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Abstract
Full-waveform inversion (FWI) utilizes optimization methods to recover an optimal Earth model to best fit the observed 
seismic record in a sense of a predefined norm. Since FWI combines mathematic inversion and full-wave equations, it has 
been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional 
and exploration seismology. Unfortunately, conventional FWI fixes background velocity mainly relying on refraction and 
turning waves that are commonly rich in large offsets. By contrast, reflections in the short offsets mainly contribute to the 
reconstruction of the high-resolution interfaces. Restricted by acquisition geometries, refractions and turning waves in the 
record usually have limited penetration depth, which may not reach oil/gas reservoirs. Thus, reflections in the record are the 
only source that carries the information of these reservoirs. Consequently, it is meaningful to develop reflection-waveform 
inversion (RWI) that utilizes reflections to recover background velocity including the deep part of the model. This review 
paper includes: analyzing the weaknesses of FWI when inverting reflections; overviewing the principles of RWI, including 
separation of the tomography and migration components, the objective functions, constraints; summarizing the current status 
of the technique of RWI; outlooking the future of RWI.

Keywords Full-waveform inversion · Reflection-waveform inversion · Tomographic component · Migration component · 
Travel time-based objective function · Waveform-based objective function · Constraint

1 Introduction

Seismic data imaging is a key task of seismic data process-
ing. It began with post-stack time migration (Bednar 2005), 
then pre-stack time and depth migration (e.g., Claerbout 
1971; Claerbout and Doherty 1972; Gazdag 1978; Sch-
neider 1978; Stolt 1978; Gazdag and Sguazzero 1984; Ma 
and Ji 1988; Hill 1990; Wu and Huang 1992; Ristow and 
Ruhl 1994; Popovici 1996; Stoffa et al. 1990), and reached 
reverse-time migration recently (e.g., Lailly 1983; Whitmore 
1983; Baysal et al. 1983; Zhang et al. 2011). Currently, full-
waveform inversion (FWI) represents the latest development 

of seismic data imaging and becomes a hotspot in this field. 
One reason is that it fills the resolution gap between tomog-
raphy and migration, which is illustrated in Fig. 1. FWI is 
an optimization process that seeks an Earth model, e.g., 
P-wave velocity, to best fit the waveform of seismic record 
in a sense of the norm defined in the objective function. The 
concept and framework of FWI were proposed by Taran-
tola (1984), who is a French professor in geophysics. How-
ever, limited by the capacity of the computers in that time, 
Tarantola (1984) did not demonstrate FWI with numerical 
examples but derived the gradient of bulk modulus, density 
and source wavelets using functional analysis in the acous-
tic assumption. This derivation employed the adjoint-state 
method (Plessix 2006), and thus the gradient can be com-
puted by backward propagating the adjoint source; it avoids 
formulating, storing and inverting the gigantic Jacobian 
matrix. Consequently, FWI became a feasible technique 
later.

Although the framework of conventional FWI was 
defined in the paper of Tarantola (1984), its title is “Inver-
sion of seismic reflection data”; therefore, the author’s 
main objective is to invert reflection data. However, the 

Edited by Jie Hao

 * Shang-Xu Wang 
 wangsx@cup.edu.cn

1 Unconventional Petroleum Research Institute, State Key 
Laboratory of Petroleum Resources and Prospecting, China 
University of Petroleum (Beijing), Beijing 102249, China

2 College of Geophysics, State Key Laboratory of Petroleum 
Resources and Prospecting, China University of Petroleum 
(Beijing), Beijing 102249, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-020-00431-3&domain=pdf


335Petroleum Science (2020) 17:334–351 

1 3

conventional FWI proposed by Tarantola is ineffective for 
inverting reflection data. This will be analyzed fully in the 
subsequent section.

The second milestone of FWI was made by geophysicist 
Pratt (1999), who successfully applied FWI on an ultrasonic 
data set from a cross-hole geometry. Pratt used matrix alge-
bra to reformulate the theory of FWI, which was derived 
with functional analysis by Tarantola (1984). It makes 
the theory of FWI more understandable. Pratt (1999) also 
pointed out the maximum resolution of FWI is the resolu-
tion of half wavelength, which is much higher than that of 
tomography, i.e., the width of the first Fresnel zone. Unfor-
tunately, restricted by the speed and RAM size of comput-
ers at that time, Pratt solved the 2D acoustic wave equation 
in the frequency domain (Štekl and Pratt 1998). Compared 
to wavefield modeling in the time domain, there are two 
advantages in the frequency domain: firstly, factorization 
of the Helmholtz equation needs only once for multi-shot 
modeling; secondly, it is convenient to achieve attenuation 
by introducing velocity in complex numbers (Mueller 1983).

The third milestone of FWI was achieved by geophysicist 
Sirgue in BP (Sirgue et al. 2009), who successfully applied 
3D frequency domain FWI on the oil field Valhall using 3D 
OBC data. It was the first time to demonstrate that FWI is 
capable of fixing background velocity and recovering the 
high-frequency structures with industry seismic data (see 
Fig. 14 of Virieux and Operto 2009). Since then, FWI has 
attracted wide attention and heavy research investments 
from both academia and industry. It is difficult to directly 
solve a 3D wave equation in the frequency domain. Sirgue 
achieved the frequency domain modeling indirectly by solv-
ing time-domain wave equations with finite-difference meth-
ods and applying discretized Fourier transform to extract a 

few interesting frequencies used for inversion (Sirgue et al. 
2008). Afterward, Warner et al. (2013a) applied 3D time-
domain anisotropic acoustic wave equation to FWI and suc-
cessfully inverted the OBC data from the Tommeliten field 
in the North Sea. The inverted model reflects the gas-cloud 
boundary clearly and improves the accuracy and continuity 
of the anticline in the depth migration image significantly.

The open mark of the FWI workshop in SEG of that year 
(2013) is “Full-waveform inversion has emerged as the final 
and ultimate solution to the Earth resolution and imaging 
objective.” It emphasized that FWI is the final and ultimate 
solution of seismic data inversion and imaging. This point of 
view was questioned by some peers working on other seismic 
imaging methods, for instance, professor Weglein. He (2013) 
argued that acoustic FWI uses “wrong mathematic model” 
(acoustic wave equation), “wrong data” (pure pressure data) 
and “wrong method” (iterative methods) to invert a more 
complex Earth model. To some extent, Weglein’s argument 
about the early stage of FWI, i.e., the theory of Tarantola 
(1984) makes sense. The theory of Tarantola (1984) is based 
on the acoustic wave equation to invert P-wave velocity and 
density from pure pressure data using iterative methods. 
However, the Earth is not pure acoustic. Except for P-wave 
velocity and density, it includes S-wave velocity and other 
seismicity parameters. Consequently, acoustic wave equation 
cannot simulate wave propagation accurately. In addition, 
pure pressure data are insufficient for recovering P-wave, 
S-wave velocities and density simultaneously. Furthermore, 
gradient-based iterative methods could lead FWI to converge 
a local minimum due to the nonlinearity of FWI.

The main reasons for the successes on FWI achieved by 
Sirgue and Warner et al. include: firstly, fine-tuned inver-
sion codes; secondly, good inversion strategies; thirdly, 
high-quality seismic data. Their inversion strategies are 
elaborated in their papers. Except for high signal-to-noise 
ratio, OBC/OBS data have some favorable features by FWI: 
firstly, although the Earth has elastic property, thanks to sea-
water filtering, the record by the hydrophones of OBC/OBS 
is similar to seismic data simulated by using acoustic wave 
equation; secondly, since the separation between OBC/OBS 
and air-guns, the offset of records can be very large, which 
helps to record transmitted (refractions and turning waves) 
seismic waves from a large depth; finally, the OBC/OBS data 
include rich low-frequency signals (< 3 Hz). These features 
help FWI to recover background velocity and mitigate cycle 
skipping.

Conventional FWI proposed by Tarantola (1984) fixes 
background velocity using refractions and turning waves 
mainly; therefore, conventional FWI needs these data in 
large offsets to repair the deep part of the model. A rule of 
thumb is that the maximum depth of background that FWI 
can fix is about a 1/5–1/3 of the maximum offset, which 
is the maximum penetration depth of turning waves (e.g., 
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Fig. 1  Schematic illustration of the accuracy and resolution range of 
tomography, migration and full-waveform inversion. The solid black 
curve indicates the accuracy and resolution range of the results of 
tomography and migration (Claerbout 1985). There is a gap between 
2 and 10  Hz, which can be filled by the results of full-waveform 
inversion with large-offset refractions and low-frequency signals 
(Biondi and Almomin 2013)
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Zhou et al. (2015) pointed out that the maximum penetration 
depth is about 1.5 km for the turning waves in a record of 
an offset of 6 km from the Valhall field). FWI is a nonlinear 
problem, the reasons of which include: firstly, the wavefields 
in the wave equation have a nonlinear relationship with the 
model parameters; secondly, seismic signals oscillate around 
the zero value, the faster the oscillation (higher frequency), 
the stronger the nonlinearity. FWI is a large-scale inverse 
problem, which may contain millions of unknowns. In 
addition, the computational cost is high for solving wave 
equations numerically. Thereby, FWI currently is based on 
local-gradient methods, e.g., steepest-descent and conju-
gate-gradient methods. In order to avoid trapping in a local 
minimum due to nonlinearity, FWI usually begins from the 
lowest available frequency and then gradually increases the 
frequency. This strategy is called multi-scale proposed by 
Bunks et al. (1995). This also is the reason why FWI needs 
low frequencies.

In practice, due to large errors in the initial model, the 
time lag of the events in predicted data and observed data 
may be larger than half a period; even the lowest frequency 
still suffers cycle skipping. Consequently, solving cycle skip-
ping turns into an important topic in FWI studies. Currently, 
the first category of proposed methods for cycle skipping 
is to introduce objective functions that have wider convex 
region; for example, the objective function based on penal-
izing the nonzero lags of cross-correlation or deconvolu-
tion [e.g., Adaptive Waveform Inversion—AWI (Warner and 
Guasch 2016; Guasch et al. 2019; van Leeuwen and Mulder 
2010; Luo and Sava 2011; Zhu and Fomel 2016)], optimal 
transport distance functions (Métivier et al. 2016; Yang and 
Engquist 2018; Yang et al. 2018), Wavefield Reconstruc-
tion Inversion—RWI (van Leeuwen and Herrmann 2013; 
da Silva and Yao 2017), etc.

The second category of these methods aims to create 
lower-frequency signals through signal processing means, 
for instance, the envelope of seismic data (Wu et al. 2014; 
Chen et al. 2018a, b), the modulation of two close frequen-
cies (Beat-tone, Hu 2014), downward frequency extrapo-
lation (Warner et al. 2013b; Chen et al. 2019). The meth-
ods belonging to the third category utilize the travel time 
of seismic events to formulate the objective function, e.g., 
Jiao et al. (2015). Currently, the most widely used method 
for retraveling the travel-time information is dynamic time/
image warping—DTW/DIW from the field of image pro-
cessing (Hale 2013). Besides, there are some other methods, 
for example, intermediate data by Wang et al. (2016) and 
Yao et al. (2019b).

The most direct and efficient method for solving cycle 
skipping is to improve the acquisition systems for generat-
ing and recording lower-frequency signals. One successful 
example is the ultra-low-frequency marine seismic source, 
Wolfspar, designed by BP. It can produce the seismic signal 

as low as 1.6 Hz (Dellinger et al. 2016), which leads to their 
huge success of applying FWI on the Atlantis oil field in the 
Gulf of Mexico (Shen et al. 2017). BGP created an onshore 
controlled vibrator source, which can produce low frequen-
cies as low as 1.5 Hz (Baeten et al. 2013). Unfortunately, so 
far not many successful FWI examples on land seismic data 
have been reported due to some complex factors, includ-
ing low SNR, surface waves, near-surface heterogeneity 
and elastic effects (Mei and Tong 2015; Cheng et al. 2017; 
Sedova et al. 2019).

Multi-parameter inversion is another important research 
direction of FWI. The parameters include P-wave velocity, 
S-wave velocity, density, anisotropic parameters (ε, δ, γ) 
and attenuation factor Q. The biggest challenge in multi-
parameter inversion is the cross-talk between different types 
of parameters; it means that the seismic data response gener-
ated by the perturbation of one type of parameter could be 
mapped back into the model perturbation of another type 
of parameter, for instance, the cross-talk between P-wave 
velocity and S-wave velocity. In mathematics, the cross-talk 
is a manifestation of ill-posedness of the inversion problem. 
The fundamental reason is that the number of independ-
ent data is less than the number of unknowns in the model. 
Except better inversion strategies, e.g., optimized param-
eterization (Tarantola 1986; Mora 1987; Zhou et al. 2015; 
Kazei and Alkhalifah 2019; Pan et al. 2019), the inversion 
system needs extra information to constrain inversion.

As described previously, the record in large offsets drives 
FWI to update the background velocity model. However, the 
data in large offsets exist two problems: firstly, low SNR, 
which is caused by energy attenuation through long wave 
paths; secondly, strong AVO effects, AVO in the real data 
follows the rule of elastic (not acoustic) waves on the inter-
faces (Aki and Richards 1981; Shuey 1985; Castagna et al. 
1998; Wang 1999), which causes that predicted data gener-
ated by acoustic wave equation cannot match the waveform 
of recorded data accurately (da Silva et al. 2019). Besides, 
with current acquisition techniques, only reflections can 
reach the depth of targets. The three factors lead to the birth 
of an important branch of FWI—RWI (also called reflection 
full-waveform inversion—RFWI), which utilizes reflections 
to recover the background velocity under the framework of 
FWI. In the rest of this paper, we will review the principle, 
algorithm and examples of RWI.

2  The weaknesses of conventional FWI 
for inverting reflection data

Conventional FWI is an optimization problem. In the case 
of the simplest wave equation, i.e., isotropic acoustic wave 
equation, the objective function of conventional FWI is the 
square of L2-norm of data difference expressed as:
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which is constrained by the wave equation,

where d denotes the observed seismic data, including refrac-
tions and reflections, u represents the simulated seismic 
wavefield from the velocity model v, s is the source wave-
let, D denotes the receiver operator for extracting out the 
predicted data from u at the receivers’ location, D is a pulse 
function or identity matrix for a single-channel recording 
system. If a receiver is formed by a group of detectors, D is 
a stack of multi-pulse functions, and thus the non-diagonal 
elements may not be zero. The expression of the gradient 
of (1) can be found in the papers of Tarantola (1984), Pratt 
(1999) and Virieux and Operto (2009).

If conventional FWI applies to pure reflections start-
ing with a smooth velocity model, which does not contain 
interfaces (this is common in real applications), then as 
illustrated in Fig. 2, the processes of forward and back-
ward propagation generate only transmitted waves in the 
first iteration. Consequently, the gradient generated with 
zero-lag cross-correlation builds interfaces but does not 
contain components for background velocity update. This 
is because the waves in the forward and backward propa-
gations only meet at the interfaces. In the later iterations, 
the wave paths of the source and residual wavefields are 
overlapped on and above the interfaces; therefore, the gra-
dient contains the components for both interface and back-
ground update. Based on this observation, Mora (1989) 
proposed “Inversion = migration + tomography,” which 
means RWI possesses two functionalities, i.e., migration 
and tomography. Note that Mora did not mean that migra-
tion plus tomography is equivalent to inversion. Migra-
tion aims for building interfaces, while tomography is for 
background velocity update.

(1)� =
1

2
‖Du(v) − d‖2

2
,

(2)
(

1

v2
�2

�t2
− ∇2

)
u = s,

As depicted in Fig. 2b, in general, the reflectivity of rock 
interfaces is much smaller than 1, usually less than 0.05. 
As a result, the gradient at interfaces is one order of mag-
nitude higher than that above the interfaces, which causes 
FWI based on gradient methods mainly updates interfaces 
rather than the background velocity model. This is one of the 
weaknesses of conventional FWI for inverting pure reflec-
tion data.

On the contrary, the transmission coefficient is close to 
1, for instance, the transmission coefficient is 0.95 if the 
reflection coefficient is 0.05. As a result, the magnitude of 
the gradient formed by transmitted waves is relatively uni-
form along the wave paths; conventional FWI with transmit-
ted waves is good at fixing background velocity as well as 
rebuilds the interfaces with reflections.

FWI produces a model that contains interfaces after the 
first iteration. The predicted reflection data from the model 
fit the observed reflection data in a least-squares sense. 
Conventional FWI is based on a trace-by-trace comparison. 
Consequently, if the events in predicted data arrive later than 
the corresponding events in observed data, then inversion 
increases velocity; otherwise, inversion decreases velocity. 
In the case that the velocity of the current model is greater 
than the actual velocity, the events in predicted data are 
intercepted by the events in observed data (Fig. 3), and the 
travel time of the events between the intercept points (indi-
cating small offsets) in predicted data is larger than that in 
observed data. The travel time outside the intercept points 
(indicating large offsets) in predicted data is smaller than 
that in observed data. In the rest iterations, the data between 
the intercept points drive inversion to increase background 
velocity for reducing travel time. However, the data outside 
the intercept points push inversion to decrease background 
velocity for raising travel time. Consequently, the two parts 
of data contradict each other, which leads to inversion stuck 
into a local minimum. The whole inversion then mainly 
updates the interfaces, which is equivalent to impedance 
inversion rather than fixing background velocity. This is 

1 R

Surface

Reflection
interface

1 R R2 R

Source wavefield
(forward propagation)

Residual wavefield
(backward propagation)

Source wavefield
(forward propagation)

Residual wavefield
(backward propagation)

(a) Iteration 1 (b) Iteration 2

Fig. 2  Behavior of conventional FWI for pure reflection data using a smooth starting model. a At the first iteration, only transmitted energy 
exists in both the source and residual wavefields. Cross-correlating these builds interface and does not update velocity. b At subsequent itera-
tions, reflected energy exists in both wavefields. Cross-correlation can now update the velocity model, but the magnitude of this tomographic 
effect varies as R2, whereas updates to the reflectivity vary as R. Usually, R is much smaller than 1 (Yao and Wu 2017)
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the significance of FWI inverting reflection-dominated data 
(Wang and Rao 2009; Lazaratos et al. 2011; Plessix and Li 
2013; Routh et al. 2016; Yao et al. 2018b). The contradiction 
and trapping in a local minimum are the second weakness of 
conventional FWI for inverting reflection data.

3  Reflection‑waveform inversion

Conventional FWI inverting pure reflection data have two 
weaknesses: firstly, the migration component in the gradient 
is much stronger than the tomography component; secondly, 
inversion traps in a local minimum. Thus, the inversion 
mainly rebuilds the interfaces rather than fixes background 
velocity. Modifying the algorithm of conventional FWI for 
fixing background velocity using reflection data is the aim 
of reflection-waveform inversion (RWI). In order to solve the 
two weaknesses, studies of RWI mainly focus on the three 
topics: (1) separation of tomography and migration compo-
nents; (2) optimizing the objective functions; (3) improving 
the stability of inversion by incorporating constraints.

3.1  Separation of tomography and migration 
components

The tomography and migration components in the gradi-
ent of conventional FWI are mixed. If the source wavefield 
shares the same wave path with the residual wavefield, then 
zero-lag cross-correlation produces the tomography compo-
nent. If the tomography component is formed from transmit-
ted waves, then its sensitivity kernel has a shape of banana 
(e.g., Fig. 4a, Fig. 1a of Xu et al. 2012, or Fig. 5b of Virieux 

and Operto 2009). If the tomography component is formed 
from reflection waves, then the kernel is like “rabbit ears” 
(e.g., Fig. 4b, Fig. 1d of Xu et al. 2012). As the tomography 
component updates the model along the whole wave path, 
the tomography component is key for updating background 
velocity. As illustrated in Fig. 5b of Virieux and Opetro 
(2009), the resolution of the tomography component to the 
model is the width of the first Fresnel zone. This is because 
that other order Fresnel zones will be canceled out and then 
only the first Fresnel zones will remain if many sensitivity 
kernels are stacked together.

If the source wavefield travels in a different direction to 
the residual wavefield, then zero-lag cross-correlation gener-
ates the migration component. This situation only happens 
to reflections at the interfaces. The sensitivity kernel of the 
migration component has a shape of an ellipse, e.g., Fig. 4b, 
Fig. 1b of Xu et al. (2012). Multiple ellipse-shaped sensitiv-
ity kernels stack together to form the interfaces of the model.

As can be seen from Fig. 2, the migration component 
is much stronger than the tomography component in the 
gradient formed from reflections. In order to emphasize the 
tomographic function of FWI, it is necessary to separate 
the tomography component in the gradient from its migra-
tion component. Currently, the separation methods can be 
divided into three categories: (1) up/down wavefield separa-
tion; (2) scattering angle filtering; (3) born-based modeling.

3.1.1  Up/down wavefield separation

The gradient of the FWI system formed by Eqs. 1 and 2 can 
be expressed as:

where U⃗(�, t) and 
←

U(�, t) represent the first-order time deriva-
tive of the source and residual wavefields, respectively, at the 
location of x and the time of t.

If the source and residual wavefields are decomposed into 
upward and downward wavefields, then the migration and 
tomography components can be expressed as:

and

(3)g(�) = −
2

v3

Tmax

∫
0

U⃗(�, t)
←

U(�, t)dt,

(4)

gmig(�) = −
2
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∫
0

(
U⃗U(�, t)

←

UD(�, t) + U⃗D(�, t)
←

UU(�, t)

)
dt,

(5)

gtomo(�) = −
2

v3

Tmax

∫
0

(
U⃗U(�, t)

←

UU(�, t) + U⃗D(�, t)
←

UD(�, t)

)
dt,

Observed data

Predicted data

Fig. 3  The move direction of predicted data in conventional FWI. 
After the first iteration, the reflector that fits the observed data in a 
least-squares sense is built. In the subsequent iterations, the section of 
the event between the two intercept points indicates the update direc-
tion of the background velocity is opposite to the rest section of the 
event. Consequently, the inversion is stuck in a local minimum
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where the subscripts U and D represent the upward and 
downward wavefields, respectively. As can be seen from 
Fig. 5, the separation of the upward and downward wave-
fields can be achieved using Fourier transform along the 
time and depth directions, in which the part of �kz ≥ 0 cor-
responds the downward wavefield while the part of 𝜔kz < 0 
is the upward wavefield (Hu and McMechan 1987). How-
ever, Fourier transform along the time and depth axes is 
prohibited in the time-domain FWI. Liu et al. (2011) derived 
an image condition that removes the background noise in the 
RTM image effectively and efficiently. This imaging condi-
tion only carries out 1D Fourier transform along the depth 
axis. The background noise in the RTM image is the tomog-
raphy component in the FWI gradient, while the rest part is 

the migration component. Wang et al. (2013) utilized this 
imaging condition to separate the two components, which 
can be expressed as

and
(6)

gmig(�) = −
2

v3
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U⃗∗

+
(�, t)

←
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dt
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where the superscript * represents complex conjugate, 
U+(�, t) and U−(�, t) can be computed by taking inverse Fou-
rier transformation of

and

Equations 8 and 9 imply that U+(�, t) and U−(�, t) can be 
computed using Hilbert transform alternatively (Liu et al. 
2011; Fei et al. 2015; Chi et al. 2017; Lian et al. 2018). The 
mechanism of Eqs. 6 and 7 for the separation of the incident 
and reflection waves is based on the assumption that the 
incident wave travels downwards, while the reflection wave 
propagates upwards (Fig. 5). However, if the strata have a 
large dipping angle (e.g., Figure 12 of Liu et al. 2011), this 
method fails to separate the wavefields. Consequently, the 
tomography component contains the migration component, 
vice versa. Since the migration component usually is much 
stronger than the tomography component, this leakage does 
not affect the result of RTM very much, but the leakage 
in the tomography component could lead to RWI updating 
background velocity along the wrong direction significantly. 
Wang et al. (2018) from CGG demonstrated that the leakage 
can cause inversion to update the model toward the wrong 
direction at the steep flanks of salt bodies. In order to miti-
gate this issue, Irabor and Warner (2016) proposed to split 
the wavefield into two parts, one of which travels along the 
vertical axis and the other of which propagates along the 
horizontal axis, and then applied Eqs. 6 and 7 to separate 
the two parts into the upward and downward waves. In the 
isotropic acoustic media, the vertical and horizontal waves 
can be simulated by using the equation system,

where uz and ux represent the vertical and horizontal 
wavefields.

3.1.2  Scattering angle filtering

The migration component is generated when the source wave-
field meets the residual wavefield around the interfaces; the 
tomography component is formed when the waves meet on 
the wave path. As illustrated in Fig. 6, the two types of com-
ponents can be separated according to the scattering angle 
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between the source and residual waves: if the scattering angle 
is close to 180°, the cross-correlation of the two wavefields 
forms the tomography component; otherwise, the migration 
component is generated. Thus, the scattering angle can be used 
as an indicator to separate the two components. Three meth-
ods have been proposed for scattering angle filtering. The first 
filtering method is based on the time-lag gather (Khalil et al. 
2013; Alkhalifah 2014). The gradient in Eq. 3 with time lag 
can be expressed as:

where US and UR represent the first-order time derivative 
of the source and residual wavefields, respectively, and τ 
denotes the time lag. In isotropic media, the wavenumber, 
frequency and velocity have a relationship of

where ks and kR represent the wavenumbers of the source 
and residual wavefields, ω denotes frequency and v(x) is the 
velocity at the location of x. As depicted in Fig. 7, the rela-
tionship of the wavenumber of the gradient, the scattering 
angle, frequency and velocity can be expressed as
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Fig. 6  The gradient formed by the reflection from a pair of “source-
receiver” configuration. The interface of the two-layer model is at a 
depth of 4 km. The blue and green “×” indicate the location of the 
source and the receiver, respectively. The solid blue line represents 
the path of the incident wavefield in the source wavefield, while the 
dashed blue line is for the reflection. The green lines are the coun-
terpart in the residual wavefield. α represents the angle between the 
source and residual wavefields at the interface; β is for their angle at 
the rest of the wave path



341Petroleum Science (2020) 17:334–351 

1 3

The counterpart of Eq. 13 for the gradient with time lag 
shown in Eq. 11 can be expressed as

where �� represents the frequency of the time-lag gather. 
Using the variable replacement

Equation 14 can be expressed as

where ψ represents the counterpart of ξ in the Fourier 
domain. As can be seen from Eq. 16, the scattering angle is 
independent of velocity; thus, we can achieve the scattering 
angle filtering using Eq. 16 to any velocity model (Khalil 
et al. 2013; Alkhalifah 2014). 

As can be seen from Fig. 8, the scattering angle fil-
tering based on the time-lag gather includes five steps: 
(1) forming the gradient with time lag using Eq. 11, and 
stacking the gradient of all shots; (2) applying coordinate 
transform on the stacked gather using Eq. 15; (3) taking 
Fourier transform along all axes; (4) calculating the scat-
tering angle using Eq. 16 and performing scattering angle 

(13)
|�|2
�2

=
4

v2(�)
cos2

(
�

2

)
.

(14)
|�|2
�2
�

=
4

v2(�)
cos2

(
�

2

)
,

(15)� =
�

2
v(�),

(16)
|�|2
�2

= cos2
(
�

2

)
,

filtering; (5) taking inverse Fourier transform along all 
wavenumber axes, and then stacking all frequencies to 
produce the migration and tomography components. One 
simple angle filtering function can be found in Fig. 2d of 
Yao et al. (2018a).

The analysis above shows that the scattering angle fil-
tering based on the time-lag gather has limitation: firstly, 
assuming the velocity is isotropic; secondly, relatively 
large memory and computation cost is caused due to gen-
erating the time-lag gather and high-dimension Fourier 
transform; Thirdly, the coordinate transform needs resa-
mpling, and thus simple interpolation, e.g., spline inter-
polation, could introduce alias. To improve the efficiency, 
Wu and Alkhalifah (2017) demonstrated that the separa-
tion can be achieved using spatial Fourier transform and 
simple extra computation if the inversion is carried out in 
the Frequency domain and the scattering angle is assumed 
independent on velocity.

The second method of scattering angle filtering is 
achieved in the plane-wave domain. The key point of scat-
tering angle filtering is to compute the angle between the 
source and residual wavefields. A natural thought for the 
angle measurement is in the plane-wave domain. Thus, Yao 
et al. (2018a) proposed to Fourier transform the source and 
residual wavefields into the wavenumber domain and then 
achieve the scattering angle filtering by measuring the angle 
of the elements in the wavefields. The gradient expressed 
in Eq. 3 in the wavenumber domain becomes a convolution 
form,

where i and j are the indexes of the first-order time deriva-
tive of the source and residual wavefields in the wavenum-
ber domain, respectively, and * represents convolution. The 
process of convolution is illustrated in Fig. 9. Each ele-
ment of wavefields in the wavenumber domain represents 
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a plane-wave with a particular wavelength and a dipping 
angle; therefore, the angle between a pair of plane waves can 
be computed easily using the equation,

The filtered gradient then can be expressed as

where f(α) is the filtering function, the choice of which can 
be found in Yao et al. (2019a).

As can be seen from the derivation above, scattering 
angle filtering in the plane-wave domain does not assume 
an isotropic or homogenous media; therefore, it is an effec-
tive algorithm. However, the convolution process has large 
computation cost.

The third method of scattering angle filtering is non-
stationary smoothing proposed by Yao et al. (2019a). Equa-
tion 13 can be rewritten as

Equation 20 implies that for a fixed velocity and frequency, 
the wavenumber of the gradient, i.e., the inverse of wave-
length, equals the cosine of half the scattering angle; in 
the other words, the wavenumber depends on the scatter-
ing angle monotonically. As illustrated in Fig. 10, after 
determined the maximum scattering angle of the migra-
tion component and the minimum scattering angle of the 
tomography component, they are distributed in different 
rings. Thus, scattering angle filtering can be achieved using 
non-stationary smoothing. If the minimum scattering angle 
αmin is fixed, the maximum wavenumber of the tomography 
component can be computed using the equation,
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(19)ĝ(�) = −
2

v3

∑
t

∑
i

∑
j

f (𝛼)ŨS
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Thereby, we can design a smoother to filter out the wave-
number larger than ktomo_max . A simple choice of the 
smoother is to design a Gaussian function, the standard 
deviation of which is

where β is the preset value of the Gaussian function at 
ktomo_max in the Fourier domain, e.g., 0.3. Then, the tomog-
raphy component at one element of the gradient for this 
frequency can be computed by multiplying the Gaussian 
function with the gradient and then stacking the results. In 
the multiplication, the center of the Gaussian function is 
coincident with this element. Yao et al. (2019a) pointed out 
that this method is very suitable for frequency domain FWI. 
For time-domain FWI, we can divide the seismic data into 
several frequency bands, each of which uses one reference 
frequency to compute ktomo_max ; then, this band is smoothed 
with this reference frequency.

Compared to the scattering angle filtering in the plane-
wave domain, this method has much smaller computation 
cost. However, similar to the method based on the time-lag 
gather, this method assumes an isotropic model. In addition, 
as Gaussian functions have a relative wide transition zone, 
partial energy of the tomography component can be removed 
unnecessarily.

3.1.3  Born modeling

Another widely used method for separating the migration 
and tomography components is Born modeling (Xu et al. 
2012; Wu and Alkhalifah 2015; Sun et al. 2017; Yao and 
Wu 2017). As can be seen from Fig. 6, the zero-lag cross-
correlation of the incident waves of the source wavefield 
and the reflected waves of the residual wavefield forms one 

(21)ktomo_max =
2�

v
cos

�min

2
.

(22)� =

√
− log (�)

2�2k2
tomo_ max

,

�

kSz kRz kz

kSx kRx kx

US(kS) UR(kR) g(k)
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branch of the tomography component; the other branch is 
generated by the reflected waves of the source wavefield 
and the incident waves of the residual wavefield. Thus, if 
the reflected waves are separated from the incident waves, 
then the tomography and migration components can be 
isolated. Born modeling is a simple and effective method 
to separate reflected waves from incident waves. Born 
modeling for the isotropic wave equation can be expressed 
as

where ub and uδ represent the incident and scattering wave-
fields, vb and mδ denote background velocity and model 
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perturbation, respectively. As illustrated in Fig. 6, the for-
ward scattering waves of the source and residual wavefields 
travel in different directions; therefore, they have no con-
tribution to the gradient. However, the backward scatter-
ing waves, i.e., mainly the reflected waves, contribute to the 
tomography component by cross-correlating with the inci-
dent waves of the other wavefield.

Compared to other methods, the Born modeling method 
can be applied to anisotropic media and arbitrarily complex 
media; therefore, it becomes the most widely used method 
for the separation. However, it cannot simulate higher-order 
scattering waves.
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Fig. 10  Schematic diagram for the relationship between opening angles and wavenumber distribution. �tomo_min indicates the minimum open-
ing angle for the tomographic component, while �mig_max indicates the maximum opening angle for the migration component. kS and kR are 
the wavenumber of the source and residual wavefields, respectively. They sit on the dashed circle. The tomographic component sits inside the 
inner dark-gray-filled circle while the migration component locates inside the outer light-gray ring. The transition zone is the middle-gray ring 
between them (Yao et al. 2019a)
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3.2  Objective functions of reflection‑waveform 
inversion

The objective functions of reflection-waveform inversion can 
be divided into two main categories: the objective functions 
based on waveform and the objective functions based on 
travel time. The objective functions based on waveform can 
be expressed as

where d represents the observed reflection data, uδ denotes 
the predicted reflection wavefields, D is the receiver operator 
that is used for extracting the predicted data at the receiver 
position from uδ, vb represents background velocity, mδ is the 
reflector that generates reflections. Once we have an objec-
tive function, e.g., Eq. 24, combining it with a wave equa-
tion, e.g., Eqs. 2 or 23, can form an inversion system. Cur-
rently, restricted by the huge computation cost, FWI is based 
on local-gradient methods, e.g., steepest-descent methods 
and conjugate-gradient methods. As a result, computing the 
gradient is a key step. The formula of the gradient can be 
derived using the adjoint-state method (Plessix 2006) or the 
matrix algebra (Pratt 1999).

Currently, RWI is achieved mainly by alternatively 
updating vb and mδ. Its flowchart is shown in Fig. 11: 
firstly, setting reflectors mδ as zero; secondly, building 
temporary reflectors mδ with 3–5 iterations; thirdly, updat-
ing background velocity vb with a few iterations; the three 
steps form a big loop. In order to avoid the weakness of 
RWI illustrated in Fig. 3, one commonly used method is 
to build reflectors mδ with short-offset data. As can be 
seen from Fig. 12, the predicted data by the reflectors mδ 
can fit the observed data in these short offsets while the 
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large-offset residuals contain the information for back-
ground velocity update. 

The main objective of RWI is for fixing background 
velocity. Since the background velocity affects the travel 
time of seismic events much more than amplitudes, the 
travel-time information in the seismic data is more sensi-
tive to the error of background velocity than amplitudes. 
Consequently, RWI can be achieved by using the objective 
functions based on travel time:

where Δτ represents the travel-time differences between 
the reflection events in the observed and predicted data. For 
a shot gather containing multiple reflection events, cross-
correlation with a sliding window can be used to compute 
the local travel-time difference, Δτ (Hale 2009). Hale (2013) 
pointed out that dynamic time/image warping (DTW/DIW) 
is more stable than cross-correlation for multiple events, 
especially in case of fast travel-time variation. When com-
puting the gradient of the objective function in Eq. 25 with 
respect to background velocity, there are two choices: the 
first is based on connective function that gives the relation-
ship between the travel-time difference Δτ and predicted 
data (Luo and Schuster 1991; Chi et al. 2015); the other is to 
combine instantaneous phase and phase-only FWI, in which 
DTW/DIW can be used to compute travel-time difference 
Δτ, Δτ multiplied by frequency is a stable means to calculate 
the instantaneous phase (Jiao et al. 2015; Sun et al. 2017).

Compared to the objective functions based on wave-
form, the objective functions based on travel time can 
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mitigate the influence of amplitudes on inversion; there-
fore, the influence of the physics that cannot be predicted 
by acoustic wave equations, e.g., s-waves and attenuation, 
can be mitigated. However, if the initial model is relatively 
accurate, the objective functions based on waveform can 
give a more accurate result than the objective functions 
based on travel time, as the latter gives up the dynamic 
information in the data (Chi et al. 2015).

In addition, since the objective functions based on travel 
time are convex, they are immune to cycle skipping, for 
instance, Fig. 7d of Chi et al. (2016). However, this good 
feature is true only if the travel time is computed correctly. 
In case of large errors in the initial model, wrong pairs of 
events can be selected from the predicted and observed data 
to compute the travel-time difference.

The second step of RWI builds temporary reflectors mδ at 
a wrong depth to fit the data in short offsets; therefore, the 
likelihood of cycle skipping in large offsets using waveform-
based objective functions is reduced significantly compared 
to conventional FWI. An example is illustrated in Fig. 13, 
which shows the width of the convex region in the wave-
form-based objective function is several times wider than 
that of conventional FWI. Wang et al. (2018) pointed out 
the likelihood can be further reduced by splitting the long-
offset seismic data gather into two parts and then inverting 
them separately.

Except the two types of objective functions of RWI based 
on pure reflection data, Zhou et al. (2015) proposed a joint 
inversion of reflection and transmission data:

where the superscripts div and refl represent the transmis-
sion and reflection data, the subscripts obs and pred denote 
observed and predicted data, Wd and Wr are the weighting 
of transmission and reflection data. The objection function 
is a function of reflectors, i.e., the impedance perturbation 
in Zhou et al. (2015), and background velocity. Zhou et al. 
(2015) updated reflectors and background velocity alter-
natively, where reflectors are built of reflections while the 
background velocity is updated with both reflection and 
transmission data. Different from Yao and Wu (2017), Zhou 
et al. (2015) did not reset the reflectors to zero in each inver-
sion loop.

Similar to Zhou et al. (2015), Wu and Alkhalifah (2015) 
formed the objective function with both transmission and 
reflection data:

The inversion system is constrained by a Born wave equa-
tion, such as Eq. 23. Wu and Alkhalifah (2015) did not 
update reflectors and background velocity alternatively 
but simultaneously, i.e., the update direction is formed by 
weighted velocity and reflector gradients. In the early stage 
of inversion, the weighting to the velocity gradient is small; 
therefore, the velocity update is smooth, i.e., background 
velocity update. The weighting to the velocity gradient is 
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then increased gradually as the inversion progress, which 
means inversion adds more and more high-frequency com-
ponents into the velocity model.

3.3  Constraints in reflection‑waveform inversion

Generally, RWI decomposes the Earth model into a back-
ground velocity model vb and a reflector model mδ; there-
fore, compared to conventional single-parameter FWI, the 
number of unknown parameters in the system of RWI is 
doubled. In addition, conventional FWI utilized all seismic 
records including refractions, but RWI uses much fewer 
data. The two factors lead to that RWI is more ill-posed 
than conventional single-parameter FWI. One manifesta-
tion of the ill-posedness is that an inverted background 
velocity model is full of artifacts but still fits the observed 
data, for example, Fig. 7a of Yao et al. (2019c).

In order to mitigate the ill-posedness, the inversion sys-
tem has to incorporate extra information about the veloc-
ity model. Since the inversion uses all information from 
seismic data, the extra information only comes from non-
seismic sources, for example, geology, well-logs or other 
geophysical methods. So far, the research on adding extra 
information has been studied inadequately. Recently, Yao 
et al. (2019c) introduced structural-oriented smoothing to 
constrain RWI. The constraint is a piece of geologic infor-
mation: the rock properties vary slowly in one stratum but 
can be fast in different strata. This geological information 
can be realized by smoothing along strata. This smoothing 
can be achieved by using anisotropic smoothing. There are 
two commonly used methods for the anisotropic smooth-
ing: the first is solving an anisotropic diffusion equation 
(Fehmers and Höcker 2003); the second is solving an 
anisotropic smoothing system (Hale 2011). In inversion, 
the anisotropic smoothing can be applied to the gradient 
of background velocity acting as preconditioning (Lewis 
et al. 2014; Lee and Pyun 2018); or the smoothing can be 
used on the background velocity. The latter is called shap-
ing, which directly manipulates the model to possess a par-
ticular feature (Fomel 2007). The shaping process can be 
added as the last step in a loop of RWI (Yao et al. 2019c).

Figure 14 shows an example using the constraint of 
structural-oriented smoothing. The orientation of strata 
is picked up from the reflector model mδ automatically, 
e.g., Fig. 14c. Solving the anisotropic diffusion equation 
achieves the smoothness in a stratum but keeps the varia-
tion between strata. As can be seen from Fig. 14e, the ill-
posedness of the inversion system leads to many artificial 
anomalies in the inversion result. These anomalies break 
the geological empirical law, i.e., slow variation of rock 
properties in a stratum. As a result, structural smoothing 
can suppress the artificial anomalies and force the velocity 
of the inversion result varies slowly along the structure. 

The constrained result follows the background trend of the 
true model (Fig. 14f).

4  Conclusions and future perspective

So far, the concept and theory of RWI have become 
mature. There are many successful applications on marine 
seismic data (Sun et al. 2017; Wang et al. 2018). The pre-
processes of seismic data include de-multiples and de-
ghost. These ensure the input data satisfy Born approxima-
tion and mitigate the nonlinearity of the inversion system 
caused by multiples. The separation of tomography and 
migration components is achieved using Born modeling. 
Both waveform-based (Wang et al. 2018) and travel time-
based (Sun et al. 2017) objective functions succeeded to 
recover background velocity. Similar to conventional FWI, 
the industry is trying to apply RWI on land seismic data. 
However, there exist many difficulties including: firstly, 
low signal-to-noise ratio in land seismic data, it is often 
hard to observe hyperbolic-shape events in raw data; sec-
ondly, near-surface complexities, including severe het-
erogeneity, undulate topography and weather layer, which 
cause modeling kernels to simulate wavefields incorrectly; 
thirdly, current FWI commonly uses acoustic wave equa-
tions as the modeling kernel, and thus there exists large 
waveform discrepancy between the predicted data and the 
observed land data that contain strong elastic effects.

Based on the analysis above, except separation between 
the migration and tomography components, objective 
functions and inversion constraints described in previous 
sections, RWI includes other study topics: firstly, seis-
mic data preprocesses, which aims to remove all energy 
unable to be modeled by the modeling kernel in the data, 
as well as the residuals not generated by the parameters 
of inversion; secondly, multi-parameter inversion, includ-
ing P-wave velocity, S-wave velocity, anisotropic param-
eters and attenuation factor Q. RWI based on elastic wave 
equations has been explored preliminarily (e.g., Guo and 
Alkhalifah 2017; Li et al. 2019; Ren et al. 2019).

In a more general scope, for the past thirty years, espe-
cially the last decade, the research on FWI has made 
significant progress on the theory of FWI and many suc-
cessful applications have been achieved in the industry. 
However, FWI has not reached the expectation of the 
industry. The reasons may include:

Gigantic computation cost FWI is achieved using local 
or global search methods to find the optimal solution so 
that the inversion solves wave equations numerically in 
hundreds of times. Mitigating this problem, except the 
advance of computer hardware, optimization on inversion 
algorithms, numerical wavefield modeling and computer 
codes are important research directions. Among them, 
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Fig. 14  Application of reflection-waveform inversion to the Marmousi Model. a The true velocity of Marmousi model. b The initial model of back-
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improving the inversion and modeling algorithms are the 
key directions because computer code optimization, for 
example, load balance between processes, CPU vectoriza-
tion, cache reuse and GPU acceleration (e.g., Wang et al. 
2019), can only speed up the inversion in tens of times or 
less generally.

Insufficient information restricted by the technology and 
space of acquisition, the acquired seismic data are incom-
plete in spatial coverage and frequencies. Petroleum explo-
ration and exploitation do not only require P-wave velocity 
but also other seismic properties, such as density and S-wave 
velocity and anisotropic parameters. Currently, in success-
ful applications, FWI usually produces only P-wave veloc-
ity, in which the density is constrained by using Gardener’s 
relation, and the anisotropic parameters are preset. If FWI 
is used for multi-parameter inversion, then it turns into a 
severe under-determined problem. Consequently, the inver-
sion results are still far different from the true models but 
fit the recorded data nicely. This is caused by insufficient 
information in the seismic data. Mathematic theory pointed 
out that the solution for an under-determined problem is 
to introduce more constraint information, which includes 
mathematic regularization and extra information. Common 
mathematic regularization includes Tikhonov, total variation 
and so on. The extra information includes seismic and non-
seismic information. “two wide and one high” (i.e., broad 
frequency band, wide azimuth and high shot and receiver 
density) acquisition and multi-component acquisition can 
provide more seismic information for inversion. Theoretic 
tests show that the ill-posedness of multi-parameter inver-
sion cannot be fully removed with a better acquisition. Extra 
non-seismic information, including well-logs, geologic laws, 
is an important information supplement. Thus, merging the 
multi-source information into FWI is an important research 
direction.

Incomplete theory Currently, the theory of FWI is still 
under the framework of Tarantola’s theory proposed in 1984. 
It includes localized gradient methods and Born approxima-
tion. FWI is a nonlinear problem; therefore, localized gradi-
ent methods have limitations. The Born approximation is 
used to compute the gradient. Many geologic bodies missed 
in the starting model cannot be represented using Born 
approximation, because Born approximation is valid only 
for weak scattering caused by small volume and magnitude. 
Global inversion is a way to solve this problem because it 
does not need to compute a gradient. But its gigantic com-
putation cost forbids its use. Except the incomplete inver-
sion theory, the forward modeling theory is also incomplete. 
The existing wave equations cannot describe the propagation 
of wavefields in the real world accurately. Thus, exploring 
the inversion and modeling theories is also an important 
research direction.

Unsophisticated acquisition technology Professor Teng 
Jiwen, who is a fellow of Chinese Academy of Sciences, 
pointed out that geophysics is a science of observation 
essentially; therefore, reliable information, or incomplete-
ness and erroneous of information cannot be remedied by 
using any mathematic tricks or image processes. In the past 
several years, the significant advances of FWI in real data 
applications are mainly because of the progress in acquisi-
tion technology. In the applications on the salt models of 
the Gulf of Mexico, OBN acquisition and marine controlled 
source, i.e., Wolfspar, ensure the maximum offset exceeds 
25 km and the valid signal lower than 2 Hz. However, there 
is a lack of breakthroughs in land acquisition, for instance 
low signal-to-noise ratio in the data and inconsistency of 
different shots. The quality of land data may be the main 
reason for restricting successful applications of FWI on land 
data. Consequently, developing acquisition technology is a 
key research direction for FWI as well as for other seismic 
methods.
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