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Abstract Acute promyelocytic leukemia (APL) is an

uncommon subtype of acute myelogenous leukemia char-

acterized by the proliferation of blasts with distinct mor-

phology, a specific balanced reciprocal translocation

t(15;17), and life-threatening hemorrhage caused mainly by

enhanced fibrinolytic-type disseminated intravascular

coagulation (DIC). The introduction of all-trans retinoic

acid (ATRA) into anthracycline-based induction chemo-

therapy regimens has dramatically improved overall sur-

vival of individuals with APL, although hemorrhage-

related death during the early phase of therapy remains a

serious problem. Moreover, population-based studies have

shown that the incidence of early death during induction

chemotherapy is nearly 30 %, and the most common cause

of death is associated with hemorrhage. Thus, development

of a novel treatment strategy to alleviate abnormal coag-

ulation in APL patients is urgently required. Recombinant

human soluble thrombomodulin (rTM) comprises the

active extracellular domain of TM, and has been used for

treatment of DIC since 2008 in Japan. Use of rTM in

combination with remission induction chemotherapy,

including ATRA, produces potent resolution of DIC

without exacerbation of bleeding tendency in individuals

with APL. This review article discusses the pathogenesis

and features of DIC caused by APL, as well as the possible

anticoagulant and anti-leukemic action of rTM in APL

patients.
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Introduction

Acute promyelocytic leukemia (APL) constitutes approxi-

mately 10 % of all cases of adult acute myelogenous leu-

kemia (AML) and is characterized by a specific balanced

reciprocal translocation t(15;17), generating promyelocytic

leukemia–retinoic acid receptor a (PML–RARa) fusion

transcripts that impair signaling mediated by RARa [1, 2].

The most important clinical feature of APL is life-threat-

ening hemorrhage, which is caused mainly by enhanced

fibrinolytic-type disseminated intravascular coagulation

(DIC). Although the true incidence of DIC in APL patients

is unknown, a recent epidemiological survey conducted in

Taiwan found that 90 (77.6 %) of 116 APL patients

developed overt DIC [3].

Prior to the ATRA era, early mortality related to hem-

orrhagic complications was extremely high [4–8]

(Table 1). For example, early death during the first course

of chemotherapy was observed in 47 % of APL patients

(n = 57) treated with combination chemotherapy with

daunorubicin (DNR) and cytarabine (AraC). Approxi-

mately, 41 % of early deaths were related to hemorrhagic

events, with intracranial hemorrhage being the most com-

mon cause of death (73 %) [6]. Incorporation of all-trans

retinoic acid (ATRA) and, more recently, arsenic trioxide

(ATO), into induction chemotherapy has revolutionized the

treatment of individuals with APL, with 90–95 % of newly

diagnosed APL patients achieving complete remission and

over 85 % of patients surviving for longer than 5 years [9–

23]. Despite the incorporation of ATRA, hemorrhage

remains the major cause of early death (4.5 %); other
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causes of early death include infection (1.9 %) and dif-

ferentiation syndrome (1.2 %) [20] (Table 1). Moreover,

population-based studies have shown that the early death

rate during induction chemotherapy remains extremely

high (30 %), and the most common cause of death is

associated with hemorrhage [24–26] (Table 1). Thus,

development of a novel treatment strategy to alleviate

coagulopathy in APL patients is urgently required.

Recombinant human soluble thrombomodulin (rTM)

comprises the active, extracellular domain of thrombo-

modulin (TM) and inactivates coagulation by binding to

thrombin [27, 28]. In addition, the thrombin–rTM complex

activates protein C to produce activated protein C (APC),

which inactivates factors VIIIa and Va in the presence of

protein S, further inhibiting thrombin formation [29]. The

use of rTM for the treatment of DIC was approved in Japan

in 2008, and is effective for the management of DIC

complicated by a variety of underlying diseases [30–36].

rTM possesses anti-inflammatory and cytoprotective

effects [37–39], and the use of rTM significantly improved

survival of mechanically ventilated patients with severe

sepsis when compared with control patients who did not

receive rTM [30]. Multifunctional rTM has recently come

into the global spotlight as a novel agent for the manage-

ment of DIC [40, 41].

Clinical manifestation of DIC in APL patients

DIC complicated by APL is characterized by exaggerated

fibrinolysis and life-threatening hemorrhage. Hemorrhagic

death frequently occurred within the first week after initi-

ation of induction chemotherapy, and was nearly exclu-

sively caused by intracranial and pulmonary hemorrhages

(incidence of 65 and 32 %, respectively). These data come

from the Programa de Estudio y Tratamiento de las Hem-

opatias Malignas (PETHEMA) group that carefully eval-

uated the cause of induction failure in 732 newly diagnosed

APL patients who were treated with a combination of

ATRA and idarubicin [16]. High blast count ([30 9 109/

L) was identified as a predictive factor for hemorrhagic

death by PETHEMA as well as by the Gruppo Italiano per

le Malattie Ematologiche dell’Adulto (GIMEMA) group

that evaluated early hemorrhagic death in 622 consecutive

APL patients treated with ATRA either alone (n = 499) or

in combination with idarubicin (n = 123) [13].

Notably, approximately 5 % of APL patients developed

thrombotic events, including deep venous thromboses,

cerebral strokes, pulmonary emboli, and myocardial

infarction, during induction chemotherapy with ATRA and

idarubicin [42, 43]. Initiation of therapy with ATRA rap-

idly corrects hyperfibrinolysis; however, normalization of

thrombotic markers, such as prothrombin fragment 1 ? 2T
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(F1 ? 2) and thrombin antithrombin complex (TAT), does

not occur until 2 weeks after treatment with ATRA [44]. It

may be that ATRA impairs the balance between coagula-

tion and fibrinolysis and thereby causes a hypercoagulable

state. It should also be noted that severe thrombotic com-

plications occurred in six of 26 patients who died before

initiation of chemotherapy [43]. This PETHEMA study

identified a low level of fibrinogen and microgranular

morphology (M3 variant) as an independent prognostic

factor for thrombosis [43]. Importantly, prophylactic use of

tranexamic acid did not impact hemorrhagic mortality, but

it did tend to increase the incidence of thrombotic com-

plications [43].

Pathogenesis of DIC caused by APL

Hypercoagulability

Plasma markers of clotting activation, such as TAT,

F1 ? 2, and fibrinopeptide A (FPA), are markedly ele-

vated in APL patients [44–46], indicating the presence of

hypercoagulability. There are three different types of

procoagulants aberrantly produced by APL cells: tissue

factor (TF), cancer procoagulant (CP), and microparticles

(MPs) (Fig. 1). TF, a transmembrane glycoprotein, forms

a complex with factor VII (FVII) to activate coagulation

factor X (FX), which generates thrombin. As APL cell

line NB4 underwent apoptosis after exposure to cytotoxic

agents, thrombin generation was augmented in association

with enhanced TF activity. The exteriorization of phos-

phatidylserine on the surface of APL cells during apop-

tosis allows interaction with the extracellular domain of

TF, leading to its activation [47]. These observations are

clinically relevant; DIC is exacerbated in APL patients

when tumor lysis occurs after initiation of induction

chemotherapy with cytotoxic agents, such as anthracycline

and AraC. CP, a cysteine proteinase procoagulant pro-

duced from fetal and malignant cells, directly activates FX

and generates thrombin in the absence of FVII. Among

the different cytological subtypes of AML, the activity of

CP was greatest in APL cells [48, 49]. MPs might also be

involved in hypercoagulability in APL patients. MPs are

released from APL cells, as evidenced by their expression

of CD33 cell surface antigen and TF. The number of

CD33? MPs strongly correlated with leukocyte counts and

CP

Proteases

u-PA
t-PA

APL cell

Cytokines

TF/FVII

Xa X

1) Hypercoagulability

3) Endothelial cell damage

2) Hyperfibrynolysis

Plasminogen

Plasmin

MPs
Annexin II

TF
u-PAR
u-PA

TM ↓ TF ↑ PAI-1 ↑

Fig. 1 1 Hypercoagulability. APL cells express TF, CP and MPs,

which activate the coagulation cascade. 2 Hyperfibrinolysis. APL

cells produce t-PA, u-PA and u-PAR, which activate plasminogen.

APL cells aberrantly express annexin II on their cell surface, which

mediates conversion of plasminogen to plasmin. Elastases produced

by APL cells may cleave fibrinogen and degrade fibrinolytic

inhibitors, resulting in hyperfibrinolysis. 3 Endothelial cell damage.

APL cells produce various types of inflammatory cytokine, including

IL-1b, IL-6 and TNF-a, all of which cause endothelial cell damage

and downregulate expression of TM in parallel with upregulation of

TF and PAI-1 on the cell surface of endothelial cells, resulting in

hypercoagulability. TF, tissue factor; CP, cancer procoagulant; MPs,

microparticles; t-PA, tissue-type plasminogen activator; u-PA, uroki-

nase-type plasminogen activator; u-PAR, u-PA receptor; IL-1b,

interleukin-1b; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a;

TM, thrombomodulin; PAI-1, plasminogen activator inhibitor-1
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plasma levels of D-dimer in APL patients [50]. APL cell-

derived MPs decreased coagulation time and increased

thrombin generation in a TF-dependent manner [50].

Exposure of leukemia cells to anthracycline increased the

release of TF? MPs in vitro [51]. This may account for

the exacerbation of DIC during remission induction

chemotherapy.

APL cells produce a variety of inflammatory cytokines,

including interleukin (IL)-1b, IL-6 and tumor necrosis

factor-a (TNF-a) [52]. These cytokines cause endothelial

cell damage and downregulate the expression of TM in

parallel with upregulation of TF and plasminogen activator

inhibitor-1 (PAI-1) on the cell surface of endothelial cells,

resulting in hypercoagulability [53, 54] (Fig. 1).

Hyperfibrinolysis

Laboratory findings of DIC in patients with APL are

characterized by marked hypofibrinogenemia and an

increase in ratio of fibrin/fibrinogen degradation products

(FDP)/D-dimer. Moreover, a decrease in the levels of

plasminogen, a-2-antiplasmin and plasminogen activator

inhibitor 1 (PAI-1) and an increase in the levels of uroki-

nase-type plasminogen activator (u-PA) and plasmin/a-2-

antiplasmin complex were noted in APL patients [55–58].

These observations may explain the exaggerated fibrino-

lysis in APL patients. Further studies have demonstrated

that APL cells expressed several key mediators of plasmin

generation, such as tissue-type plasminogen activator (t-

PA), u-PA and its receptor, u-PAR. The u-PA/u-PAR

complex enhances activation of cell-bound plasminogen

[59, 60] (Fig. 1).

One of the most important factors responsible for

exaggerated fibrinolysis in APL is the cell surface

phospholipid-binding protein, annexin II (Fig. 1). Annexin

II is expressed on endothelial cells and macrophages and

acts as a cell surface receptor for plasmin and t-PA [61].

t-PA-mediated conversion of plasminogen to plasmin on

annexin II results in a 60-fold increase in plasmin gener-

ation when compared with that in the fluid phase [62].

Intriguingly, APL cells express higher levels of annexin II

and more efficiently generate plasmin than t(15;17) fusion

gene-negative AML cells [63]. Importantly, exposure of

APL cells to ATRA downregulates the expression of

annexin II and inhibits plasmin activity in vitro [63].

Another molecule that may be related to hemorrhagic

diatheses in APL is thrombin-activatable fibrinolysis

inhibitor (TAFI). Thrombin protects fibrin clots from

plasmin-mediated fibrinolysis via activation of this car-

boxypeptidase; thrombin bound to TM efficiently activates

TAFI, which hampers fibrinolysis by removing C-terminal

lysine residues on fibrin that are otherwise important for

binding of plasminogen and t-PA, thereby efficiently

generating plasmin [64, 65]. It has been suggested that

TAFI may block exaggerated fibrinolysis in this manner. In

fact, inhibition of TAFI activity by a carboxypeptidase

inhibitor stimulated fibrinolysis in an animal model [66].

Notably, activity of TAFI was inhibited by 60 % in APL

patients [67].

Granulocytic proteases, including elastases, are abun-

dantly produced by APL cells. These proteases are thought

to cleave fibrinogen and degrade fibrinolytic inhibitors,

leading to augmented fibrinolysis [68, 69] (Fig. 1). How-

ever, the contribution of granulocytic proteases released by

APL cells to hemorrhagic events is not clear; even after

improvement of coagulopathy in APL patients in response

to ATRA, plasma levels of elastases remained high [69]. In

addition, recent studies comparing elastase-mediated

fibrinolytic activity between sepsis-induced DIC and APL-

related coagulopathy showed that levels of elastase-

degraded fibrin (ogen) were significantly higher in sepsis

patients [70].

Management of DIC caused by APL

Intensive supportive care consisting of fresh frozen plasma,

fibrinogen, and/or cryoprecipitate and platelet transfusions

to maintain the levels of fibrinogen and platelets above

100–150 mg/dL and 30–50 9 109/L, respectively, is

strongly encouraged by European LeukemiaNet [71]. Of

note, 18 (6.5 %) of 279 APL patients treated with an

ATRA-containing regimen developed severe hemorrhage,

and these patients received frequent transfusions to main-

tain the levels of fibrinogen and platelet count above

150 mg/dL and 30 9 109/L, respectively [18]. Only 40 and

71 % of patients achieved target levels of fibrinogen and

platelet, respectively, at the onset of bleeding [18]. This

observation suggests that intensive transfusion during

remission induction chemotherapy is not sufficient to

overcome coagulopathy. Therefore, novel treatments are

clearly required to promptly correct abnormal coagulation

in APL patients.

European LeukemiaNet does not recommend the use of

heparin, tranexamic acid, or other anticoagulant or antifi-

brinolytic agents for the management of coagulopathy in

APL patients, as the ability of these agents to reduce

hemorrhagic risk was found to be questionable [71]. Only

one retrospective study conducted in the UK found that

heparin was clinically beneficial (Table 1); however, the

dose of heparin and the treatment period varied between

each patient, according to their physicians’ decisions. Also,

the induction therapy regimen was not uniform in this

retrospective study [7].

rTM was approved for the treatment of DIC in Japan in

2008. A phase III trial comparing the efficacy and safety of

rTM and low-dose heparin showed that rTM significantly
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improved DIC that was associated with hematological

malignancies or infections [72]. This clinical trial excluded

almost all patients with APL, because concomitant use of

ATRA was prohibited. Since 2008, the use of rTM has

proved effective and safe in individuals with DIC and APL

[73–75]. Use of rTM in combination with chemotherapy

including ATRA rescued APL patients (n = 9) from DIC

earlier than control patients (n = 8) who did not receive

rTM [73]. No bleeding-related mortality was noted during

induction chemotherapy in APL patients who received

rTM [73]. Notably, severe hemorrhage requiring red blood

cell transfusion at the time of diagnosis of APL was

reduced after initiation of rTM [74]. Use of rTM in com-

bination with ATO for relapse of APL promptly improved

DIC without any adverse effect in one case report [75].

These observations suggest that rTM is a promising agent

for the management of coagulopathy in APL patients,

although the sample size in these studies is extremely

small.

Structure and function of TM

TM is a glycosylated type I transmembrane molecule of

557 amino acids with multiple domains. Each domain

possesses distinct properties. The molecule consists of an

NH2-terminal lectin-like region followed by six tandem

epidermal growth factor (EGF)-like structures, an O-gly-

cosylation site-rich domain, a transmembrane domain, and

a cytoplasmic tail domain [76] (Fig. 2). rTM comprises

the extracellular domains of TM. TM is ubiquitously

expressed on endothelial cells and binds to thrombin,

forming a 1:1 complex via E45 repeats in an EGF-like

domain and acting as an anticoagulant [28]. In addition,

the thrombin–TM complex activates protein C to produce

APC, which inactivates factors VIIIa and Va in the pre-

sence of protein S, thereby inhibiting further thrombin

formation [29]. The minimum structure essential to gen-

erate APC is localized in E456 repeats of the EGF-like

domain [77]. On the other hand, E3456 repeats are

responsible for activation of TAFI, which acts as an anti-

fibrinolytic [64, 65].

TM possesses anti-inflammatory properties; the lectin-

like domain of TM binds to and inactivates high-mobility

group box 1 protein (HMGB1), a proinflammatory cyto-

kine that stimulates production of inflammatory cytokines,

such as IL-6 and TNF-a, via toll-like receptor 4 and that

serves as a receptor for advanced glycation end products

[37]. In addition, the lectin-like domain of TM inhibits

lipopolysaccharide-induced cytokine production and

adhesion of neutrophils to endothelial cells in association

E1
E2
E3
E4
E5
E6

Lectin-like domain 

EGF-like domain

O-glycosylation site-
rich domain

Transmembrane
domain 

Cytoplasmic tail 
domain 

FVa
FVIIIa

Cytoprotective function

Anti-coagulation

Endothelial cell

Anti-inflammatory function

Generation of APC 

Thrombin binding site

Activation of TAFI 

Fig. 2 The structure and function of TM. The EGF-like domain of

TM exerts anticoagulant effects by inactivating thrombin and

indirectly inhibiting coagulation factor Va and VIIIa via APC. On

the other hand, the E3456 repeats of the EGF-like domain are

responsible for activation of TAFI, leading to anti-fibrinolysis. The

lectin-like domain of TM possesses anti-inflammatory function. The

E45 repeats of the EGF-like domain exert cytoprotective effects in an

APC-independent manner. APC also exerts anti-inflammatory and

cytoprotective effects. rTM comprises the functionary active extra-

cellular domains of TM. TM, thrombomodulin; EGF, epidermal

growth factor; TAFI, thrombin-activatable fibrinolysis inhibitor; APC,

activated protein C; FVa, activated factor V; FVIIIa, activated factor

VIII; rTM, recombinant human soluble thrombomodulin
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with suppression of extracellular signal-regulated kinase

(ERK) and nuclear factor j B (NF-jB) [38].

Intriguingly, TM exerts endothelial cytoprotective

effects against inflammatory cytokines or calcineurin

inhibitors via upregulation of myeloid cell leukemia

sequence 1 (Mcl-1) proteins in a process that is mediated

by the ERK signal transduction pathway [39]. This cyto-

protective effect is also mediated by E45 repeats of the

EGF-like domain, and is independent of APC [39]. Of note,

TM also exerts anti-inflammatory and cytoprotective

effects via APC-dependent mechanisms [78–81].

Possible action of rTM in APL cells

An in vitro study demonstrated that exposure of APL cells

to rTM significantly downregulates levels of annexin II,

resulting in a decrease in plasmin production [82]. rTM-

induced downregulation of annexin II in APL cells was

dependent on APC, but the precise mechanisms by which

this occurs remain unknown. ATRA also inhibited plasmin

production in association with downregulation of annexin II

in APL cells [63]. Interestingly, when rTM was combined

with ATRA, inhibition of plasmin production in APL cells

was synergistically enhanced [82]. Remarkably, rTM alone

was able to induce myeloid differentiation and growth arrest

of APL cells in association with induction of CCAAT/

enhanced binding protein e, an essential nuclear transcrip-

tion factor for myeloid differentiation in an APC-dependent

mechanism [82]. Again, rTM synergized with ATRA to

produce anti-APL effects [81]. ATRA increased TM levels

in acute myeloid leukemia HL60 cells as they differentiated

toward neutrophils [83]. ATRA can regulate the expression

of TM via the RA response element located on the 50-
flanking region of this gene [84]. Thus, TM may, at least in

part, mediate ATRA-induced myeloid differentiation of

APL cells. ATRA also induced the expression of TM on the

cell surface of endothelial cells [85]. ATRA may normalize

abnormal coagulation via induction of TM on the endo-

thelium and APL cells in individuals with APL.

A major clinical problem in addition to coagulopathy in

APL patients after initiation of ATRA and/or ATO is dif-

ferentiation syndrome (DS), formerly known as retinoic

acid syndrome. DS is characterized by unexplained fever

and acute respiratory distress with vascular capillary

leakage [86–88]. The patho-etiology of DS remains to be

fully elucidated, but the insults to the respiratory and

vascular endothelium caused by cytokines released by

differentiated myeloid cells are considered to be involved

in the development of this potentially lethal syndrome [89].

rTM may counteract DS, as rTM successfully alleviated

capillary leakage in individuals with engraftment syndrome

and sinusoidal obstruction syndrome that developed after

hematopoietic stem cell transplantation [35, 36].

Conclusions

Introduction of ATRA and ATO into remission induction

chemotherapy for individuals with APL has dramatically

improved clinical outcome of this fatal subtype of leuke-

mia; however, the incidence of life-threatening hemor-

rhagic and thrombotic events in APL patients at the time of

diagnosis and/or during induction chemotherapy is still

higher than expected. Use of the anticoagulant, rTM, which

has additional activity against exaggerated fibrinolysis,

inflammation, and endothelial cell damage, is a promising

treatment strategy to safely rescue APL patients from life-

threatening coagulopathy. Further large cohort studies are

clearly required to establish the safety and efficacy of rTM

for management of coagulopathy in patients with APL.
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