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Abstract
The local slopes contain rich information of the reflection geometry, which can be used to facilitate many subsequent pro-
cedures such as seismic velocities picking, normal move out correction, time-domain imaging and structural interpretation. 
Generally the slope estimation is achieved by manually picking or scanning the seismic profile along various slopes. We 
present here a deep learning-based technique to automatically estimate the local slope map from the seismic data. In the pre-
sented technique, three convolution layers are used to extract structural features in a local window and three fully connected 
layers serve as a classifier to predict the slope of the central point of the local window based on the extracted features. The 
deep learning network is trained using only synthetic seismic data, it can however accurately estimate local slopes within real 
seismic data. We examine its feasibility using simulated and real-seismic data. The estimated local slope maps demonstrate 
the successful performance of the synthetically-trained network.

Keywords Deep learning · Neural network · Seismic data · Local slopes

1 Introduction

As one of the geometric attributes of seismic signal, the 
local slopes contain complete information of the reflection 
geometry, which is of great significance to the analysis of 
seismic data. An accurate estimation of the slope informa-
tion can benefit many subsequent procedures such as hori-
zons interpretation (Fomel 2010; Wu and Hale 2015), struc-
ture enhancement (Hale 2009; Liu et al. 2010), incoherent/

coherent noise attenuation (Liu et al. 2015; Huang et al. 
2017), deblending (Huang et al. 2018), seismic interpola-
tion/reconstruction (Gan et al. 2016; Huang and Liu 2020), 
inversion (Yao et al. 2020; Liu et al. 2020a) and imaging 
(Fomel 2007; Zhang et al. 2019b). The introduction of local 
slopes into seismic data processing can be traced back to the 
work of Rieber (1936), in this basic, a method of controlled 
direction reception is developed, which can achieve excellent 
results in seismic processing and interpretation (Riabinkin 
1957). After then, a number of researchers have used several 
techniques to estimate the local slopes. Ottolini (1983) pro-
posed a picking method of local slopes by local slant stacks. 
Lambaré et al. (2004) extended Ottolini’s method further 
to make it simpler and more automatic. But it is extremely 
expensive to cast about the best direction by slant slacking 
with different slopes. Claerbout (1992) first delved into a 
plane-wave destruction filter to estimate seismic event slopes 
in local windows under an assumption of local plane-wave 
model. Such filter is constructed with the help of an implicit 
finite-difference scheme for the local plane-wave equation 
(Fomel 2002). Andersson and Duchkov (2013) described 
a structure tensor-based local slopes estimation technique 
and also provided a summary of previous studies in detail. 
Huang et al. (2017a) proposed an algorithm to track the larg-
est values of the upper envelope in local windows to obtain 
the event slope.
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The computer-assisted seismic data processing and inter-
pretation become more popular and have demonstrated out-
standing performance. Machine learning refers to the process 
that perceives the data environment and discovers as well as 
learns information from the data, and further makes strategic 
decisions that maximize the chance of successfully achieving 
specific goals (Murphy 2012; Valentine and Kalnins 2016; 
Chen 2018;). Compared with traditional technique, machine 
learning may achieve higher efficiency and precision (Chen 
et al. 2016; Wu et al. 2019b; Wu et al. 2020b; Zhang et al. 
2019b). The machine learning-based technique has drawn a 
lot of attention from various kinds of fields, such as medi-
cal science, biomedical engineering, text processing, (elec-
tronic) commerce, internet engineering (Chan et al. 2002; 
Vafeiadis et al. 2015). In seismological community, machine 
learning has been successfully applied to noise attenuation 
(Chen et al. 2019; Zhu et al. 2019; Saad and Chen 2020), 
signal recognition (Huang 2019), earthquake detection (Jia 
et al. 2019; Mousavi et al. 2019b), arrival picking (Yu et al. 
2018; Zhu and Beroza 2018; Zhao et al. 2019; Jiang and 
Ning 2019; Zhang et al. 2020), fault detection (Ping et al. 
2018), geophysical inversion (Chen et al. 2018; Li et al. 
2020; Wu et al. 2020a), traveltime parameters estimation 
(Liu et al. 2020b) and reservoir porosity prediction (Chen 
et al. 2020). As one of the machine learning methods, deep 
learning is composed of multiple processing layers to intelli-
gently extract data features, which can dramatically improve 
the state-of-the-art in various fields (Lecun et al. 2015). It 
has become a powerful tool in the seismic processing and 
interpretation (Waldeland et al. 2018; Mousavi et al. 2019a). 
Lewis and Vigh (2017) adapted deep learning technique to 
full-waveform inversion to overcome challenges caused by 
complex geological stratification. Ross et al. (2018) trained 
a convolutional neural network using the hand-labeled data 
archives of the Southern California Seismic Network and 
used the trained model to detect seismic body-wave phases. 
Mousavi and Beroza (2019) designed a regressor (MagNet) 
composed of convolutional and recurrent neural networks to 

predict earthquake magnitude from raw waveforms recorded 
at single stations. Araya-Polo et al. (2018) obtained an accu-
rate gridding or layered velocity model from shot gathers 
using deep neural networks.

To estimate the local slope information of a seismic 
profile, we use a deep neural network of six main layers 
to predict the local slope of the central pixel in each small 
data patches. To train and validate the neural network, we 
create 5,562,120 data patches by randomly convoluting 121 
different wavelets with different reflectivity models. The 
neural network parameters are optimized by minimizing a 
cross-entropy function. The stochastic gradient descent with 
momentum method is used to achieve solve the optimization 
problem. Application of the trained neural network on both 
synthetic and field example shows the effectiveness.

2  Model introduction

2.1  Deep neural network architecture

Our designed network consists of six main layers including 
three 2D convolution layers and three fully connected lay-
ers, as shown in Fig. 1. The three convolution layers serve 
as a deep feature extractor which reduces the input images 
into smaller sets of attributes that hold relevant informa-
tion in local structure. A single convolution layer can be 
formulated as:

where Yj and Xi stand for the jth extracted features map and 
the ith input data, respectively. Wj and bj denote the weight-
ing matrix and basis parameters which control the convo-
luting and horizontal shifting process, which slides over 
the input map with a specified stride to reduce the spatial 
dimensionality. f is a nonlinear activation function which 
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can improve the universality of the deep neural network 
and its simulation performance of nonlinear process. For 
the seismic local slope estimation, we choose the state-of-
the-art rectified linear unit (ReLU) (Nair and Hinton 2010) 
as the activation function f  = max (0, x), which returns its 
argument x when it is greater than zero and returns zero 
otherwise. The ReLU activation maintains the nonlinearity 
and off–on characteristic which is similar to a biological 
neuron. g is the batch normalization operation which accel-
erates the training process and also reduce the risk of over 
fitting (Ioffe and Szegedy 2015). For each convolution layer, 
we pad the data with zeros prior to the convolution operation 
to keep the sizes of input and output same. To further boost 
the convergence rate and capacity of resisting disturbance 
and noise, we insert the max-pooling operation into the first 
two convolution layers as

where p represents the max-pooling operation taking the 
maximum of the neighborhood.

The three fully connected layers can be treated as a 
classifier to predict the class based on the extracted fea-
tures. Instead of convoluting a local sub-image with a 
convolutional kernel, the neurons in a fully connected 
layer are completely interconnected with the next layer 
neurons, but not connected with neurons in the same layer 
or cross-layer. A single fully connected layer can be for-
mulated as:

where yj denotes jth output neuron. x is the reshaped 1D 
column vector from the previous layer neurons. wj represents 
the weighting vector and bj is the basis. To reduce the risk of 
gradient vanishing and over fitting, the first two fully con-
nected layers are followed by a leaky ReLU activation l and 
a dropout operation d as

The local slope labels are introduced in the last layer. 
For the last layer, we insert a soft-max operation to obtain 
the final prediction result (i.e., the local slope of the cen-
tral point of the input seismic patch). The final predic-
tion results are classified into 22 groups including a non-
signal group and 21 groups of various slopes. One can of 
course define more output categories, but generally need 
a more complex or deeper neural network. The detailed 
parameters we use refer to Fig. 1.
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2.2  Training data and labels

The main limitation of applying deep learning in seismic 
image processing remains in preparing rich training datasets 
and the corresponding labels (Wu et al. 2019a). Manually 
labeling a mass of seismic images is highly labor-intensive 
and tedious. Moreover, the manually labeling is highly 
related to human experience and the result often goes to be 
different with different interpreters. The incomplete or inac-
curate labeling may mislead the training process and trained 
neural network will make unreliable predictions (Wu et al. 
2019a). For this reason, we train the neural network using 
synthetically-created seismic patches, in which the local 
slope information is pre-given. The local slope of a seismic 
section is defined as the local slope of the corresponding 
reflection coefficients. In order to have realistic and varied 
seismic data, we generate 11 Ricker wavelets with equally 
increasing domain frequencies from 10 to 70 Hz (6 Hz 
interval). For each Ricker wavelet, we diversify it into 11 
wavelets with different phases (0–180°, 18° interval), which 
leads to 11 × 11 = 121 different wavelets in total, as shown 
in Fig. 2.

We estimate the local slope information of each data point 
within its neighborhood. The size of the neighborhood patch 
can be varying for the local slope estimation depending on 
the user requirement. However, it is to be understood that a 
small size of neighborhood patch may provide insufficient 
details and result in an incorrect estimation, while a big one 
introduces some interference information (e.g., nonlocal 
information) which may misguide the training and predict-
ing processes. In addition, the bigger the size, the higher 
demand on the memory and computation performance of the 
workstation. Take these into account, we set a 31 × 5 local 
window to estimate the slope of the central point. We ran-
domly convolute the synthetically created wavelets with dif-
ferent reflectivity models to obtain 1,854,040 small seismic 
patches including 299,430 (16.15%) non-signal patches and 
1,554,610 (83.85%) signal patches with different slopes. To 
make the synthetic seismic images even more realistic, we 
add different levels of random noise. We also augment the 
data sets by randomly decimating and dithering operations 
to make the trained neural network applicable to the seismic 
data with relatively complicated structure, which produces 
5,562,120 patches (898,052 non-signal and 4,664,068 signal 
patches) in total. Figure 3 shows the statistical analysis of the 
training data. 1,112,424 (20%) of the patches are randomly 
selected as the validation data sets.

2.3  Deep neural network training

The whole training process of the deep neural network 
can be considered as solving a complex nonlinear inverse 
problem using interactive forward propagation and back 



95Petroleum Science (2021) 18:92–105 

1 3

propagation, where the former calculates the output (pre-
diction), and the latter updates the parameters (weights 
and biases). The process of updating weights and biases 
can be viewed as an optimization problem where a cost 

function is minimized. We choose the widely-used cross-
entropy as the cost function to train our deep neural 
network:
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Fig. 2  121 synthetic wavelets for the generation of training data
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(5)F(�, �) =
∑

−�log(�), where p and q are the true and predicted classification vec-
tors, respectively. We use the stochastic gradient descent 
with momentum (momentum = 0.65) and set a 0.045 initial 
learning rate and apply a 0.02 dropping factor to it in each 
epoch to optimize the network parameters. We feed the deep 
neural network in batches with the size of 1024 patches. Fig-
ure 4 presents the loss curves of the first ten thousand itera-
tions on training and validation sets. The final training and 
validation accuracies are 97.1% and 96.67%, respectively.

Figure 5 shows some randomly-chosen examples of the 
testing seismic patches (not included in the training data 
sets) displayed with the true (blue line) and predicted (red 
line) slopes of the central point (green dot). The last two 
columns belong to the non-signal category because the 
signals do not pass the central point. It can be seen that the 
synthetically-trained network can predict the local slope 
precisely with only minor error for two patches as marked 
by the blue frame boxes.
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3  Results and discussion

3.1  Synthetic example

We then test the synthetically-trained network on three 
synthetic seismic data sets which are more realistic, as 
shown in Fig. 6a–c. The clean signal in each data consists 
of twelve hyperbolic events with different domain frequen-
cies (20− 50 Hz) and initial phases (0°–90°). To test the 
prediction performance of our network, we added some 
Gaussian noise to the last two data (Fig. 6b, c). The rate of 
maximum amplitudes between noise and signal of Fig. 6b 
and c are 0.75 and 1.5, respectively. Figure 6e and f dem-
onstrates the estimated local slopes maps using our syn-
thetically-trained network. It can be observed that, when 
the input data are clean (Fig. 6a) or moderately corrupted 
by noise (Fig. 6b) the network can captures information 
from the seismic image and predicts the local slopes pre-
cisely. Although the performance goes downhill as the 

increase of noise (Fig. 6c), the local slope map (Fig. 6f) 
shows the slope variation tendency of seismic events and 
the main structure. A by-product i.e., the signal recog-
nition, of each local slope estimations is presented in 
Fig. 6g–i, where the blue and white areas indicate the spa-
tial–temporal locations of signal and non-signal compo-
nents of the seismic data. It can be observed that although 
not very perfect for the last data, all the recognition results 
graphs the shape of seismic structure.

We need to mention here that the proposed technique is a 
patch-based network. In other words, for each pixel a neigh-
boring section will be involved in calculation. Therefore, 
it takes a large amount of time in the network training pro-
cess. For example, it takes approximate 2 hours for the first 
ten thousand iterations in the training process. Compared 
with training process, the prediction step is much faster. For 
the synthetic data, it takes about 40 s to get the predication 
result.

In order to compare the performances of the proposed 
and traditional methods, we also apply the plane-wave 
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destruction method (Claerbout 1992) to estimate the local 
slope map of the data. The plane-wave destructor originates 
from a local plane-wave model for characterizing seismic 
data (Fomel 2002). It is constructed as finite-difference sten-
cils for the plane-wave differential equation and acts as a 
spatial–temporal analog of the spatial-frequency prediction-
error filters. Figure 7 presents three groups of estimated local 
slope maps of the three synthetic seismic images (Fig. 6a–c) 
using plane-wave destructor with different local windows. 
From the top to bottom, the sizes of processing windows are 
7 × 3, 25 × 5 and 73 × 7, respectively. In overall, the results 
are good. As the size increases, the local slope map become 
smoother but is with lower resolution to distinguish those 
events. The small size of windows also depresses the perfor-
mance of plane-wave destructor in low SNR case (Fig. 7c). 
We can also observe that plane-wave destructor has difficulty 
in estimating steep slopes as indicated by the red arrows. 
Comparing with the deep neural network, the plane-wave 
destruction method cannot directly obtain the spatial–tempo-
ral locations of signal like our trained network does. Figure 8 

demonstrates the statistical analysis of the performance of 
local slope estimation. Because the events are curve con-
tinuously, the reference local slope is determined as the 
first order central difference quotient of the corresponding 
reflection coefficients. Although not very accurate, it can 
statistically evaluate the performance to some extent. Fig-
ure 8a–l are the statistical analysis of the three synthetic 
seismic data sets, respectively. The first column corresponds 
to the proposed deep-learning method, and the second to the 
last columns correspond to three plane-wave destructors. It 
can be observed that the deep-learning method obtains the 
smallest error.

3.2  Field example

To demonstrate how the neural network works in practice, 
we apply it to two real-reflection seismic data sets. The first 
real-data set is post-stack and shown in Fig. 9a. This data set 
is with a relatively high SNR and complex structure, e.g., a 
steep zone and a fault zone as highlighted by the green and 
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Fig. 7  Local slope estimations of Fig. 6a–c by plane-wave destructor with different sizes of local windows. a-c 7 × 3 windows. d-f 25 × 5 win-
dows. g-i 73 × 7 windows
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blue frame boxes, respectively. To obtain the dip informa-
tion of seismic events, we apply the trained neural network 
to calculate the local slope map (Fig. 9b). It can be seen that 
the neural network obtains a satisfactory performance and 
the change in color suggests the dip variation. Figure 9c–f 
presents the magnified sections marked by the green and 
blue frame boxes in Fig. 9a, where a better view is held to 
observe the performance of slope estimation in detail. In 
Fig. 9c, e the local slopes are plotted as the red bars to give 
us a more intuitive presentation. Figure 9c, d correspond to 
the blue frame box, which show us the details of the fault 
zone. We can observe that the color conflicts highlight the 
location of the faults. The data and local slope information 
corresponding the green frame box are shown in Fig. 9e, f. It 
can be seen that the almost all the red bars follow the direc-
tion of both steep and complanate seismic events spreading 
indicating a successful performance. Figure 10 demonstrates 
a comparison of the local slope estimation by the plane-wave 
destructor technique. We observe that although most slope 
information is picked accurately, there some disorganized 
and very likely false picked slopes as indicated by the red 
ellipse in Fig. 10a and the blue ellipses in Fig. 10b, d.

The second example explores the performance of the 
synthetically-trained network on a pre-stack data set. The 
original data set is shown in Fig. 11a. Similarly, we apply 

the trained neural network to estimate the local slope map 
and recognize the position of signals. Figure 11b shows the 
local slope estimation, which presents a distinct color piece 
change from blue to green and yellow (from left to right) 
in the shallow (0–2000 ms), but shows a somehow disor-
ganized image in the deep (2000–4000 ms) due to the poor 
SNR. The seismic data and corresponding slope information 
in the blue and green frame boxes in Fig. 11a are presented 
in Fig. 11c–f. Figure 12 presents the local slope estimation 
by the plane-wave destructor technique where we can find 
some inaccurate slopes by visual inspection as highlighted 
by the blue ellipses in Fig. 12b, d. The slope estimation by 
the synthetically-trained network can be further used to 
facilitate the subsequent seismic data processing and under-
ground structure analysis/interpretation.  

4  Conclusions

We have designed a deep learning-based neural network 
to automatically estimate the local slope and spatial–tem-
poral position of seismic events. In the designed network, 
three convolution and three fully connected layers serve as 
the feature extractor and classifier, respectively. Our neu-
ral network is trained by using only synthetic seismic data 
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sets which greatly simplifie the process of training data col-
lection because no manual labeling is needed. The appli-
cation of the trained model to multiple synthetic and field 
seismic data sets recorded at varied surveys demonstrate an 
encouraging performance. The estimated local slopes and 

spatial–temporal position can be further utilized for many 
subsequent procedures such as signal detection, normal 
move-out correction, time-domain imaging and structural 
interpretation. Although this technique is currently tested 
on 2D seismic data but can be easily extended to 3D cases.
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