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Abstract
An important application of spectral decomposition (SD) is to identify subsurface geological anomalies such as channels 
and karst caves, which may be buried in full-band seismic data. However, the classical SD methods including the wavelet 
transform (WT) are often limited by relatively low time–frequency resolution, which is responsible for false high horizon-
associated space resolution probably indicating more geological structures, especially when close geological anomalies 
exist. To address this issue, we impose a constraint of minimizing an lp (0 < p < 1) norm of time–frequency spectral coef-
ficients on the misfit derived by using the inverse WT and apply the generalized iterated shrinkage algorithm to invert for 
the optimal coefficients. Compared with the WT and inverse SD (ISD) using a typical l1-norm constraint, the modified ISD 
(MISD) using an lp-norm constraint can yield a more compact spectrum contributing to detect the distributions of close 
geological features. We design a 3D synthetic dataset involving frequency-close thin geological anomalies and the other 
3D non-stationary dataset involving time-close anomalies to demonstrate the effectiveness of MISD. The application of 4D 
spectrum on a 3D real dataset with an area of approximately 230 km2 illustrates its potential for detecting deep channels and 
the karst slope fracture zone.
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1 Introduction

Detecting anomalous bodies in the subsurface, such as chan-
nels, karst caves, faults and alluvial fans, is one of the key 
objectives in seismic exploration (e.g., Bacon et al. 2003; Qi 
et al. 2014; Kang et al. 2020). These geological anomalies 
will be conductive to the construction of traps and reservoirs 
in the Earth, since they can usually provide storage space 
and migration channel for oil and natural gas (e.g., Hart et al. 

2002; Ben-Zion 2008; Mittempergher et al. 2009). Seismic 
data acquired by the dense sensors placed at the surface can 
carry the information associated with such geological anom-
alies. However, due to the attenuation related to near surface 
and fluids, the frequency band of seismic data is reduced 
from shallow to deep, and seismic waveforms are commonly 
interfered together. Therefore, it is sometimes difficult to 
directly use full-band and non-stationary seismic data to 
identify the subsurface geological anomalies. Decompos-
ing seismic data into certain modes with different dominant 
frequencies and bandwidth can facilitate extracting intrinsic 
spectral features (e.g., Li et al. 2017; Liu et al. 2019).

Spectral decomposition (SD) is one of the widely used 
techniques for signal decomposition. SD that decomposes 
a seismic signal into a 2D function of time and frequency 
is an effective method to characterize full-band and non-
stationary signals (Partyka et al. 1999). It is often useful for 
evaluating the frequency-dependent response of seismic data 
associated with layered earth structures. Moreover, spec-
tral anomalies at different frequency components (e.g., at 
low frequencies and high frequencies) can illuminate geo-
logical anomalous bodies of different scales (e.g., Laughlin 
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et al. 2002; Li et al. 2011) and indicate hydrocarbon (such 
as oil, gas or gas hydrate) in sandstone or carbonate reser-
voirs (e.g., Castagna et al. 2003; Li et al. 2012). Therefore, 
SD has been routinely used in thin-bed prediction (Marfurt 
and Kirlin 2001), reservoir characterization (Li et al. 2011), 
and hydrocarbon detection (Huang et al. 2016; Naseer and 
Asim 2018). As well, the amplitude-frequency spectral 
components, phase-frequency spectral components or both 
amplitude-frequency and phase-frequency spectral ones 
are widely adopted to calculate frequency division coher-
ence (e.g., Li and Lu 2014) for detecting anomalous bodies 
clearer with more geological boundary details, in contrast 
to the broadband coherence.

In the last few decades, various SD methods have been 
proposed and widely developed for analyzing a great vari-
ety of signals, such as the short-time Fourier transform 
(STFT) (Gabor 1946), the continuous wavelet transform 
(CWT) (Sinha et al. 2005), and S-transform (ST) (Stock-
well et al. 1996) with its generalized variations (Pinnegar 
and Mansinha 2003a, b; Liu et al. 2018, 2019a). The clas-
sical SD methods are simple and fast to be implemented. 
However, they suffer from a trade-off between the time 
resolution and the frequency resolution, due to the effect 
of the window function and the limitation of the Heisen-
berg uncertainty principle (Heisenberg 1927). In special, 
seismic signals interfere together when two or several 
geological bodies are close, which will also affect the 
frequency components of local signals, especially for the 
deep. In order to yield high time resolution, the isofre-
quency amplitude slice obtained by using the conventional 
SD methods readily suffers from strong spectral energy 
mixture issue across the frequency band or the spectral 
leakage phenomenon (Oyem and Castagna 2013). Con-
sequently, the isofrequency amplitude slice is still the 
superposition of different frequency components, which 
is not easy to interpret close geological bodies. In addition, 
the multitude of these methods signifies the non-unique 
nature of spatiotemporal transformation (Castagna et al. 
2003). The inverse spectral decomposition (ISD) method 
by solving an inverse problem with a sparse spike con-
straint (Portniaguine and Castagna 2004) has the potential 
to alleviate the above these issues. Without the constraint, 
ISD is equivalent to the conventional SD. After the ISD is 
proposed, its improvements are focused primarily on the 
appropriate selection of the wavelet library (such as the 
truncated sinusoid, the Ricker wavelet, the Morlet wavelet 
or the extracted wavelet), the type of the constraint or the 
prior information (such as the l2 norm, the l1 norm, the 
mixed l1–l2 norm, the coherency-based constraint, or the 
hierarchical Gaussian prior), and the algorithm (such as 
the iterative soft thresholding algorithm, the iteratively 
reweighted least-squares algorithm, spectral projected gra-
dient for l1 minimization, Bregman iterative algorithm or 

sparse Bayesian learning) for solving ISD (Puryear et al. 
2012; Han et al. 2012; Gholami 2013; Tary et al. 2014; 
Amosu et al. 2016; Ma et al. 2019; Yuan et al. 2019). In 
contrast to the development of methods, the fine applica-
tion of the ISD results is rare (Gholami 2013; Oyem and 
Castagna 2013; Han et al. 2016; Li et al. 2016; Wang et al. 
2018), especially for interpreting 3D seismic data more 
than tens of thousands of traces, which are very common 
in oil companies. Moreover, how to make full use of the 
ISD results is not unimportant.

In this paper, we investigate the potential application 
of a modified ISD method (named MISD for short) with 
an lp-norm (0 < p < 1) constraint to detect close geologi-
cal anomalies along the time direction or those at the 
frequency along a horizon. Similar to the typical widely 
adopted l1-norm constraint, the lp-norm regularization 
with the proven convergence (Raskutti et al. 2011) can 
also promote the sparsity of the resulting time–frequency 
spectrum (Yuan et al. 2020). However, the lp norm has the 
better sparse representation than the l1 norm, and over-
comes the disadvantage that larger coefficients are penal-
ized more heavily in the l1-norm than smaller coefficients 
to some extents (Candes et al. 2008). Furthermore, the 
sparsity of the lp-norm (1/2 ≤ p < 1) solution increases as 
p decreases, whereas the sparsity of the solution for lp 
norm (0 < p ≤1/2) does not overly change with respect to p 
(Fan and Peng 2004). Xu et al. (2010) have shown that the 
l1/2 norm is an unbiased estimator which imposes strong 
sparsity upon the minimization problem at hand. Based on 
these advantages, the lp norm is applied to yield a more 
compact or focusing time–frequency spectrum for broad-
band and non-stationary seismic signal analysis, and can 
separate the frequency components of the wavelet inter-
ference and reduce spectrum leakage, which contribute to 
detect the distributions of close geological features from 
high-resolution spectral slices of horizons.

We begin this paper with the methodology of MISD. 
Then, a 3D synthetic seismic dataset involving frequency-
close geological anomalies along the horizon and the other 
3D non-stationary synthetic dataset complicated by both the 
time-variant wavelets and thin-bed interference are adopted 
to demonstrate the effectiveness of MISD in detecting close 
channels and alluvial fans with different spatial distributions, 
and to illustrate its advantages over CWT and ISD using a 
typical l1 norm. As well, we extracted the seismic traces 
from 3D synthetic data to further explain why MISD has 
the highest time–frequency resolution. At last, the applica-
tion of 4D high-resolution time–frequency spectrum on a 3D 
field dataset from the Northwest China illustrate that MISD 
can be used to interpret deep channels and the karst slope 
fracture zone at two close frequencies, where each frequency 
presents the minimum number of geological structures than 
CWT and ISD using a typical l1 norm.
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2  Methodology

The inverse wavelet transform of a signal s(t) can usually 
be expressed as:

where a is the scale factor (that can be converted to fre-
quency), τ is the translation factor, C(τ, a) is the spectral 
coefficient of wavelet transform, ψ((t–τ)/a) is the wavelet 
library composed by the mother wavelet through stretching 
and translation, and t is time. In seismic exploration, the 
mother wavelet can usually be the Morlet wavelet, Ricker 
wavelet, Haar wavelet alone or in combination with charac-
terize the recorded seismic data. As studies found, Ricker 
wavelets can be adopted to better fit seismic data that tend 
to be biased toward the lower frequencies (Ricker 1953; 
Liu and Marfurt 2007). Moreover, Ricker wavelets have 
been widely applied to seismic data modeling, processing, 
inversion and interpretation. Consequently, we choose the 
Ricker wavelet as the mother wavelet to construct the wave-
let library in this paper.

As well, the integration of the translation factor τ in 
Eq. (1) can be derived to express as a convolution form:

where * represents the convolution operator.
It is well known that the integral can be solved discretely, 

and a general expression form is obtained as follows:

where fk (k = 1, 2…,K) represents the frequency correspond-
ing to the scale factor a in Eq. (2), K represents the fre-
quency sample number, w(t, fk) corresponding to a−5/2ψ(t/a) 
in Eq. (2) represents the frequency-dependent wavelet or 
basis function, r(t, fk) corresponding to C(t, a) represents 
spectral coefficients (or the time–frequency pseudo reflec-
tivity), and sk(t, fk) represents the decomposed stationary 
signal. According to Eq. (3), a non-stationary signal can 
be described by using the superposition of the convolution 
results of the known wavelets with different dominant fre-
quencies and the spectral coefficients corresponding to the 
dominant frequency. In this way, the inverse CWT of a non-
stationary signal can be regarded as a process of quadratic 
linear superposition. Because the convolution operator in 
the time domain is equal to a product operation in the fre-
quency domain, Eq. (3) can be implemented fast by using 
the Fourier transform. Besides the non-stationarity caused 
by the near surface and fluids, thin-bed interference can lead 

(1)s(t) = ∬ a−5∕2�
(
t − �

a

)
C(�, a)dad�,

(2)s(t) = ∫ a−5∕2�(t∕a) ∗ C(t, a)da,

(3)s(t) =

K∑
k=1

[
w(t, fk) ∗ r(t, fk)

]
=

K∑
k=1

sk(t, fk),

to the data non-stationarity (Yuan et al. 2017). In turn, we 
can decompose the non-stationary seismic data resulting 
from the interference to obtain the time–frequency pseudo 
reflectivity corresponding to a series of wavelets of varying 
frequencies. It provides a basis for interpreting subsurface 
close geological abnormalities from non-stationary data.

To facilitate the description of the subsequent inverse 
problem, Eq. (3) is written in a matrix–vector formulation:

where the matrix G = [W(t, f1) W(t, f2)…W(t, fk)…W(t, fK)] 
represents the wavelet dictionary, W(t, fk) refers to the con-
volution matrix of the frequency-dependent wavelet [w(t1, 
fk) w(t2, fk) …w(tn, fk)…w(tN, fk)], the vector m = [R(t, f1) 
R(t, f2)…R(t, fk)…R(t, fK)]T represents the complex pseudo-
reflectivity, R(t, fk) = [r(t1, fk) r(t2, fk) …r(tn, fk)…r(tN, fk)] 
represents the spectral coefficients corresponding to a cer-
tain dominant frequency fk, N represents the time sample 
number, [·]T represents the transposition, and the vector s 
represents a vertical trace of non-stationary signal. In this 
way, a non-stationary signal can be described by using the 
product of the wavelet dictionary matrix with a large col-
umn number and a long spectral coefficient column vector. 
Similarly, STFT and ST (Stockwell et al. 1996) can also be 
expressed in the form of Eq. (4), but only W(t, fk) is dif-
ferent. In theory, the result of the conventional SD can be 
obtained by solving m in Eq. (4) in a least-squares method. 
Nevertheless, Eq. (4) is ill-posed since the row number of 
the matrix G is usually far smaller than its column num-
ber and the frequency-dependent wavelets are bandlimited, 
which lead to the solution of Eq. (4) not unique. It prob-
ably provides another insight why can the conventional SD 
obtain multiple time–frequency spectra. As expected, the 
general purpose of SD is to obtain high-resolution or more 
compact time–frequency spectrum. The physical meaning of 
the time–frequency focusing property is strongly relevant to 
sparsity. The mathematical expression of the physical mean-
ing can be approximated in one non-convex lp-norm mini-
mization (Chartrand 2007) as follows:

where ‖�‖p =
�∑K×N

j=1
��j�p

�1∕p

 , and the p value is limited 
between 0 and 1. Theoretically, minimizing the l0 norm (i.e., 
the number of nonzero elements) can yield the sparsest solu-
tion (Candes et al. 2008). This is of little practical use, how-
ever, since minimizing the l0 norm is a non-deterministic 
polynomial (NP) hard problem. Mathematically, all situa-
tions are required to exhaust to find the optimal solution. 
Especially for the large-scale problem, it is almost infeasible 
to be solved (Xu et al. 2010). It is intuitive that when p is 

(4)
K∑
k=1

[
�(t, fk)�(t, fk)

]
= �� = �,

(5)argmin
�

‖�‖p,
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close to 0, the solution to the lp (0 < p<1) norm will be close 
to that of the l0 norm. Moreover, the lp norm penalizes large 
coefficients smaller, while penalizes small coefficients more 
heavily, in contrast to the typical l1 norm ‖�‖1 = ∑K×N

j=1
��j� . 

Therefore, the lp norm can produce a sparser solution than 
the typical l1 norm (Chartrand 2007). On the whole, under 
the premise of satisfying the conventional SD, we hope the 
time–frequency spectrum is sparse, that is, to say the resolu-
tion of both time–frequency amplitude spectrum and phase 
spectrum is high. Consequently, Eq.  (5) is imposed on 
Eq. (4) to obtain an optimal sparse time–frequency spectrum 
by solving the following function:

In general, the above Eq. (6) can be solved by transforming 
it into an lp (or hyper-Laplacians) regularization problem as 
follows:

where ‖�� − �‖2
2
 represents the non-stationary data misfit, 

and λ represents a regularization parameter balancing the 
sparsity desired in the resulting time–frequency spectrum 
and the non-stationary data misfit. If p = 1, Eq. (7) is equiva-
lent to the conventional ISD in the lasso (Tibshirani 2011) 
form. Therefore, the conventional ISD can be regarded as a 
special case of MISD in this way.

Adopting the basic gradient idea to the above equation 
leads to a following iterative scheme:

where β > 0 is an appropriate step size that depends on the 
maximum eigenvalue of GHG or the Lipschitz constant 
(Beck and Teboulle 2009), mu represents the solution at the 
uth iteration, and [·]H represents the complex conjugate.

Equation (8) can be effectively solved by using a general-
ized iterated shrinkage algorithm (Zuo et al. 2013), where 
each iteration involves relatively cheap matrix–vector multi-
plication followed by a generalized shrinkage/soft-threshold 
step and a fast iterative strategy (Beck and Teboulle 2009). 
The main iteration expressions are as follows:

(6)� = argmin
�

‖�‖p subject to �� = �.

(7)� = argmin
�

�
1

2
‖�� − �‖2

2
+ �‖�‖p

�
,

(8)

�u+1 = argmin
�

�
1

2�

���� −
�
�u + ��H(� −��u)

����
2

2
+ �‖�‖p

�
,

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�u+1 = TGST
p

�
�u + ��H(� −��u), ��p

�

�u = �u +
�u − 1

�u+1
(�u −�u−1)

�u+1 =
1 +

�
1 + 4�2

u

2

�p = [2�(1 − p)]
1

2−p + �p[2�(1 − p)]
p−1

2−p

,

where TGST
p

 is the generalized shrinkage operator (Zuo et al. 
2013), yu is a clever update of the model estimate consider-
ing a very specific linear combination of the two previous 
updates that can play an important role in accelerating con-
vergence (Beck and Teboulle 2009), γ is usually initialized to 
1, and τp is the threshold related to both λ and p values (She 
2009). When p = 1, τp = λ, i.e., the typical threshold corre-
sponds to the l1 norm. The matrix–vector multiplication Gyu 
can be regarded as the forward modeling from the high-
dimension time–frequency domain to the low-dimension 
data domain, whereas GH(s − Gyu) can be understood as the 
adjoint operator of data residual (i.e., the difference between 
the observed non-stationary data and the calculated data) 
from the data domain to the time–frequency domain. These 
both matrix–vector multiplications are similar to Eqs. (3) 
and (4), and thus can be implemented quickly by using the 
fast Fourier transform.

After iteratively solving the optimal m, we can obtain 
the corresponding time–frequency spectrum. Although both 
the sparsity of time–frequency spectrum and how to get the 
sparse time–frequency spectrum are meaningful, it is not 
unimportant to make full use of the sparse time–frequency 
spectrum. Moreover, it is helpful for seismic interpretation 
that the sparse time–frequency spectrum is applied reason-
ably. In this paper, we use the 4D sparse time–frequency 
spectrum to identify close geological anomalies at the fre-
quency along a horizon or those along the time direction. 
We also emphasize that the horizon magnitude spectra at 
the predominant frequencies can present the less number of 
geological structures due to the sparsity constraint, and thus 
improving the spatial resolution of horizons and reducing 
false horizon-associated geological structures.

3  Examples

In this section, a 3D synthetic dataset with an area of 
100 km2 involving single-stage thin sand bodies of three 
close dominant frequencies as well as the other 3D non-
stationary synthetic dataset with the same area involving 
two-stage close sand bodies along the time direction are 
designed to test the performances of MISD. These two syn-
thetic examples are adopted to focus on illustrating that the 
4D spectral results obtained by using MISD can favorably 
identify close geological bodies with different spatial distri-
butions, as well as showing its advantages over CWT and 
conventional ISD. Furthermore, a 3D real dataset with an 
area of approximately 230 km2 from the Northwest China is 
used to test its application potential for detecting channels 
and the karst slope fracture zone in the deep target reser-
voir. It will be emphasized for these three 3D data examples 
that MISD-based spectral results of horizons present the 
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minimum number of geological structures than CWT-based 
and ISD-based those, and thus making seismic structural 
interpretation clear. For the three examples, MISD adopts 
the same p value of 0.5 and the total iteration number of 100. 
For each trial, ISD and MISD adopt the same algorithm flow 
and the wavelet library except for different p values.

3.1  3D synthetic data example

In order to clarify the ability of MISD to identify geological 
bodies with different spatial distributions and close domi-
nant frequencies, we design a single-stage thin sand layer 
with a time range of 160 ms to 170 ms, which consists of one 
meandering channel complex and two alluvial fan structures. 
Then, a 3D seismic data cube with a size of 201 Inlines × 201 
Crosslines × 300 time samples is synthesized by using three 
zero-phase Ricker wavelets with dominant frequencies of 
25 Hz, 30 Hz and 35 Hz for three sand bodies from North-
west to Southeast, respectively. For the model, the space 

intervals along both Inline (North–South) and Crossline 
(East–West) directions are 50 m.

Figure 1 shows the comparisons among CWT-, ISD- and 
MISD-based spectral amplitude slices at three close frequen-
cies and 165 ms. It can be seen from Fig. 1a–c that no matter 
in 25-Hz, 30-Hz or 35-Hz CWT-based spectral amplitude 
slices, both channel complex and alluvial fan structures 
exist. In other words, CWT cannot distinguish these geologi-
cal anomalies located at different spatial locations by using 
spectral amplitude attributes. It suggests that the frequency 
focus of CWT is poor at both relatively low frequency and 
relatively high frequency, as well as the frequency leakage 
is serious. It can be observed that the 25-Hz ISD-based 
spectral amplitude slice (Fig. 1d) shows only the Northwest 
alluvial fan, but both 30-Hz and 35-Hz ISD-based spec-
tral amplitude slices (Fig. 1e, f) indicate the same channel 
complex and Southeast alluvial fan together. It means that 
although the frequency resolution of ISD has been improved 
at the relatively low frequency, it is low at middle and high 
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Fig. 1  Comparisons among spectral amplitude slices at 25  Hz (the left column), 30  Hz (the middle column) and 35  Hz (the right column) 
obtained by using CWT (the top row), ISD (the middle row) and MISD (the bottom row) for single-stage thin sand bodies with increasing domi-
nant frequencies from Northwest to Southeast. Only MISD can indicate three 10-ms time thickness sand bodies with the true spatial distribution 
characteristics separately by using spectral amplitude slices at three close frequencies
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frequencies. As expected, MISD can image all sand bodies 
with the true spatial distribution characteristics separately 
by using spectral amplitude slices at three corresponding 
close dominant frequencies, as shown in Fig. 1g–i. The 
above comparisons demonstrate that the sparsity constraint 
represented by using an lp norm with a p value of 0.5 plays 
a role in obtaining accurate spectral segmentation, so the 
MISD-based spectral amplitude attribute gets rid of the fre-
quency mixture issue.

In order to test the ability of MISD to identify geologi-
cal bodies with different spatial distributions and close time 
locations, we design a 3D synthetic data set with a size of 
201 Inlines × 201 Crosslines × 300 time samples. The shal-
low upper layer with the top interface of 100 ms and the bot-
tom interface of 120 ms, mainly consists of one meandering 
channel complex and two alluvial fan structures. The deep 
lower layer consists of one distributary channel complex and 
one alluvial fan structure, with a time range of 160 ms to 
180 ms. Then, a 3D seismic data cube with frequency attenu-
ation is synthesized by using two zero-phase Ricker wave-
lets with dominant frequencies of 40 Hz and 20 Hz for the 
shallow single-stage sand bodies and the deep single-stage 
sand bodies. Figure 2a, b shows the lateral distributions of 
the upper-layer and lower-layer sand bodies with the space 
intervals of 50 m along both Inline and Crossline directions. 
It can be observed that all five sand bodies share different 
lateral distributions. Figure 2c is the reflection coefficient 
corresponding to one common depth point (CDP) involving 
both upper-layer and lower-layer sand bodies.

It is difficult to distinguish the two-stage sand bodies 
by using the original full-band amplitude slices, which are 
complicated by both the time-variant wavelets and thin-bed 
interference related to the shallow single-stage sand bod-
ies and the deep single-stage sand bodies. Time–frequency 
analysis is an effective way to characterize full-band non-
stationary signals by decomposing a series of frequencies. 

Figure 3a–f shows 40-Hz isofrequency magnitude slices at 
125 ms and 131 ms, which are obtained by using CWT, 
ISD and MISD. It can be seen that CWT (Fig. 3a, b) has the 
strongest interference pattern with the imprints of all five 
sand bodies overlapped together. Although ISD can image 
three shallow sand bodies, there are some shadows of the 
deep sand bodies (indicated by the red arrows in Fig. 3c), 
and a part of the deep sand bodies which is overlapped with 
Fig. 3c can also be seen in Fig. 3d. It can be found that the 
overlapping areas correspond to the deep geological bodies 
of 20 Hz. In other words, 20-Hz deep single-stage sand bod-
ies appear in 40-Hz isofrequency magnitude slices of shal-
low horizons, since the interference changes the frequency 
components. Therefore, the isofrequency magnitude slice 
is still the superposition of different frequency components, 
which is not easy to interpret relatively close geological 
bodies. That is to say, the 40-Hz ISD-based isofrequency 
magnitude slice does not only contain the geological bodies 
of 40 Hz, but also the geological structures of other fre-
quencies. However, the MISD-based spectral amplitude slice 
at 125 ms (Fig. 3e) indicates only three sand bodies in the 
upper layer, which reflects the real distribution character-
istics of the upper layer. Moreover, there are no obvious 
imprints of 20-Hz deep single-stage sand bodies even at a 
relatively deep slice, as shown in Fig. 3f.

Figure 4 shows the comparisons among the 20-Hz spec-
tral amplitude slices obtained by using different spectral 
decomposition methods. The CWT-based results (Fig. 4a, 
b) show that the two layers interfere together and cannot 
be identified separately. Although the ISD-based spec-
tral amplitude attribute at a relatively shallow horizon 
slice does not image any part of 20-Hz deep sand bodies, 
40-Hz shallow sand bodies are clearly appear in the shal-
low spectral amplitude slice, as shown in Fig. 4c. Moreo-
ver, the deep ISD-based spectral amplitude slice visually 
presents geometry of two 20-Hz deep sand bodies well, 
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however, there are clear spectral amplitude imprints of 
40-Hz shallow sand bodies at the superimposition loca-
tions of two stage sand bodies, as indicated by the red 
arrows in Fig. 4d. It is mainly because the overlapping 
parts interfere with each other to change the frequency 
components. Nevertheless, as expected, MISD does not 

image any structures of two-stage sand bodies in the shal-
low spectral amplitude slice (Fig. 4e), while can clarify 
the distributions of two deep sand bodies perfectly in the 
deep spectral amplitude slice (Fig. 4f). The results in both 
Figs. 3 and 4 suggest that MISD can yield a 4D spectrum 
with higher time–frequency resolution than CWT and ISD, 
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Fig. 3  Comparisons among 40-Hz spectral amplitude slices obtained by using CWT at a 125 ms and b 131 ms, ISD at c 125 ms and d 131 ms, 
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as well as can favorably image two-stage geological bod-
ies separately at different spectral amplitude slices. These 
advantages should mainly attribute to the use of the spar-
sity constraint represented by using an lp norm with a p 
value of 0.5.

To make an intuitive insight that MISD has a higher 
time–frequency resolution, we extract three seismic traces 
from the 3D non-stationary synthetic data, which are related 
to only one upper geological body, only one lower geological 
body, and both upper and lower geological bodies, as shown 
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in Figs. 5a, 6a and 7a. The other subfigures in Figs. 5, 6 and 
7 display the time–frequency magnitude spectra obtained 
by using CWT, ISD and MISD, respectively. It can be seen 
that the first vertical white line on the left (20 Hz) of CWT 
(Fig. 5b) passes through the 40-Hz shallow energy cluster. 
Although ISD is superior to the CWT method (Fig. 5c), the 
first vertical white line passes through the boundaries of 
the 40-Hz energy cluster. It can be clearly observed that the 
left white line of MISD does not pass through the 40-Hz 
energy cluster, as indicated in Fig. 5d. In Fig. 6, the observed 
phenomena for the right white lines (40 Hz) are similar to 

Fig. 5. The right vertical white line of MISD not only does 
not pass through the 20-Hz deep energy cluster, but also 
is far away, suggesting that MISD has a higher frequency 
resolution. Figures 5 and 6 show that both CWT and ISD 
suffer from strong frequency mixture issue, because of the 
poor time–frequency focusing property. One can see from 
Fig. 7b–d that the upper and lower layers of CWT and ISD 
are interfered together, and CWT is the most serious, while 
the upper and lower layers of MISD are separate. The upper 
and lower layers interfered together will affect the frequency 
components of local signals, especially for the deep.
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Fig. 5  An original seismic trace a including the reflection of only the upper sand layer extracted from 3D synthetic data, as well as comparisons 
among time–frequency amplitude spectra obtained by using b CWT, c ISD and d MISD. The two vertical white lines correspond to 20 Hz and 
40 Hz, respectively. The left 20-Hz white line in only the MISD-based time–frequency amplitude spectrum does not pass through the 40-Hz 
energy cluster, suggesting that MISD has a highest frequency resolution at the high frequency
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Fig. 6  An original seismic trace a including the reflection of only the lower sand layer extracted from 3D synthetic data, as well as comparisons 
among time–frequency amplitude spectra obtained by using b CWT, c ISD and d MISD. The two vertical white lines correspond to 20 Hz and 
40  Hz, respectively. The right 40-Hz white line in the MISD-based time–frequency amplitude spectrum not only does not pass through the 
20-Hz energy cluster, but also is farthest away, meaning that MISD has a highest frequency resolution at the low frequency
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To further explain that MISD has a higher time resolu-
tion, we extract 40-Hz frequency components as denoted 
in the right white lines of Fig. 7b–d, as shown in Fig. 8a–c. 
It is obvious that the leakage at 40-Hz frequency compo-
nents obtained via CWT is the most serious. Although the 
time–frequency resolution of ISD has been improved, there 
is still leakage, which affects the structure interpretation. It 
is why a little leak of ISD has an effect on the spectral ampli-
tude slice that cannot be ignored. However, MISD present 
only 40-Hz shallow sand-layer associated spectral compo-
nents, meaning that it does not suffer from the frequency 
leakage. Moreover, the spectral magnitudes of both CWT 
and ISD are not accurate and focused, as indicated by the 
black ellipses in Fig. 8a, b, whereas the MISD-based result 
(Fig. 8c) is as perfect as expected. Similarly, we extract 
20-Hz frequency components from Fig. 7b–d, as shown in 
Fig. 9a–c. The results corresponding to CWT and ISD still 
have leakage, but MISD can only show the 20-Hz deep sand-
layer associated spectral components. Moreover, the width 
(the red arrow) is the narrowest in contrast to CWT and 
ISD, indicating that MISD has a highest time resolution. In 
conclusion, MISD has a highest time–frequency resolution 
and the best energy concentration, which provides a poten-
tial accurate way for seismic data interpreters to analyze 
seismic signals.

3.2  3D field data example

A 3D migrated field dataset from the Northwest China with 
a size of 594 Inlines × 594 Crosslines × 251 time samples 
is utilized to test the applicability of MISD. The research 
region covers an area of approximately 230 km2, and the 

target reservoir is located at an average depth of approxi-
mately 5 km. A seismic reflection profile extracted from 
the processed data volume is displayed in Fig. 10a, where 
the lateral black line denotes the interpreted horizon for the 
top layer of the target reservoir. It can be clearly seen that 
there exist strong beadlike reflections near and below the 
interpreted horizon. Figure 10b shows an original full-band 
seismic amplitude slice of the horizon corresponding to the 
lateral black line in Fig. 10a. Due to the obvious difference 
between the high-value amplitude and the surrounding low-
value amplitude, several channel-like structures are visible, 
but their overall outlines are not clear enough. In addition, 
there is a large area of high-amplitude anomaly in the South, 
which is demonstrated to be associated with a karst slope 
fracture. As the amplitude spectrum of seismic data is shown 
in Fig. 10c, the band width of data is narrow, the frequency 
corresponding to a global maximum amplitude is approxi-
mately 27 Hz, and the frequency corresponding to a locally 
maximum amplitude is approximately 17 Hz.

Figure 11 displays the corresponding slices of hori-
zon through 17-Hz and 25-Hz spectral amplitude vol-
umes extracted from 4D magnitude volumes, which are 
obtained by using CWT, ISD and MISD. Figure 11a, b 
displays channels and karst features, which cannot be 
separated at two close frequencies. These both CWT-
based spectral amplitude slices do not provide each other 
with additional information. In contrast, there is relatively 
large difference between 17- and 25-Hz spectral ampli-
tude slices for ISD, as shown in Fig. 11c, d. It can be 
observed that there are two low-frequency high-ampli-
tude channels on the east side of the middle clearly and a 
large area of high-frequency high-amplitude anomaly in 
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Fig. 7  An original seismic trace a including the reflection of both the upper and lower sand layers, as well as comparisons among time–fre-
quency amplitude spectra obtained by using b CWT, c ISD and d MISD. The two vertical white lines correspond to 20 Hz and 40 Hz, respec-
tively. MISD can yield a more compact spectrum for broadband and non-stationary signal analysis, which contributes to detect the distributions 
of close geological anomalies
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the South. However, only the 17-Hz spectral amplitude 
slice of MISD (Fig. 11e) clearly delineates channels in 
the middle, and especially highlights narrow channels in 
the East (denoted in a red ellipse), which cannot be easily 
interpreted in the original amplitude slice and Fig. 11a–d. 
Moreover, the 25-Hz spectral amplitude slice (Fig. 11f) 
is obviously different from 17-Hz one (Fig. 11e), and 
the high-frequency spectrum mainly images the karst 
(denoted in a black rectangle) and relatively low-ampli-
tude channels in the Southeast. In conclusion, compared 
with ISD and CWT, MISD has a highest time–frequency 
resolution and leads to a high spatial resolution to better 
identify different geological bodies.

4  Discussion

The inverse SD imposes an additional constraint related to 
the time–frequency focusing or time–frequency spectrum 
sparsity on the data misfit derived from the inverse WT, in 
contrast to CWT. Therefore, the inversion-based time–fre-
quency spectral results are improved greatly, as demon-
strated in our examples. In this paper, both CWT and ISD 
using a typical l1 norm can be understood as a special case of 
MISD. When the total iteration number is 1 and the regulari-
zation parameter is 0, the MISD-based result is equivalent to 
the CWT-based one. When p = 1, MISD can be derived to be 
the same as ISD using a typical l1 norm. In this way, these 
three spectral decomposition methods can be unified in the 
framework of MISD. Due to only one iteration, CWT is the 
fastest. However, the CWT-based time–frequency resolution 
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Fig. 8  Comparisons among the 40-Hz spectral amplitude components 
(the right white lines in Fig. 7b–d) of different time–frequency results 
obtained by using a CWT, b ISD and c MISD. Compared with CWT 
and ISD, MISD can solely show the 40-Hz frequency components 
related to the shallow sand layer, and only the amplitude of MISD is 
preserved well and most focused, as indicated by the black ellipses. 
Moreover, MISD has a higher time resolution than CWT and ISD, 
suggesting that MISD has the highest time resolution at the high fre-
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Fig. 9  Comparisons among the 20-Hz spectral amplitude components 
(the left white line in Fig. 7b–d) of different time–frequency results 
obtained by using a CWT, b ISD and c MISD. Compared with CWT 
and ISD, MISD can solely show the 20-Hz frequency components 
related to the deep sand layer, and the time extension width (the red 
arrows) corresponding to the deep sand layer is the narrowest, sug-
gesting that MISD has the highest time resolution at the low fre-
quency



1474 Petroleum Science (2020) 17:1463–1477

1 3

is the lowest, since there is no any constraint on the resulting 
time–frequency spectrum. For the same algorithm flow and 
parameters except for different p values, MISD with a typical 
p value of 0.5 can yield the higher time–frequency resolution 
than ISD, mainly because larger thresholds are adopted to 
make the updated time–frequency spectrum sparser within 
a limited number of iterations. Consequently, MISD can 
obtain the highest time–frequency resolution and the most 
flexible.

The MISD method can be extended to decompose non-
Gaussian noisy seismic data, but noise in this paper should 
be random and satisfy the Gaussian distribution. Compared 
with CWT and ISD, MISD has more parameters to determine, 
mainly including the p value and the regularization parameter. 
By testing different p values, and considering some theoretical 
developments (e.g., Xu et al. 2010), it is feasible to take 0.5 
for p in our examples. Similar to the p value, the regulariza-
tion parameter can also affect the sparsity of spectral results. 
Generally, the larger the regularization value is, the sparser 
the resulting time–frequency spectrum is, but there is a larger 
risk of losing the weak amplitude reflection. In this paper, the 
selection of the regularization parameter is mainly based on 
the integrity and clarity of geological bodies in the spectral 
amplitude slice of horizon as a quality-control standard. How 
to pick a reasonable p and the regularization parameter adap-
tively (e.g., Li et al. 2019) is also worth studying in the future.

Compared with CWT, MISD is time-consuming, since a 
large-scale inverse problem is required to solve, but MISD 
brings a potential overwhelming advantage in identifying 
relatively close geological anomalies at the frequency along a 
horizon or those along the time direction. It is noticeable that 
four main schemes are utilized to alleviate the time-consuming 
issue of MISD greatly. (1) Only relatively cheap matrix–vec-
tor multiplication without any inverse operation of the large-
scale matrix is used to update the time–frequency spectrum. 
(2) All matrix–vector multiplication operators in each iteration 
are implemented fast by using the Fourier transform. (3) A 
clever update in each iteration is employed to accelerate con-
vergence by considering a very specific linear combination 
of two previous updates. (4) Parallel computing is adopted 
to decompose different seismic traces at the same time. Due 
to these schemes, MISD is not so expensive to process hun-
dreds of square kilometers of real data, and to further obtain 
high-resolution time–frequency spectrum at the expense of 
acceptable time.

We only use the time–frequency amplitude spectrum of 
MISD in this paper. In fact, we can also readily obtain the cor-
responding time–frequency phase spectrum by implementing 
the inverse tangent operation on the inverted optimal time–fre-
quency complex-value spectrum. Compared with the spectral 
amplitude attribute, time–frequency phase spectrum should be 
more sensitive to weak amplitude. This may provide some new 
information. The time–frequency phase spectrum attribute can 
be combined with time–frequency phase spectrum attribute to 
reduce the uncertainty of seismic interpretation in the future.

5  Conclusions

In this paper, we use MISD based on an lp-norm constraint 
of spectral coefficients to detect different geological bod-
ies, which can reach a higher energy concentration in the 
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Fig. 10  The 3D real data example. a An extracted seismic profile 
through Crossline 420, b the amplitude slice of a horizon, and c the 
amplitude spectrum of seismic data. The black line in a denotes the 
interpreted horizon for the top layer of the target reservoir. Seismic 
full-band amplitude slice of the horizon indicates the existence of 
channels and a karst slope fracture in the target reservoir vaguely
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time–frequency plane than CWT and ISD. There are less 
frequency mixing for spectral amplitude computed by using 
MISD than those using CWT and ISD, which is helpful for 
obtaining precise spectral amplitude, even when both the 

time variation of wavelet and the interference of thin beds 
complicate the time–frequency spectrum. The 4D spec-
tral amplitude obtained by using MISD can be utilized to 
interpret channels, karst caves, faults and alluvial fans of 
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horizons better than the original broadband data, CWT and 
ISD, as demonstrated in both 3D synthetic data and 3D field 
data examples. Furthermore, the MISD-based isofrequency 
horizon magnitude slice at the chosen dominant frequency 
presents the less number of geological structures due to the 
lp-norm sparsity promotion, and thus giving a high spatial 
resolution to make seismic interpretation easier. MISD and 
the coherence algorithm will be combined to implement fine 
seismic interpretation in the future. The extension to quanti-
tative seismic interpretation is also the future plan.

Acknowledgements This work was financially supported by the 
National Key R&D Program of China (2018YFA0702504), the Funda-
mental Research Funds for the Central Universities (2462019QNXZ03), 
the Scientific Research and Technology Development Project of China 
National Petroleum Corporation (2017D-3504), the Major Scientific 
Research Program of Petrochina Science and Technology Management 
Department “Comprehensive Seismic Prediction Technology and Soft-
ware Development of Natural Gas” (2019B-0607), and the National 
Science and Technology Major Project (2017ZX05005-004).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Amosu A, Sun YF, Agustianto D. Coherency based inversion spec-
tral decomposition of seismic data. In: SEG technical program 
expanded abstracts; 2016. p. 1706–11. https ://doi.org/10.1190/
segam 2016-13821 446.1.

Bacon M, Simm R, Redshaw T. 3-D seismic interpretation. Cambridge: 
Cambridge University Press; 2003. https ://doi.org/10.1017/
CBO97 80511 80241 6.008.

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm 
for linear inverse problems. SIAM J Imaging Sci. 2009;2(1):183–
202. https ://doi.org/10.1137/08071 6542.

Ben-Zion Y. Collective behavior of earthquakes and faults: continuum-
discrete transitions, progressive evolutionary changes, and differ-
ent dynamic regimes. Rev Geophys. 2008;46(4):RG4006. https ://
doi.org/10.1029/2008r g0002 60.

Candes EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted l1 
minimization. J Fourier Anal Appl. 2008;14:877–905. https ://doi.
org/10.1007/S0004 1-008-9045-X.

Castagna JP, Sun SJ, Siegfried RW. Instantaneous spectral analysis: 
detection of low-frequency shadows associated with hydrocarbons. 
Lead Edge. 2003;22(2):120–7. https ://doi.org/10.1190/1.15590 38.

Chartrand R. Exact reconstruction of sparse signals via nonconvex 
minimization. IEEE Signal Process Lett. 2007;14(10):707–10. 
https ://doi.org/10.1109/LSP.2007.89830 0.

Fan JQ, Peng H. Nonconcave penalized likelihood with a diverging 
number of parameters. Ann Stat. 2004;32(3):928–61. https ://doi.
org/10.1214/00905 36040 00000 256.

Gabor D. Theory of communication. J IEEE. 1946;93:429–57. https ://
doi.org/10.1049/ji-1.1947.0015.

Gholami A. Sparse time–frequency decomposition and some applica-
tions. IEEE Trans Geosci Remote Sens. 2013;51(6):3598–604. 
https ://doi.org/10.1109/TGRS.2012.22201 44.

Han L, Han LG, Li Z. Inverse spectral decomposition with the 
SPGL1 algorithm. J Geophys Eng. 2012;9(4):423–7. https ://doi.
org/10.1088/1742-2132/9/4/423.

Han L, Liu CC, Zhang YM, et al. Seismic complex spectral decomposi-
tion and its application on hydrocarbon detection. J Chin Geophys. 
2016;59(3):1095–101. https ://doi.org/10.6038/cjg20 16032 9 (in 
Chinese).

Hart BS, Pearson R, Rawling GC. 3-D seismic horizon-based 
approaches to fracture-swarm sweet spot definition in tight-
gas reservoirs. Lead Edge. 2002;21(1):28–35. https ://doi.
org/10.1190/1.14458 44.

Heisenberg W. Uber den anschaulichen inhalt der quanten theo-
retischen Kinematik und Mechanik. Zeitschrift für Physik. 
1927;43:172–98. https ://doi.org/10.1007/BF013 97280 .

Huang ZL, Zhang J, Zhao TH, et al. Synchrosqueezing S-transforms 
and its application in seismic spectral decomposition. IEEE 
Trans Geosci Remote Sens. 2016;54(2):817–25. https ://doi.
org/10.1109/TGRS.2015.24666 60.

Kang B, Jung H, Jeong H, et al. Characterization of three-dimen-
sional channel reservoirs using ensemble Kalman filter assisted 
by principal component analysis. Pet Sci. 2020;17(1):182–95. 
https ://doi.org/10.1007/s1218 2-019-00362 -8.

Laughlin K, Garossino P, Partyka G. Spectral decomposition applied 
to 3D. AAPG Explor. 2002;23(5):28–31.

Li FY, Lu WK. Coherence attribute at different spectral scales. 
Interpretation. 2014;2(1):SA99–106. https ://doi.org/10.1190/
int-2013-0089.1.

Li YD, Zheng XD, Zhang Y. High-frequency anomalies in carbonate 
reservoir characterization using spectral decomposition. Geo-
physics. 2011;76(3):V47–57. https ://doi.org/10.1190/1.35543 
83.

Li FY, Li YD, Lu WK, et al. Hydrocarbon detection for cavern carbon-
ate reservoir using low-and-high-frequency anomalies in spectral 
decomposition. In: SEG technical program expanded abstracts; 
2012. https ://doi.org/10.1190/segam 2012-0473.1.

Li Q, Di BR, Wei JX, et al. The identification of multi-cave combina-
tions in carbonate reservoirs based on sparsity constraint inverse 
spectral decomposition. J Geophys Eng. 2016;13(6):940–52. https 
://doi.org/10.1088/1742-2132/13/6/940.

Li FY, Zhang B, Zhai R, et al. Depositional sequence characterization 
based on seismic variational mode decomposition. Interpretation. 
2017;5(2):SE97–106. https ://doi.org/10.1190/int-2016-0069.1.

Li FY, Xie R, Song WZ, et al. Optimal seismic reflectivity inversion: 
data-driven lp-loss-lq-regularization sparse regression. IEEE Geo-
sci Remote Sens Lett. 2019;16(5):806–10. https ://doi.org/10.1109/
LGRS.2018.28811 02.

Liu J, Marfurt KJ. Instantaneous spectral attributes to detect channels. 
Geophysics. 2007;72(2):P23–31. https ://doi.org/10.1190/1.24282 
68.

Liu NH, Gao JH, Zhang B, et al. Time-frequency analysis of seis-
mic data using a three parameters S transform. IEEE Geosci 
Remote Sens Lett. 2018;15(1):142–6. https ://doi.org/10.1109/
LGRS.2017.27780 45.

Liu NH, Gao JH, Zhang B, et al. Self-adaptive generalized S-trans-
form and its application in seismic time-frequency analysis. IEEE 
Trans Geosci Remote Sens. 2019a;57(10):7849–59. https ://doi.
org/10.1109/TGRS.2019.29167 92.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1190/segam2016-13821446.1
https://doi.org/10.1190/segam2016-13821446.1
https://doi.org/10.1017/CBO9780511802416.008
https://doi.org/10.1017/CBO9780511802416.008
https://doi.org/10.1137/080716542
https://doi.org/10.1029/2008rg000260
https://doi.org/10.1029/2008rg000260
https://doi.org/10.1007/S00041-008-9045-X
https://doi.org/10.1007/S00041-008-9045-X
https://doi.org/10.1190/1.1559038
https://doi.org/10.1109/LSP.2007.898300
https://doi.org/10.1214/009053604000000256
https://doi.org/10.1214/009053604000000256
https://doi.org/10.1049/ji-1.1947.0015
https://doi.org/10.1049/ji-1.1947.0015
https://doi.org/10.1109/TGRS.2012.2220144
https://doi.org/10.1088/1742-2132/9/4/423
https://doi.org/10.1088/1742-2132/9/4/423
https://doi.org/10.6038/cjg20160329
https://doi.org/10.1190/1.1445844
https://doi.org/10.1190/1.1445844
https://doi.org/10.1007/BF01397280
https://doi.org/10.1109/TGRS.2015.2466660
https://doi.org/10.1109/TGRS.2015.2466660
https://doi.org/10.1007/s12182-019-00362-8
https://doi.org/10.1190/int-2013-0089.1
https://doi.org/10.1190/int-2013-0089.1
https://doi.org/10.1190/1.3554383
https://doi.org/10.1190/1.3554383
https://doi.org/10.1190/segam2012-0473.1
https://doi.org/10.1088/1742-2132/13/6/940
https://doi.org/10.1088/1742-2132/13/6/940
https://doi.org/10.1190/int-2016-0069.1
https://doi.org/10.1109/LGRS.2018.2881102
https://doi.org/10.1109/LGRS.2018.2881102
https://doi.org/10.1190/1.2428268
https://doi.org/10.1190/1.2428268
https://doi.org/10.1109/LGRS.2017.2778045
https://doi.org/10.1109/LGRS.2017.2778045
https://doi.org/10.1109/TGRS.2019.2916792
https://doi.org/10.1109/TGRS.2019.2916792


1477Petroleum Science (2020) 17:1463–1477 

1 3

Liu NH, Li Z, Sun FY, et al. The improved empirical wavelet transform 
and applications to seismic reflection data. IEEE Geosci Remote 
Sens Lett. 2019b;16(12):1939–43. https ://doi.org/10.1109/
LGRS.2019.29110 92.

Ma M, Zhang R, Liu Y, et al. Nonconvex optimization-based inverse 
spectral decomposition. J Geophys Eng. 2019;16(4):764–72. https 
://doi.org/10.1093/jge/gxz04 6.

Marfurt KJ, Kirlin RL. Narrow-band spectral analysis and thin-
bed tuning. Geophysics. 2001;66(4):1274–83. https ://doi.
org/10.1190/1.14870 75.

Mittempergher S, Pennacchioni G, Di Toro G. The effects of fault ori-
entation and fluid infiltration on fault rock assemblages at seis-
mogenic depths. J Struct Geol. 2009;31(12):1511–24. https ://doi.
org/10.1016/j.jsg.2009.09.003.

Naseer MT, Asim S. Characterization of shallow-marine reservoirs 
of Lower Eocene carbonates, Pakistan: continuous wavelet 
transforms-based spectral decomposition. J Nat Gas Sci Eng. 
2018;56:629–49. https ://doi.org/10.1016/j.jngse .2018.06.010.

Oyem A, Castagna J. Layer thickness estimation from the frequency 
spectrum of seismic reflection data. In: SEG technical program 
expanded abstracts; 2013. p. 1451–5. https ://doi.org/10.1190/
segam 2013-0691.1.

Partyka G, Gridley J, Lopez J. Interpretational applications of spec-
tral decomposition in reservoir characterization. Lead Edge. 
1999;18(3):353–60. https ://doi.org/10.1190/1.14382 95.

Pinnegar CR, Mansinha L. The S-transform with windows of arbitrary 
and varying shape. Geophysics. 2003a;68(1):381–5. https ://doi.
org/10.1190/1.15432 23.

Pinnegar CR, Mansinha L. The bi-Gaussian S-transform. SIAM J Sci 
Comput. 2003b;24(5):1678–92. https ://doi.org/10.1137/S1064 
82750 03698 03.

Portniaguine O, Castagna J. Inverse spectral decomposition. In: SEG 
technical program expanded abstracts; 2004. p. 1786–9. https ://
doi.org/10.1190/1.18451 72.

Puryear CI, Portniaguine ON, Cobos CM, et al. Constrained least-
squares spectral analysis: application to seismic data. Geophysics. 
2012;77(5):V143–67. https ://doi.org/10.1190/geo20 11-0210.1.

Qi J, Zhang B, Zhou HL, et al. Attribute expression of fault-controlled 
karst—Fort Worth Basin, TX. Interpretation. 2014;2(3):SF91–
110. https ://doi.org/10.1190/int-2013-0188.1.

Raskutti G, Wainwright MJ, Yu B. Minimax rates of estimation for 
high-dimensional linear regression over lq-balls. IEEE Trans 

Inf Theory. 2011;57(10):6976–94. https ://doi.org/10.1109/
TIT.2011.21657 99.

Ricker N. The form and laws of propagation of seismic wavelets. Geo-
physics. 1953;18(1):10–40. https ://doi.org/10.1190/1.14378 43.

She Y. Thresholding-based iterative selection procedures for model 
selection and shrinkage. Electron J Stat. 2009;3:384–415. https ://
doi.org/10.1214/08-EJS34 8.

Sinha S, Routh PS, Anno PD, et al. Spectral decomposition of seis-
mic data with continuous-wavelet transform. Geophysics. 
2005;70(6):P19–25. https ://doi.org/10.1190/1.21271 13.

Stockwell RG, Mansinha L, Lowe RP. Localization of the com-
plex spectrum: the S transform. IEEE Trans Signal Process. 
1996;44(4):998–1001.

Tary JB, Herrera RH, Han J, et al. Spectral estimation—what is new? 
What is next? Rev Geophys. 2014;52(4):723–49. https ://doi.
org/10.1002/2014R G0004 61.

Tibshirani R. Regression shrinkage and selection via the lasso: a ret-
rospective. J R Stat Soc B Stat Methodol. 2011;73:273–82. https 
://doi.org/10.1111/j.1467-9868.2011.00771 .x.

Wang TY, Yuan SY, Song ZH, et al. Application of sparse inverse spec-
tral attributes to channels detection. In: 80th EAGE conference; 
2018. https ://doi.org/10.3997/2214-4609.20180 1264.

Xu Z, Zhang H, Wang Y, et al.  L1/2 regularization. Sci China Inf Sci. 
2010;53(6):1159–69. https ://doi.org/10.1007/s1143 2-010-0090-0.

Yuan SY, Wang SX, Ma M, et al. Sparse Bayesian learning-based 
time-variant deconvolution. IEEE Trans Geosci Remote Sens. 
2017;55(11):6182–94. https ://doi.org/10.1109/TGRS.2017.27222 
23.

Yuan SY, Ji YZ, Shi PD, et al. Sparse Bayesian learning-based seis-
mic high-resolution time–frequency analysis. IEEE Geosci 
Remote Sens Lett. 2019;16(4):623–7. https ://doi.org/10.1109/
LGRS.2018.28834 96.

Yuan SY, Yang S, Wang TY, et al. Inverse spectral decomposition 
using an lp-norm constraint for the detection of close geological 
anomalies. In: 82th EAGE conference; 2020.

Zuo WM, Meng DY, Zhang L, et al. A generalized iterated shrinkage 
algorithm for non-convex sparse coding. In: IEEE international 
conference on computer vision (ICCV); 2013. p. 217–24. https ://
doi.org/10.1109/iccv.2013.34.

https://doi.org/10.1109/LGRS.2019.2911092
https://doi.org/10.1109/LGRS.2019.2911092
https://doi.org/10.1093/jge/gxz046
https://doi.org/10.1093/jge/gxz046
https://doi.org/10.1190/1.1487075
https://doi.org/10.1190/1.1487075
https://doi.org/10.1016/j.jsg.2009.09.003
https://doi.org/10.1016/j.jsg.2009.09.003
https://doi.org/10.1016/j.jngse.2018.06.010
https://doi.org/10.1190/segam2013-0691.1
https://doi.org/10.1190/segam2013-0691.1
https://doi.org/10.1190/1.1438295
https://doi.org/10.1190/1.1543223
https://doi.org/10.1190/1.1543223
https://doi.org/10.1137/S1064827500369803
https://doi.org/10.1137/S1064827500369803
https://doi.org/10.1190/1.1845172
https://doi.org/10.1190/1.1845172
https://doi.org/10.1190/geo2011-0210.1
https://doi.org/10.1190/int-2013-0188.1
https://doi.org/10.1109/TIT.2011.2165799
https://doi.org/10.1109/TIT.2011.2165799
https://doi.org/10.1190/1.1437843
https://doi.org/10.1214/08-EJS348
https://doi.org/10.1214/08-EJS348
https://doi.org/10.1190/1.2127113
https://doi.org/10.1002/2014RG000461
https://doi.org/10.1002/2014RG000461
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.3997/2214-4609.201801264
https://doi.org/10.1007/s11432-010-0090-0
https://doi.org/10.1109/TGRS.2017.2722223
https://doi.org/10.1109/TGRS.2017.2722223
https://doi.org/10.1109/LGRS.2018.2883496
https://doi.org/10.1109/LGRS.2018.2883496
https://doi.org/10.1109/iccv.2013.34
https://doi.org/10.1109/iccv.2013.34

	Inverse spectral decomposition using an lp-norm constraint for the detection of close geological anomalies
	Abstract
	1 Introduction
	2 Methodology
	3 Examples
	3.1 3D synthetic data example
	3.2 3D field data example

	4 Discussion
	5 Conclusions
	Acknowledgements 
	References




