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Abstract
Reservoir performance prediction is one of the main steps during a field development plan. Due to the complexity and 
time-consuming aspects of numerical simulators, it is helpful to develop analytical tools for a rapid primary analysis. The 
capacitance–resistance model (CRM) is a simple technique for reservoir management and optimization. This method is an 
advanced time-dependent material balance equation which is combined with a productivity equation. CRM uses production/
injection data and bottom-hole pressure as inputs to build a reliable model, which is then combined with the oil-cut model and 
converted to a predictive tool. CRM has been studied thoroughly for water flooding projects. In this study, a modified model 
for gas flooding systems based on gas density and average reservoir pressure is developed. A detailed procedure is described 
in a synthetic reservoir model using a genetic algorithm. Then, a streamline simulation is implemented for validation of the 
results. The results show that the proposed model is able to calculate interwell connectivity parameters and oil production 
rates. Moreover, a sensitivity analysis is carried out to investigate effects of drawdown pressure and gas PVT properties on 
the new model. Finally, acceptable ranges of input data and limitations of the model are comprehensively discussed.

Keywords  Reservoir management · Capacitance–resistance model · Gas flooding · Analytical model · Sensitivity analysis · 
Streamline simulation

1  Introduction

Gas flooding in reservoirs is a well-known secondary recov-
ery mechanism and also a gas storage method in the world 
(Bybee 2001; Azin et al. 2008; Mohammadi et al. 2011; 
Yuncong et al. 2014; Agrawal et al. 2016; Kumar et al. 
2017). Comprehensive analysis of miscible/immiscible gas 
injection has been undertaken by many researchers using 
laboratory tests and numerical modeling (Kulkarni and 

Rao 2005; Alkhazmi et al. 2017; Rezaei et al. 2018). Many 
aspects of gas injection such as production mechanisms and 
practical field implementation have also been reviewed (Miri 
et al. 2014; Agrawal et al. 2016; Kostelnik et al. 2017). Field 
management and optimization in the gas injection process 
are important tasks in a reservoir life cycle. Commercial 
numerical simulators are commonly used for these pur-
poses. Detailed input data including gridding, petrophysics, 
pressure–temperature–volume (PVT), special core analysis 
(SCAL), initialization and well data are required for simula-
tion. Comprehensive analysis of reservoir performance, such 
as well placement optimization and enhanced oil recovery 
(EOR) scenario prediction, should be performed by numeri-
cal methods. However, numerical solution methods based 
on finite difference or finite element schemes are compu-
tationally expensive and time-consuming. Thus, analytical 
and semi-analytical approaches are necessary for primary 
analysis for a field development plan. The main advantages 
of analytical tools are low computational time, simplicity 
and limited number of input data compared to numerical 
simulation methods.
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Analytical methods stand between simple tools (the 
graphical methods and the decline curve analysis) and com-
mercial numerical simulators. CRM is an analytical tool that 
considers a reservoir as a tank and its formulation is based 
on the material balance equation between the input (injection 
rate) and output (production rate) data in a specific control 
volume (Fig. 1). CRM only requires available and reliable 
data including production rate, injection rate and producers’ 
BHP. This method is inspired from electrical engineering in 
which fluid flow, porous media storativity, pressure depletion 
and permeability can be conceptually substituted for elec-
tric current, capacitance, electric potential and resistance, 
respectively. The main unknowns in the CRM are interwell 
connectivity (f) and the time constant (τ). The well produc-
tion rate in CRM is a function of injection rate, interwell 
connectivity, time constant and BHP.

Interwell connectivity is an essential parameter in res-
ervoir management which can affect well rate allocation, 
infill drilling and sweep efficiency optimization. Interwell 
connectivity shows the injector contribution in the produc-
tion of surrounding producers and is a function of reser-
voir geometry, degree of heterogeneity and well distances. 
It is also useful for identification of flow barriers as well 
as high-permeability channels between the injector and 
the producer (Rafiei 2014). This parameter can be deter-
mined using CRM or other direct and indirect methods. 
Direct methods such as 4D seismic (Huang and Ling 2006; 
Huseby et al. 2008; Yin et al. 2015, 2016), pulse testing 
(Dinges and Ogbe 1988; Fokker et al. 2012), interference 
(Al-Khamis et al. 2005; Ogbe and Brigham 1989; Stewart 
and Gupta 1984) well tests and tracer tests (Du and Guan 
2005; Dugstad et al. 1999; Huseby et al. 2008; Lichten-
berger 1991; Refunjol and Lake 1999) are operationally 
implemented in the field. Although indirect methods are 
data-driven models and are based on input–output signals 

which are developed mathematically or statistically, they 
include artificial neural networks (ANN) (Demiryurek 
et al. 2008; Panda and Chopra 1998; Artun 2017), wave-
let analysis (Jansen and Kelkar 1997), Spearman rank 
correlation (Heffer et al. 1997; Fedenczuk and Hoffmann 
1998; Refunjol and Lake 1999), extended Kalman filter 
(Liu et al. 2009), pressure-based method (Dinh and Tiab 
2008), multiwell productivity method (Valko et al. 2000; 
Kaviani and Valkó 2010), network model (Gherabati et al. 
2017a, b), and streamline simulation (SS) (Batycky et al. 
1997, 2005; Thiele et al. 2010; Thiele and Batycky 2006; 
Baker 2001).

The time constant shows the time needed for transferring 
the response signal from the injector to the producer (Cao 
et al. 2014). This parameter is a representative of the fluid 
storage between injector and producer (Soroush et al. 2014). 
A low time constant shows a high impact of the injection 
rate on the production response (Sayarpour et al. 2007). This 
parameter is a function of total compressibility, productiv-
ity index (PI) and pore volume. Generally, a well pair with 
low interwell connectivity has a large time constant (Cao 
et al. 2014).

Using historical data, CRM predicts total (oil, gas and 
water) well production rate. Then, by coupling CRM with 
oil-cut models such as the Gentil model (Gentil 2005) or the 
Koval model (Koval 1963), oil, gas and water rates of the 
well can be estimated.

The main assumptions of the CRM formulation are:

•	 Constant PI
•	 Constant temperature
•	 Low-compressible and immiscible fluids
•	 Darcy law flow
•	 Constant operational conditions
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Fig. 1   CRM as a signal-based method—effect of input signal on output signal in a control volume (Sayarpour 2008)
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CRM covers a wide range of applications including res-
ervoir management and optimization, interwell connectiv-
ity characterization, heterogeneity identification and rate 
allocation optimization. Below we present a brief introduc-
tion to CRM development, model improvements and its 
applications.

Mathematical formulation of the CRM was developed by 
Yousef et al. (Yousef et al. 2006, 2005). To derive this for-
mulation, they coupled the linear productivity model and the 
material balance equation and defined a connectivity param-
eter and time constant. Also, they developed a diagnostic 
tool for identification of flow barriers and transmissibility 
trends (Yousef et al. 2009). Then, mathematical equations 
for a system of three control volumes based on tank, pro-
ducer and injector-producer, using superposition in time, 
were obtained by Sayarpour et al. (Sayarpour et al. 2007, 
2009). Weber et al. (2009) coupled their CRM model with an 
optimizer and successfully tested the model in a field-scale 
scenario. Delshad et al. (2009) presented a new application 
of the CRM in characterization of fractures in the reservoir 
and quantitatively calculated the fracture permeability. Izgec 
and Kabir (2010) investigated the capability of the CRM in 
pre-breakthrough conditions in water flooding and validated 
the results by streamline simulation. Salazar-Bustamante 
et al. (2012) combined decline curve analysis and CRM in 
a carbonate reservoir under gas injection and developed an 
integrated model, which is applicable in reservoirs under pri-
mary depletion and gas injection. Kaviani et al. (2012) intro-
duced the segmented CRM where unknown BHPs change 
during the interval and compensated CRM in the case of 
adding a new producer or shutting in an existing producer. 
Kaviani et al. (2014) performed a comprehensive sensitivity 
analysis on the impact of different parameters on the CRM 
performance. They also defined a dimensionless number and 
with a specific range where CRM is applicable. Mamghaderi 
and Pourafshary (2013) improved the CRM for layered res-
ervoirs by considering the crossflow between the layers and 
using available production logging tools (PLT) data. Moreno 
(2013) developed a multilayer CRM combined with a simple 
dynamic model and considered variable interwell connectiv-
ity, as a function of time, using production and completion 
data. Moreno and Lake (2014a, b) investigated the impact 
of noise in the injection rate and designed input signals that 
improved the information from CRM to estimate interwell 

connectivity. Also, they studied the uncertainty of interwell 
connectivity estimations from the CRM. Laochamroon-
vorapongse et al. (2014) applied CRM for immiscible and 
miscible water alternating gas (WAG) floods and integrated 
CRM with other analytical tools such as a Hall plot and the 
reciprocal of the productivity index for better understand-
ing of reservoir performance. Soroush et al. (2014) studied 
the effect of change in the producer’s skin factor, drilling 
new producers and shutting in active existing producers 
and developed a multiwell compensated capacitance model 
based on superposition. Cao et al. (2014) presented a two-
phase CRM based on the total fluid and oil material balance 
equations. In addition to pressure changes, they included the 
saturation variations in the equations and showed that the 
modified CRM is able to estimate interwell connectivity in 
all time frames of water flooding. Tao and Bryant (Tao and 
Bryant 2015) used CRM for gas storage projects to identify 
connectivity between the extractor and the injector. They 
showed that CRM is very useful in poorly characterized stor-
age aquifers. Eshraghi et al. (2016) employed CRM for CO2 
miscible flooding combined with the Gentil fractional flow 
model. They further optimized CO2 flooding using heuris-
tic methods such as GA and particle swarm optimization. 
Mirzayev and Jensen (2016) extended the CRM to a tight 
reservoir with high well densities and stimulation treatments 
by dividing the field to some small regions (windows) and 
considering pseudo wells. Zhang et al. (2017) developed 
multilayer CRM combined with the ensemble Kalman fil-
ter for matching the parameters and performed production 
optimization by ensemble-based optimization. de Holanda 
et al. (2018) derived matrix representation of CRM using 
state space equations and used linear control algorithms for 
improvement of run-time in large fields. They successfully 
applied the model in a synthetic reservoir.

Most of the published literature on CRM is concentrated 
on water flooding projects. There are many gas flooding 
projects in the world, but comprehensive analysis of CRM 
performance on gas flooding projects has not been investi-
gated and few published studies exist for gas flooding using 
the CRM. A list of these studies is provided in Table 1. The 
objective of this study is to extend the CRM equation in 
gas flooding systems. It should be noted that the original 
CRM was used in the studies shown in Table 1 for gas–oil 
systems. Low-compressible fluids (constant gas density) and 

Table 1   Researches on the CRM applications in gas flooding

Researcher Description

Salazar-Bustamante et al. (2012) Combination of a decline curve model with the CRM in a fractured reservoir under a gas flood
Laochamroonvorapongse et al. (2014) Interwell connectivity calculation in miscible and immiscible WAG floods
Tao and Bryant (2015) Use of CRM for gas storage projects in an aquifer with CO2 injection and brine extraction
Eshraghi et al. (2016) Application of CRM in supercritical CO2 miscible injection using a heuristic optimization algorithm
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linear productivity equation assumptions are not valid in gas 
flooding systems. In this study, a modified CRM based on 
compressible fluid consideration (variable density) and the 
Fetkovich productivity index is developed. To apply these 
modifications, inputs such as gas density and average res-
ervoir pressure are required. Using this modified CRM, gas 
flooding projects can be analyzed with an acceptable range 
of accuracy for total well production rates, interwell param-
eters and time constants. Then, the model is combined with 
one empirical fractional flow model to determine well oil 
and gas rate. Therefore, reservoir management and reservoir 
performance prediction in gas–oil systems can be performed 
using the modified CRM and the fractional flow model. 
Interwell connectivities and well rates are validated using a 
precise streamline simulator. Statistical error analysis shows 
that M-CRM results are in good agreement with SS.

2 � Modified CRM

The modified CRM (M-CRM) is proposed as an analytical 
solution in gas–oil systems. The M-CRM is a combination 
of a modified mass balance equation and a modified produc-
tivity equation. There are two approaches for considering 
gas–oil flow in the reservoir. The first one is based on Cao 
et al.’s studies (Cao et al. 2014). In this method, saturation 
changes are imported in the equations, and thus, it is nec-
essary to solve pressure and saturation equations simulta-
neously. This method is sophisticated and time-consuming 
when compared to the common CRM. The second one is 
the Izgec and Kabir approach (Izgec and Kabir 2010), in 
which they only modified the material balance equation by 
including density variation in the model. Since the CRM 
is required to remain simple and fast, we chose the second 
approach.

Table 2 shows the initial equations of the common CRM 
and the M-CRM. Mass balance in the common CRM is writ-
ten for a control volume [Eq. (1)]. Also, the productivity 
equation can be shown by Eq. (2). The main assumptions for 
Eqs. (1) and (2) are low-compressible fluid flow and a linear 

productivity model, respectively. Both assumptions are valid 
in liquid flow. To use the CRM for gas flooding projects, 
modifications to previous equations are needed.

Although the control volume solution is applicable in low-
compressible flow, control mass should be used in a compress-
ible condition (gas flooding). Based on density variation versus 
pressure in the compressible flow, a modified mass balance 
equation is presented in Eq. (3), where oil and gas densities 
are imported to the new formulation.

It is safe to assume the linear productivity equation and con-
stant PI in low-compressible flow and pseudo-steady-state con-
ditions. However, in gas–oil systems, the productivity equation 
is not a linear function and the Fetkovich equation (Fetkovich 
1973) is a better option for implementation in gas flooding 
projects. This formula is shown in Eq. (4) (Yousefi et al. 2019).

In Eqs. (3) and (4), oil can be assumed as a low-compress-
ible fluid, and therefore, �o,prod

�o
 could be assumed to be equal to 

1. The total rate of oil and gas production is given by:

Therefore, the derivative of rate with respect to time in 
Eq. (4) is:

Combining Eqs. (3) and (6) and replacing the average reser-
voir pressure with rate yields a first-order ordinary differential 
equation (ODE):

where

According to the new equation, there are two fundamental 
differences between the proposed and previous models, (a) τ is 

(5)q(t) = qo(t) +
�g,prod

�g
qg(t)

(6)
dq(t)

dt
= J

(

2P
dP

dt
− 2Pwf

dPwf

dt

)

(7)
dq(t)

dt
+

1

�
q(t) =

1

�

�g,inj

�g
i(t) − 2JPwf

dPwf

dt

(8)� =
VpCt

2JP

Table 2   Common CRM and 
M-CRM: original and modified 
mass balance and productivity 
equations

Vp is the pore volume (bbl); Ct is the total compressibility (psi−1); P is the average reservoir pressure (psi); 
t is time (day); i is the injection rate (bbl/day); q is the total production rate (bbl/day); J is PI (bbl/day/psi); 
Pwf is the producer BHP (psi); and ρ is the density (lb/ft3)
Subscripts o, g, o,prod, g,inj and g,prod refer to oil, gas, produced oil, injected gas and produced gas, in 
turn

Common CRM Mass balance VpCt
dP

dt
= i(t) − q(t) (1)

Productivity equation q(t) = qo(t) + qg(t) = J(P − Pwf) (2)

M-CRM Modified mass balance VpCt
dP

dt
=

�g,inj

�g
i(t) −

(
�o,prod

�o
qo(t) +

�g,prod

�g
qg(t)

)
(3)

Modified productivity equation
q(t) =

�o,prod

�o
qo(t) +

�g,prod

�g
qg(t) = J(P

2
− P2

wf
)

(4)
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not constant and is a function of average reservoir pressure in 
each time step (with the unit of day/psi) and (b) density change 
affects injection rates and consequently, interwell parameters. 
Thus, the time constant and coefficient of interwell connectiv-
ity are affected by the proposed modifications.

The analytical solution of Eq. (7) is as follows:

where q(t0) and � are the initial production rate (bbl/day) and 
the variable of integration, respectively.

Equation (9) presents a simple solution of M-CRM in the 
integral form. The right-hand side of this equation shows 
that the production rate which consists of three terms, 
namely primary depletion, gas injection effect and BHP 
changes. According to the equations developed by Sayarpour 
et al. (Sayarpour et al. 2007, 2009), three different control 
volumes were developed (Fig. 2). A constant injection rate 
during each time interval, constant PI and linear BHP drop 
for producers for the control volumes in the reservoir (the 
entire reservoir, the producer drainage and the injector–pro-
ducer pair drainage) and the new formulations by superposi-
tion in time are reported in Table 3. Moreover, the objective 
function for each method is determined. 

(9)

q(t) = q(t0)e
−(t−t0)

� + e
−t

�

�=t

∫
�=t0

1

�

�g,inj

�g
e

�

� i(�)d� − e
−t

�

�=t

∫
�=t0

2e
�

� JPwf

dPwf

d�
d�

In CRM, fij is the interwell connectivity, which is math-
ematically defined as:

where ninj, nprod and nt are the number of producers, injectors 
and time steps. Subscripts i, j, ij and k refer to injectors, 
producers, well pair (injector-producer) and time indices, 
respectively. Subscripts obs and cal represent observed and 
calculated data, respectively. Also, ΔPk

wf,j
= Pk

wf,j
− Pk−1

wf,j
 and 

Δtk = tk − tk−1.

3 � Workflow

In the current study, a synthetic model is used. Rate and 
pressure data are generated from numerical simulation and 
then the M-CRM is used. Reliability of the proposed model 
in immiscible gas flooding conditions is investigated through 
the detailed procedure illustrated in Fig. 3. The following 
procedure is carried out to evaluate the M-CRM’s applica-
bility in gas–oil systems.

Input data including gridding, SCAL, petrophysics, 
PVT, initialization and well data are required for dynamic 

(13)fij =
qij(t)

ii(t)
fij ≥ 0,

Ninj∑

i=1

fij ≤ 1

iF(t) ii+1

qj(t) qj

ii
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f′jii3

i2i1
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fij

f1j f2j

f3j

f11
f12 f1Npre

fi+1jiNinj fNinj j

qF(t)

τF
τj
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(a) (b) (c)

Fig. 2   a CRMT (capacitance–resistance model—tank based) with a single injector and producer in a control volume of a field. b CRMP (capaci-
tance–resistance model—producer based) with one producer and surrounding injectors in a control volume of producer j. c CRMIP (capaci-
tance–resistance model—injector/producer based) in a control volume between each injector/producer pair (Sayarpour 2008)

Table 3   Formulations of CRMs based on different control volumes and their objective functions

Method Equation No. of equation Objective function

CRMT
q(tk) = q(tk−1)e
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� +

(
1 − e
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)(
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− 2J�Pwf

ΔPk
wf,j
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)
(10)

minz =
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k=1

�
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− qk
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�2

CRMP
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�
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��
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�
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ik
i
(t)
�
− 2Jj�jPwf

ΔPk
wf,j

Δt

�
(11)

minz =
nt∑

k=1

nprod∑

j=1

�
qk
j,obs

− qk
j,cal

�2

CRMIP
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modeling. They are imported to the simulator, and the 
streamline technique is employed for simulation. Subse-
quently, the results including well allocation factor, well 
rate and pressure data are acquired. Using historical rate 
and pressure data of a certain time interval, variation of 
gas density and average reservoir pressure, the M-CRM is 
analyzed. Interwell parameters and other unknowns can 
determined by the optimization algorithm in the history 
part. To predict the future reservoir performance, M-CRM 
is used with its own data and its performance is verified by 
the results of SS. In the following, we briefly describe the 
procedure steps.

3.1 � Streamline simulation

In this section, input data for streamline simulation 
is imported and a synthetic model is prepared. SS is a 
numerical simulation technique which uses IMPES for-
mulation (Batycky et al. 1997, 2005; Baker 2001). Phase 
pressure is solved implicitly in the 3D field and satura-
tions are solved explicitly along 1D streamlines. Thus, 
this technique is faster than traditional finite difference 
simulation (Thiele and Batycky 2006; Thiele et al. 2010; 
Siavashi et al. 2014). The main purpose of using stream-
line simulation in this study is the capability of SS to 
calculate well allocation factors for well pairs, which is 
a validation tool for this work. Consequently, at the end 
of this step, in addition to the production/injection rate 
and BHP, allocation factors are determined. The results of 

M-CRM should be comparable with the results of SS as a  
reference tool.

3.2 � M‑CRM

To construct the proposed model, input data including pro-
duction/injection rate, BHP, average reservoir pressure and 
also some gas PVT properties for density calculation are 
required. It should be noted that in a real field, these input 
data are available and there is no need to run a dynamic 
model. In this study, inputs are generated from SS and then 
divided into two sections, history and prediction. A history 
match is performed by determination of interwell connectiv-
ity and total rate and then the prediction scenario is carried 
out for oil rate estimation.

3.3 � Optimization

A genetic algorithm (GA) optimization is used to calculate 
unknown parameters in M-CRM. GA is a common heuris-
tic optimization method for engineering problems inspired 
by natural evolution (McCall 2005; Azamipour et al. 2018; 
Bayat et al. 2011; Chen et al. 2014). There are five steps 
in GA including initial population, fitness function, selec-
tion, crossover and mutation (Emera and Sarma 2005; Ali 
Ahmadi et al. 2013; Shafiee et al. 2017; Dehghani et al. 
2008; Saemi et al. 2007; Chen et al. 2014).

The initial population step is characterized by a set of 
variables (genes) and a solution (chromosomes). The fitness 

Input data (gridding, PVT, petrophysics,
SCAL, initialization and well data)

Input data (production data,
gas density and average

reservoir pressure)

Interwell parameters
and other unknowns
determination using

optimization

Prediction
section

Validation of
well oil rate

Validation of
interwell

parameters

Interwell
parameters

from SS

Outputs such as oil rate
and pressure

Reservoir performance prediction
using oil-cut model

M-CRM

History section

Streamline simulation

Fig. 3   A typical flowchart of M-CRM performance in this study
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function evaluates the fitness of each chromosome in the popu-
lation. The objective of the selection phase is to select the fit-
test populations to breed a new generation. Crossover is the 
most significant phase and is the combination of two parents to 
generate new solutions. Mutation is defined as a small random 
change in the chromosome, to get a new solution and is used 
to maintain diversity in the genetic population (McCall 2005).

In this method, first an appropriate range of input data, 
acceptable initial guesses based on the engineering point of 
view, and the constraints are selected to avoid local minima 
and unrealistic results. GA starts from initial guesses and 
using an iterative procedure, investigates fitness of candi-
date solutions. In this study, fitness is the objective func-
tion. The best answers are stochastically chosen and are 
modified using crossover and mutation operators. Conse-
quently, highly fit solutions are given more opportunities 
to reproduce. Finally, once the population has converged 
to a best answer, the algorithm will be finished (Pencheva 
et al. 2009). By increasing the number of unknowns in the 
problem, the complexity of the optimization is increased.

Time constant, interwell parameter, PI and initial rate are 
determined by a nonlinear optimization technique. In this 
study, CRMP formulation is employed, and therefore, the 
number of unknowns in the model is nprod × (ninj + 3). The 
objective function is to minimize the difference between 
total production rate obtained by M-CRM and SS as reported 
in Table 3. The main constraint is Eq. (13) with other param-
eters equal or greater than zero.

3.4 � Validations

Validation of M-CRM performance is performed by SS as 
a numerical precise simulator. In this study, according to 
Fig. 3 shows that a validation of the results is carried out 
in two steps of history and prediction. In the history sec-
tion, constant interwell parameters, which are determined by 
GA optimization, should be comparable with the average of 
well allocation factors obtained from SS for a certain time 
of analysis. Also, PI(J), which is calculated from M-CRM, 
should be in the range of PI exported from the commercial 
simulator. Based on time constant definition, the order of 
magnitude of τ should be reasonable.

In the prediction section, a validation is performed to 
compare the oil rate obtained from M-CRM and SS.

Statistical error analysis is performed to compare 
M-CRM results with that of SS and quantitatively evalu-
ate the model performance. The mean absolute percentage 
error (MAPE) and the correlation coefficient (CC) are used 
to verify the results:

(14)MAPE (%) =
1

N

(
n=N∑

n=1

||Xactual − Xestimated
||

Xactual

)

where Xactual is real data, Xestimated is estimated data and N is 
the number of data points. Low MAPE (%) and CC close to 
1 represent reliability of the model.

3.5 � Oil‑cut models for prediction

The M-CRM is able to calculate the total well production rate 
in each time step. To predict the oil/gas flow rate, it is nec-
essary to use fractional flow models based on Darcy’s law:

where µ is the viscosity (cP); Kr is the relative permeability; 
and Sg is the gas saturation. The Gentil model as an empiri-
cal oil-cut fractional flow model is valid for oil–water sys-
tems. In this model, the following equation was developed:

and therefore:

where α and β are regression parameters, which can be opti-
mized from production history. CGI is cumulative gas injec-
tion (Gentil 2005):

where α and β are calculated for each producer by optimi-
zation. Therefore, with the M-CRM and oil-cut model, the 
prediction phase can be evaluated.

The reliability of the Gentil model should be verified in 
a gas flooding scenario. The term ae−bsg in Eq. (16) is equiv-
alent to �CGI� . In this study, we investigate the effect of �o

�g

 . 

Both oil and gas viscosities are functions of pressure and 
increase with an increase in pressure above the bubble point 
in an identical order of magnitude. Therefore, this term has 
an insignificant effect on the results and the Gentil model 
can be used in gas–oil systems.

The aforementioned procedure shows that reservoir man-
agement and reservoir performance prediction can be con-
ducted by a combination of the M-CRM and Gentil model. 

(15)

CC =

∑�
Xactual − Xactual

��
Xestimated − Xestimated

�

�
∑�

Xactual − Xactual

�2 ∑�
Xestimated − Xestimated

�2

(16)
qg

qo
=

krg

kro

�o

�g

= ae−bsg
�o

�g

(17)
qg

qo
= �CGI�

(18)fo,jk =
qo,jk

qjk
=

1

1 + �jCGI
�j

jk

(19)CGIjk =

nt∑

k=1

ninj∑

i=1

�g,inj

�g
fijiij
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The M-CRM cannot be substituted for commercial reservoir 
simulators but can be used as a reliable and robust method 
for simple and quick reservoir performance analysis.

4 � Results and discussion

In this section, the proposed model is verified by a synthetic 
model. Interwell connectivity and oil rates are estimated 
based on the M-CRM, and the results are compared with 
SS. In order to evaluate the effect of reservoir parameters 
on accuracy of the model, sensitivity analysis for drawdown 
pressure and gas PVT properties is performed.

4.1 � Description of the base case

PUNQ-S3 is a benchmark synthetic reservoir model which 
was extracted from a real field and is owned by the Elf Explo-
ration and Production Company (Juanes et al. 2006; Gu and 
Oliver 2005). This reservoir is a popular test case for reservoir 
engineering problems. In this study, the reservoir structure 
(gridding and geometry) and geological properties are taken 
from PUNQ-S3. Figure 4 shows a 3D schematic of the model. 
Also, Fig. 5 demonstrates permeability and porosity maps of 
the reservoir. The initial reservoir condition is undersaturated 
with connate water. The model consists of 19 × 28 × 5 grid 
blocks at a depth of more than 7680 ft. We use this model to 
analyze the proposed M-CRM performance for an immiscible 
gas flooding project. Tables 4 and 5 show other reservoir and 
fluid parameters of the base case, where B is the formation 
volume factor and µ is the viscosity. Relative permeability 
curves for oil–water and gas–oil are depicted in Fig. 6.    

There are 4 vertical oil producers and 2 vertical gas injec-
tors in the model, and all wells are completed in 5 layers. 

Production wells are controlled by random oil rates and are 
limited by minimum BHP, which is 3450 psi. Also, for gas 
injectors, the gas rate is a target and maximum BHP is the 
constraint. Production and injection BHPs are maintained 
above the bubble point pressure (3400.5 psi). Therefore, 
the source of produced gas is only from gas injectors. Also, 
the pressure is kept below minimum miscibility pressure to 
maintain an immiscible displacement.

The simulation is performed for 2520 days to verify 
the model by the M-CRM. Figure 7 displays the GOR of 
producers in the model. The new model can be applied in 
pre-breakthrough and post-breakthrough conditions with 
acceptable results (Yousefi et al. 2019). In this study, the 
post-breakthrough condition is chosen for interwell connec-
tivity determination and also to predict oil production rates. 
Production life is divided into two sections (history and pre-
diction). The history part is used to obtain unknown param-
eters, and the prediction part is designed to evaluate the 
performance of the model in the next time steps. 1200 days 
are selected for the history match and the remaining time 
(510 days) is used for scenario prediction (Fig. 7). A com-
parison between the M-CRM and common CRM perfor-
mance was previously published in a paper by (Yousefi et al. 
2019). They showed improvement of using the M-CRM in 
immiscible gas flooding over the common CRM. In this 
study, a thorough analysis of the M-CRM is performed in 
history and prediction parts using sensitivity analysis.

4.2 � Analysis of the base case

There are 20 unknowns consisting of fij, τ, Jj and q0 in the 
model based on the M-CRM. The GA optimization is used 
for determination of the unknowns. Since there could be 
numerous solutions in optimization problems, the initial 
guesses of unknowns are very important. Therefore, the 
logical input data based on the constraints and nature of 
this engineering problem guarantees correct answers for 
unknowns. Table 6 presents optimization results for deter-
mination of the unknowns in the PUNQ-S3 model. All 
parameters are acceptable values regarding the nature of the 
problem. Interwell parameters (fINJ1−j and fINJ12−j) should be 
comparable with the average of allocation factors obtained 
from the SS results.

Table 7 presents interwell connectivity parameters of 
M-CRM and SS in the history part. Also, the MAPE and 
CC of the total well production rate are reported in this table. 
Figure 8 shows the oil production from each well in the 
prediction part, which is calculated by the Gentil model. 
The MAPE and CC of the oil rate for all wells are 6.56% 
and 0.92, respectively. Results indicate the accuracy of the 
proposed model for interwell parameters calculated as well 
as the oil rate prediction (Fig. 8).  

7686 7749 7813 7877 7940

PRO-4

PRO-11
PRO-15

PRO-5

INJ-12

INJ-1

Depth, ft

Fig. 4   A 3D schematic and structural map (feet) of the PUNQ-S3 
synthetic reservoir model
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Fig. 5   a Porosity (fraction) and b permeability (mD) maps of the base case

Table 4   Reservoir parameters of the base case

Parameter Value

Model dimensions 19 × 28 × 5
Number of cells 2660 (1757 active 

cells)
Datum depth, ft 7726.4
Average porosity, % 13.94
Average horizontal permeability, mD 269.9
Average vertical permeability, mD 122.49
Initial pressure@7726.4 ft, psi 3900.6
Initial water saturation 0.12
STOIIP (standard oil initially in-place), 

MMSTB
164.66

Rock compressibility, psi−1 2.1 × 10−6

Total pore volume at reservoir condition, 
MMbbl

223.76

Number of oil producers 4
Number of gas injectors 2
Drive mechanisms Rock compaction 

and fluid expan-
sion/gas injection

Table 5   Fluid properties of the base case

Parameter Value

Reference pressure Pref, psi 3400
Water
Bw, bbl/STB 1.01
µw, cP 0.5
Cw, psi−1 1.73 × 10−6

Oil
Bo, bbl/STB 1.20
µo, cP 1.46
Pb, psi 3400.5
Initial GOR (gas/oil ratio), scf/STB 415.5
Gas
Bg, bbl/Mscf 0.78
µg, cP 0.013
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4.3 � Sensitivity analysis

According to Eqs.  (7) and (8), the proposed model was 
obtained by applying modifications regarding interwell 
connectivity and time constant in the common CRM. These 
modifications were related to the average reservoir pressure 
and gas properties. Therefore, to show the M-CRM’s capa-
bility in all ranges of reservoir conditions, the drawdown 
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Table 6   Determination of unknown parameters in M-CRM by GA 
optimization

Producer �j × P , day f
INJ1−j f

INJ12−j Jj q
0j , bbl/d

PRO-4 415 0.280 0.249 18.98 68,408
PRO-5 72 0.025 0.248 19.84 82,931
PRO-11 282 0.441 0.000 4.24 16,427
PRO-15 327 0.254 0.503 8.00 30,649
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pressure (DP) and gas PVT properties are investigated. 
Other parameters such as permeability, measurement noise, 

number of measurements, total compressibility and number 
of producers were investigated by (Kaviani et al. 2014).

4.3.1 � Drawdown pressure

Drawdown pressure is an important dynamic parameter in 
fluid flow through the reservoir especially for gas–oil sys-
tems. To investigate its effect on the M-CRM performance, 
four cases are selected and the PUNQ-S3 model is simu-
lated. All the parameters except the injection rate (the injec-
tion pressure) are identical in the four cases. Oil and gas rate 
controls are chosen for producers and injectors, respectively, 
and the well BHP is the constraint with 16 unknown param-
eters. The model performance is investigated for 2700 days. 
The length of history and prediction sections are 1800 and 
900 days, respectively.

Four cases with different injection rates (injection pres-
sure) are selected, and the average drawdown pressures for 
each case are calculated. Table 8 shows the effect of DP on 

Table 7   Interwell parameters from SS and M-CRM

Well pair Interwell connectivity Total rate prediction, 
bbl/d

SS M-CRM MAPE, % CC

INJ-1
PRO-4 0.277 0.280
PRO-5 0.000 0.025
PRO-11 0.470 0.441
PRO-15 0.253 0.254 2.65 0.972
INJ-12
PRO-4 0.248 0.249
PRO-5 0.249 0.248
PRO-11 0.001 0.000
PRO-15 0.503 0.503
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Fig. 8   Well oil production rate in prediction part (510 days)



1097Petroleum Science (2019) 16:1086–1104	

1 3

M-CRM performance in the history and prediction parts. 
The MAPE and CC for total oil production in the history 
section and for oil production in the prediction section are 

also reported. Results show that estimated values are in good 
agreement with the real data.

The term �g,inj
�g

 which was added to the new model was 

developed based on consideration of variations of gas prop-
erties with pressure. Thus, this term compensates for the 
errors which are caused by the common CRM and is appli-
cable in all pressure ranges (Yousefi et al. 2019). Figure 9 
presents cross-plots of interwell parameters for the M-CRM 
and SS in the history section. Figure 10 shows error distribu-
tion curves of the predicted oil rate using the Gentil model 
in the prediction section and relative error percent for pre-
dicted rates of 4 producers (120 points). Results show that 
at all ranges of DP, the reliability of the model for interwell 

Table 8   Effect of drawdown pressure on M-CRM performance

Case Average draw-
down pressure, 
psi

History per-
formance, total 
production

Prediction 
performance, oil 
production

MAPE, % CC MAPE, % CC

(1) Base case 157.2 4.24 0.92 6.41 0.85
(2) 91.26 2.07 0.95 4.69 0.81
(3) 275.04 4.48 0.95 7.25 0.90
(4) 389.53 3.30 0.78 10.93 0.73
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connectivity determination and oil rate prediction is 
acceptable.

4.3.2 � Gas properties

In this section, the effect of PVT properties of injected gas 
such as viscosity and formation volume factor (density) 
on the M-CRM performance is investigated. Since oil is a 
low-compressible fluid, the variation of its properties has 
negligible impact on the proposed model. In addition to the 
base case, a lower and a higher viscosity case and a lower 
and higher gas formation volume factor (FVF) are assumed 

(Fig. 11). All properties except gas viscosity and FVF are 
identical for the five cases. Time intervals between 2220 
and 5460 days (3270 days) are considered for model perfor-
mance analysis, 2160 days for the history part and 1110 days 
for the prediction part.

Table 9 reports the effect of gas viscosity and FVF on 
the M-CRM performance in the history and prediction peri-
ods in the PUNQ-S3 model. The MAPE in history and pre-
diction sections are both below 5% and 10%, respectively, 
which show the strength of the M-CRM in a wide range 
of gas PVT properties. Also, CCs have quite an acceptable 
range (close to 1).
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Figure 12 displays cross-plots of interwell parameters 
in the history section for different gas properties. Results 
show that the proposed model correctly predicts interwell 
parameters in various operational conditions. Addition-
ally, gas viscosity and FVF do not have negative effects 
on the results. The error distribution curves of estimated 
oil rate in the prediction section are demonstrated in 
Fig. 13. Although the Gentil model tends to underpre-
dict the oil rate in many data points, generally the results 
are acceptable and reflect suitable performance of the 
M-CRM.

It is noted that more reliable results for the total rate in 
the history period and the oil rate in the prediction period 
are obtained when high gas viscosity and low gas FVF are 
incorporated for the injected gas. This behavior is a result of 
gas deviation from the ideal behavior in low viscosity and 
high FVF conditions. Thus, in these conditions, the M-CRM 
performance leads to high errors.

5 � Conclusions

This study presented a new formulation for CRM (M-CRM) 
as a simple tool for reservoir performance analysis and pre-
diction in immiscible gas flooding projects. New modifi-
cations using gas density variation and average reservoir 
pressure affected interwell connectivity parameters and 
time constants in the proposed model. A combination of the 
M-CRM and the Gentil model was employed for a compre-
hensive analysis of the PUNQ-S3 synthetic model in history 
and prediction sections. From the results of this study, we 
concluded that:

•	 A detailed flowchart for M-CRM performance evaluation 
in history-matching and future reservoir performance 
prediction in immiscible gas flooding was introduced. 
Furthermore, we used streamline simulation for valida-
tion of the results and a genetic algorithm for optimizing 
unknown parameters.

•	 The M-CRM was performed on a synthetic reservoir 
model under immiscible gas flooding. The total pro-
duction rates of wells and interwell parameters in the 
history part and oil production rates in the prediction 
part were estimated with an acceptable relative error 
(below 10%) and a correlation coefficient (close to 1).

•	 By considering a variable gas density with pressure, the 
high drawdown pressure did not have a negative impact 
on the validity of the M-CRM and Gentil model.

•	 Gas PVT properties such as viscosity and FVF did not 
affect the M-CRM robustness in the immiscible gas 
flooding process. Although employing low gas viscos-
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Table 9   Effect of gas PVT properties on the M-CRM performance

Case History performance, 
total production

Prediction perfor-
mance, oil produc-
tion

MAPE, % CC MAPE, % CC

(1) Base case 3.14 0.95 8.73 0.91
(2) Higher viscosity 2.76 0.96 7.20 0.94
(3) Lower viscosity 4.09 0.91 9.07 0.89
(4) Higher FVF 4.66 0.94 8.36 0.93
(5) Lower FVF 3.38 0.93 5.38 0.96
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ity and high gas FVF resulted in relatively high errors, 
the M-CRM performance is acceptable.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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