013. Data published in abstract

form indicate that 5 of 7 evaluable patients achieved sig-

nificant numbers of corrected, diverse and functional cir-

culating T lymphocytes. The kinetics of reconstitution

appear similar to the earlier French and British trials.

Importantly, preliminary analysis of retroviral integration

sites does not show clustering near LMO-2, EVI1 or other

lymphoid oncogenes [57]. An alternative vector based on

HIV-1 has been developed by Sorrentino and colleagues

[58] and is used in a two-site clinical trial open at the St.

Jude Children’s Research Center in Memphis, where typ-

ical X-SCID patients will be enrolled, and at NIH, where

atypical older patients are treated. The latter arm of the trial

uses nonmyeloablative conditioning to improve the effi-

cacy of engraftment of gene-corrected cells and has

enrolled one patient with encouraging preliminary results

[59].

Results of gene therapy trials for WAS

Wiskott–Aldrich syndrome is a multifaceted disorder that,

in its severe presentation, is characterized by eczema,

thrombocytopenia, recurrent infections, autoimmune dis-

orders, and a high incidence of lymphomas. Abnormalities

of lymphoid and myeloid cell function contribute to the

often heterogeneous and medically challenging clinical

presentation of affected patients [60]. The unsatisfactory

results of haploidentical HCT in WAS patients [48, 61–63]

justify efforts to test the safety and efficacy of gene therapy

for this disease.

In vivo models of gene therapy using Was gene

knockout mice have shown that T-cell numbers and

responses can be improved in animals treated with different

viral vector-mediated gene correction systems [24, 64–71].

In addition, competitive repopulation experiments demon-

strated that wild-type cells have a selective advantage of

over Was knockout populations [72], which is consistent

with the observations of in vivo selective survival advan-

tage of revertant cells in WAS patients [73–75] and sug-

gests that gene-corrected cells could similarly have a

selective advantage over unmodified populations after gene

therapy.

The first clinical trial of gene therapy for WAS started in

Germany in 2006 and used a gamma-retroviral vector to

transduce mobilized peripheral blood CD34? cells of ten

patients who received conditioning with busulfan (8 mg/

kg) prior to infusion of gene-corrected cells. Nine of ten

treated subjects showed a significant increase of platelet

counts and normalization of T-cell numbers and function,

NK-cell function, immunoglobulin production, and

responses to vaccines. Patients also markedly improved

their clinical status, including bleeding tendency, suscep-

tibility to infections, and autoimmunity. Unfortunately,

insertional oncogenesis mediated by LMO-2 activation

occurred in five patients and resulted in T-cell leukemia. In

addition, one subject developed acute myeloid leukemia [5,

76]. Therefore, while gamma-retroviral vector-mediated

gene therapy can correct WAS, it seems to carry an

unacceptable level of risk for application in this disease.

More recently, a multicenter gene therapy trial opened in

Milan, London, Paris, and Boston using the HIV-based gene

transfer construct extensively tested in the mouse models

described above [77]. The results from the first series of

three patients treated in Milan have recently been published.

Similar to the German trial, improvement of platelet counts,

immune function and clinical manifestations of the disease

was observed at 1? year after gene therapy. Importantly,

however, comparison of retroviral and lentiviral vector

integration sites in samples from the German and Italian

studies showed lack of overrepresentation of sites targeting

oncogenes in the Italian patient group, while demonstrating
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early enrichment of oncogenic targets in patients from the

German trial [9]. While long-term observation is warranted

to confirm the superior safety of lentiviral gene transfer, it is

hoped that use of this class of vectors will allow to capi-

talize on the potential of gene therapy as an alternative

treatment option for WAS, while protecting patients from

the occurrence of leukemic adverse events.

Future directions and concluding remarks

Preclinical experiments are underway for a number of other

forms of PID that would benefit from gene therapy

approaches. Several of such diseases represent significant

challenges and will require additional progress beyond the

current available technologies (Table 1). Ultimately, a

general shift from the current ‘‘gene addition’’ approaches

to ‘‘gene editing’’ strategies will be required and some of

these efforts have been already tested on PID models, such

as the early demonstrations of the IL2RG gene repair with

zinc-finger nuclease technology [78] and the more recent

development of site-directed gene addition strategies for

CGD in induced pluripotent stem cells (iPSc) [79]. The

current successes obtained in the field of PIDs indicate a

sign of maturity of the field of gene therapy where clinical

experimentation is evolving from anectodal reports to

execution of sound empirical studies informed by previous

clinical results. While still distant from the gold standard of

randomized studies, the lively activity that is witnessed in

this area of gene therapy will undoubtedly continue to

foster the progress of this form of clinical investigation.
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