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Abstract
The petrol truck routing problem is an important part of the petrol supply chain. This study focuses on determining routes 
for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the 
fixed cost required to use the trucks. We propose a mathematical model that considers petrol trucks returning to a depot mul-
tiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis 
acceptance criterion. In addition, an approach that accelerates the solution process by adding several valid inequalities is 
presented. In this study, the trucks are homogeneous and have two compartments, and each truck can execute at most three 
tasks daily. The sales company arranges the transfer amount and the time windows for each station. The performance of the 
proposed algorithm is evaluated by comparing its results with the optimal results. In addition, a real-world case of routing 
petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.

Keywords  Petrol truck routing problem · Heuristic algorithm · Valid inequalities · Time windows

1  Introduction

The petrol truck routing problem refers to the process of 
distributing petrol products from a depot to stations, and this 
distribution process is the last link in the petroleum industry 
chain. With the development of modern logistics technology, 
improving the distribution efficiency and reducing costs have 
become research topics of interest (Oke et al. 2018). Achiev-
ing these tasks directly serves the end users and ultimately 
corresponds to increased enterprise profit.

This research focuses on designing the routes for pet-
rol trucks in the distribution process. In many large cities, 
hundreds of petrol stations are distributed and supplied by 
a regional petrol sales company. Currently, the process of 
petrol truck scheduling is as follows. Before the distribution 
starts, the sales company drafts a plan involving the amount 

of petrol and distribution time windows for the next day for 
each station according to the average daily sales and current 
inventory.

Each truck has two compartments that can load one or 
two types of petrol products and distribute to one or two sta-
tions. To control the quality of the petrol and ensure safety 
during transport, the petrol in each compartment must be 
fully transferred after arriving at the station. The demand 
of each petrol station is different, e.g. large stations have 
greater demands for certain types of petrol products and have 
correspondingly sized petrol storage tanks to meet the given 
demand.

The delivery time window depends on the sales of each 
petrol station. The delivery time window should guarantee 
that the stock level satisfies the minimum requirement before 
the truck arrives and that the stock level of a petrol stor-
age tank at a station does not exceed the maximum limit 
after the truck departs. In China, petrol stations typically 
demand three types of petrol products: #92 gasoline, #95 
gasoline, and #0 diesel. In the case of meeting the time win-
dow requirement, a truck has four choices: (1) it can deliver 
one type of petrol product to one petrol station; (2) it can 
deliver two types of petrol products to one petrol station; 
(3) it can deliver two types of different products to different 
petrol stations; (4) it can deliver the same product to two 
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different stations. Therefore, a reasonable distribution plan 
is required to ensure that the three types of petrol products 
are delivered each day. In the actual distribution process, to 
enhance the delivery efficiency, a single truck can complete 
multiple distribution tasks in a day. As a result, after com-
pletely unloading the petrol products, the truck must return 
to the depot, reload, and then start from the depot to perform 
another task during the day. Moreover, so that the drivers 
can rest, a truck is associated with multiple crews to perform 
the delivery tasks. As a result, a truck can run for an entire 
day, with the former crew returning to the depot and the 
truck operation transferred to the next crew. When a truck 
is dispatched, a corresponding maintenance cost is accrued. 
The number of dispatched trucks should be minimized to the 
greatest extent possible under the constraints of the distribu-
tion. Therefore, the goal is to minimize the total travel and 
fixed costs associated with using the trucks.

The remainder of this paper is organized as follows. In 
the next section, the related literature is reviewed. Section 3 
presents a description of the petrol truck routing problem. In 
Sect. 4, we provide a model to mathematically describe the 
problem. Section 5 presents a proposed heuristic method to 
solve this model. In Sect. 6, benchmark problems are inves-
tigated to verify the effectiveness of the proposed method, 
and a real-life case in Beijing is presented. Finally, the con-
clusions are provided in Sect. 7.

2 � Literature review

The petrol truck routing problem is a specialized case of 
the vehicle routing problem (VRP). In 1959, Dantzig and 
Ramser (1959) were the first to introduce the truck dispatch-
ing problem. They modelled a fleet of homogeneous trucks 
dispatched to meet the petrol demands of multiple petrol sta-
tions from a central hub and with a minimum travel distance. 
Avella et al. (2004) studied the problem of a company that 
delivers several products to a set of fuel pump stations. The 
objective of the problem was to satisfy the orders using the 
available resources (trucks and drivers) based on minimizing 
the total travel cost for delivery. The authors developed a fast-
combinatorial heuristic method that can be used to quickly 
find a feasible solution and provide an initial set of columns 
for the branch-and-price algorithm. In their problem, the 
total number of clients was 60, with approximately 25 clients 
served daily. Ng et al. (2008) studied a tanker assignment and 
routing problem for petrol products to minimize the number 
of tankers, minimize the number of drops in trips, maximize 
the profit and maximize utilization of resources. Cornillier 
et al. (2008b) proposed a heuristic method for the multiperiod 
petrol station replenishment problem; this heuristic approach 
included route construction and truck loading procedures, a 
route packing procedure, and two procedures associated with 

the anticipation or the postponement of deliveries. The objec-
tive was to maximize the total profit, or revenue and mini-
mize the total routing costs and regular and overtime costs. 
Cornillier et al. (2008a) divided the problem into a truck 
loading problem and a routing problem and proposed an 
exact algorithm to solve the problems. In a follow-up study, 
Cornillier et al. (2009, 2012) considered the time window 
and multiple depots to make the problem more realistic. Boc-
tor et al. (2011) proposed a heuristic algorithm to solve the 
problem considering different types of petrol trucks and their 
time-based work limits. Wang et al. (2018) studied petrol 
truck scheduling problems considering multipath selection 
and congestion and proposed a heuristic approach. Zhang 
et al. (2018) presented a case study on vehicle routing and 
scheduling problems of filling stations replenishment with 
time windows in initiative distribution.

The distribution of petrol products typically uses a single 
day as the study period because it is challenging to predict 
the demand at each station over a longer period. However, 
some researchers have studied the distribution of petrol 
products over certain periods that exceed one day. Popović 
et al. (2012) focused on the distribution problem of a petrol 
truck and the inventory management of petrol stations and 
proposed a variable neighbourhood search (VNS) method to 
solve the multiperiod, multicompartment, and multiproduct 
problem for a small distribution network (3 days and 10 pet-
rol stations). In this network, at least three stations could be 
visited along the path of each vehicle. Vidović et al. (2014) 
expanded the scale of the above problem and developed an 
algorithm that could provide a solution over more days and 
for more stations (5 days and 50 petrol stations). Carotenuto 
et al. (2015) proposed a genetic algorithm (GA) to address 
the unloading of a single type of petrol product in a large-
scale problem (at most 200 stations), with the objective of 
minimizing the total vehicle distance travelled within a week.

Optimization problems involving multiple compartments 
have been widely studied. Silvestrin and Ritt (2017) studied 
the multicompartment VRP, developed a tabu search (TS) 
heuristic method, and embedded this method into an itera-
tive local search procedure. Sethanan and Pitakaso (2016) 
studied the raw milk transportation scheduling problem 
with multicompartment vehicles, where each compartment 
was dedicated to a certain type of milk depending on the 
destination. Sample problems, including 5–40 customers, 
were tested to investigate the performance of the algorithms. 
Alinaghian and Shokouhi (2018) proposed a hybrid algo-
rithm based on an adaptive large neighbourhood search, 
and a VNS was developed to solve large-scale instances. 
The objective function of the proposed problem included 
the minimization of the number of vehicles and subsequent 
minimization of the total traversed distance.

Previous computational studies have proven that the 
VRP is an NP-hardness (nondeterministic polynomial-time 
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hardness) problem (Lenstra and Kan 1981) and that VRPs 
with time windows (VRPTWs) are correspondingly chal-
lenging to solve in a reasonable amount of time for real-
world problems. Many researchers have investigated 
VRPTWs (Ando and Taniguchi 2006; Desrochers, Desro-
siers, and Solomon 1992; Cornillier et al. 2009). The petrol 
truck routing problem represents a branch of the VRPTW. 
A city typically has hundreds of petrol stations waiting for 
petrol products to be delivered from depots. To solve the 
associated routing problem, several solution techniques 
have been introduced. In the past decade, metaheuristic 
approaches such as the GA (Bae et al. 2007), differential 
evolution (DE) (Dechampai et  al. 2017; Mingyong and 
Erbao 2010; Sethanan and Pitakaso 2016), ant colony opti-
mization (ACO) (Dong and Xiang 2006), TS (Côté and Pot-
vin 2009; Bolduc et al. 2010), and simulated annealing (SA) 
(Osman 1993; Azad et al. 2017) methods have been widely 
used to solve this problem. Some studies have combined 
these methods in a variable neighbourhood search, VNS, or 
large neighbourhood search to find a satisfactory solution in 
a reasonable amount of time.

Although many studies have generally used metaheuris-
tic techniques, the exact algorithms are efficient only for 
instances involving certain small-scale problems. Moreover, 
an exact method can effectively avoid the problem of conver-
gence to local optima, which is a characteristic limitation of 
metaheuristic methods. Some researchers have applied exact 
methods to solve the VRP problem. A common approach is 
to accelerate the solution process by adding certain valid 
inequalities to the basic model. Valid inequalities can help 
mathematical programming solvers obtain new configura-
tions and improve the overall algorithm performance (Lahy-
ani et al. 2015). Archetti et al. (2007) derived new addi-
tional valid inequalities to improve the linear relaxation of a 
model for the single-vehicle problem and proposed an exact 
algorithm to solve instances with up to 30 customers and 
six periods and with up to 50 customers and three periods. 
Previous researchers (Gendron and Crainic 1994) showed 
that adding inequalities can improve lower bounds and 
consequently reduce the search space of branch-and-bound 
algorithms. Moreover, some researchers (Jena et al. 2015; 
Coelho and Laporte 2014; Lahyani et al. 2015) have studied 
specific problems to determine how to apply the inequalities 
without introducing new variables; in this manner, the speed 
at which the optimal solution is found can be accelerated by 
reducing the number of nodes and the number of simplex 
iterations in the branch-and-bound algorithm.

Braekers et al. (2016) noted that the research on the VRP 
is increasingly approaching the characteristics and assump-
tions of practical problems that the models are more realis-
tic and that the proposed algorithms are more applicable in 
practice. Although multiple literature reports have described 
investigations of the VRP and specific petrol product 

delivery problems, to our knowledge, the petrol truck routing 
problem considered in this research is the first study involv-
ing trucks returning to the depot and restarting from the 
depot several times in a single day. This condition is closer 
to the actual petrol product routing problem in China. Thus, 
in this study, we propose a combination of the branch-and-
bound method with a tabu list and the Metropolis accept-
ance criterion to solve the petrol truck routing problem at a 
practical scale.

Therefore, this study contributes to the literature by pre-
senting a new mathematical model for the multireturn-to-
depot and multicompartment petrol truck routing problem. 
An approach combining the branch-and-bound method 
with a tabu list and the Metropolis acceptance criterion is 
designed to solve the large-scale instances of this problem. 
In addition, valid inequalities are added in the model to 
accelerate the process of solving the branch-and-bound algo-
rithm. To evaluate the performance of the proposed algo-
rithm, the algorithm results are compared with the results 
of the exact method based on a transformed Solomon bench-
mark. In addition, a large-scale petrol truck routing problem 
in Beijing, China, is studied to verify the practicality of the 
proposed algorithm.

3 � Problem description

In the petrol truck routing problem, the sales company devel-
ops a distribution plan for each petrol product and petrol 
station and ensures that the truck can arrive on time. In the 
case of the above conditions, it is necessary to minimize the 
cost as much as possible. Trucks used to transport petrol 
products have two compartments with limited capacity. The 
distribution plan begins in the morning. Starting from the 
depot, the truck drives to stations according to the distribu-
tion scheme. After unloading both compartments, the truck 
must drive back to the depot. If follow-up tasks exist, then 
the truck must load petrol products and drive to other sta-
tions. If there is no follow-up task, then the truck will end 
its work. In this study, the research objectives have the fol-
lowing characteristics:

(1)	 The truck has two compartments. Each truck can 
unload the products at two petrol stations at most, and 
the petrol product in a compartment must be unloaded 
entirely during the unloading process.

(2)	 Trucks must return to the depot after finishing the deliv-
ery task. Moreover, taking the workload into account, 
the truck can leave the depot at most three times a day.

(3)	 The demand for each petrol product at all stations 
should be met.

(4)	 For a given number of petrol trucks at a depot, there is 
a sufficient number of feeding arms that are used for 
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loading, and after the arrival of the trucks, the loading 
operation can be performed immediately; that is, the 
time required for the loading operations is fixed.

(5)	 Each petrol station has a time window according to the 
inventory. After the truck is unloaded, the stock level 
of the petrol storage tanks shall not exceed the maxi-
mum inventory. In addition, the corresponding prod-
ucts should be replenished before inventory depletion. 
After the truck arrives at the station, it requires time to 
unload the petrol products from the compartment to the 
storage tank.

(6)	 The unloading operating time at all petrol stations is 
identical.

(7)	 The distance between two petrol stations and the dis-
tance between the depot and a station are known and 
do not vary with traffic conditions.

(8)	 The truck speed is assumed to always be constant.
(9)	 The sales companies of petrol products generally make 

a daily plan.

Figure 1 provides an example of the characteristics of 
a truck. To accommodate these characteristics, this study 
establishes a mathematical model.

4 � Mathematical model

In this section, a mathematical model is formulated to mini-
mize the total costs, including the total travel and fixed costs 
associated with using the trucks. The parameters and deci-
sion variables used in formulating the model are defined. 

The 0–1 mixed-integer programming formulation is pre-
sented below, with a brief explanation of each constraint.

Sets

NT	� A set of both the depot and petrol stations, denoted by 
indices i and j, respectively; the depot in this study is 
designated as 0

NC	� A set of petrol stations
ND	� The depot
K	� The set of trucks, denoted by index k
G	� The set of petrol products, denoted by index g
E	� The set of number of trips by a single truck, denoted 

by index e

Parameters

Li,j	� The distance from node i to node j
γ	� The distance cost conversion factor
F	� The fixed cost of using the trucks
di,g	� The demand for product g at petrol station i
V	� The loading capacity of a truck
α	� The conversion factor based on distance and time
st	� The unloading operation time at stations
lt	� The loading operation time at the depot
bti	� The starting time of the unloading operation time win-

dow at petrol station i
wti	� The ending time of the unloading operation time win-

dow at petrol station i
R	� The maximum number of locations (including the pet-

rol stations and the depot) for a truck to visit in a single 
trip

M	� A sufficiently large number

Decision variables

xi,j,k,e	� Refers to a binary variable corresponding to the eth 
time for truck k to transport petrol products from 
node i to node j: xi,j,k,e=1 ; otherwise, xi,j,k,e=0

uk	� Refers to a binary variable; if truck k is used for the 
delivery task: uk=1 ; otherwise, uk=0

yi,g,k,e	� Refers to a binary variable; if the product g for petrol 
station i is transported by truck k for the eth time: 
yi,g,k,e=1 ; otherwise, yi,g,k,e=0

ti	� Refers to the arrival time when the truck visits petrol 
station i

STi,k,e	� is a real variable that refers to the visiting sequence 
of truck k at node i at its eth time of departure from 
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Fig. 1   The working scheme of a truck in a single day
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the depot; for each station, the larger the STi,k,e is, 
the later the station is visited by the truck

These variables are formulated as follows.

(1)min
∑

i∈NT

∑

j∈NT

∑

k∈K

∑

e∈E

xi,j,k,e�Li,j +
∑

k∈K

ukF

(2)
∑

i∈ND

∑

j∈NC

xi,j,k,e ≤ uk, k ∈ K, e ∈ E

(3)
∑

i∈NT

xi,j,k,e =
∑

i�∈NT

xj,i�,k,e, j ∈ NT , k ∈ K, e ∈ E

(4)
∑

i∈NT

xi,j,k,e ≤ 1, j ∈ NC, k ∈ K, e ∈ E

(5)
∑

k∈K

∑

e∈E

yi,g,k,e = 1, i ∈ NC, g ∈ G

(6)
∑

g∈G

yi,g,k,e ≤ M
∑

j∈NT

xj,i,k,e, i ∈ NC, k ∈ K, e ∈ E

(7)
∑

j∈NT

xj,i,k,e ≤ M
∑

g∈G

yi,g,k,e, i ∈ NC, k ∈ K, e ∈ E

(8)
∑

i∈NC

yi,g,k,edi,g ≤ V , g ∈ G, k ∈ K, e ∈ E

(9)
∑

i=0

∑

k∈K

∑

e∈E

STi,k,e = 0

(10)
STi,k,e + 1 ≤ STj,k,e +M(1 − xi,j,k,e), i ∈ NT , j ∈ NC, k ∈ K, e ∈ E

(11)
ti + �Li,j + st −M(1 − xi,j,k,e) ≤ tj, i, j ∈ NC, k ∈ K, e ∈ E

(12)

ti + �Li,0 −M(1 − xi,0,k,e) + lt ≤ tj − �L0,j +M(1 − x0,j,k,e+1),

i, j ∈ NC, k ∈ K, e = 1, 2,… , |E| − 1

(13)

M
∑

i

∑

j

xi,j,k,e ≥
∑

i

∑

j

xi,j,k,e+1, i, j ∈ NC, k ∈ K, e = 1, 2,… ,E − 1

(14)bti ≤ ti, i ∈ NC

(15)ti ≤ wti, i ∈ NC

(16)
xi,j,k,e, yi,g,k,e, uk ∈ {0, 1}, i, j ∈ NT , g ∈ G, k ∈ K, e ∈ E

(17)STi,k,e ≥ 0, i ∈ NT , k ∈ K, e ∈ E

Equation (1) is the objective function; it aims to minimize 
the total cost, including the total travel cost and the fixed 
cost required to operate the trucks. Constraint (2) indicates 
that when each truck is assigned to a delivery task, the truck 
should start its route from a depot. Constraint (3) ensures 
that the truck must leave the same petrol station or depot 
that it entered. Constraint (4) ensures that each station can 
be visited only once. Constraint (5) ensures that the petrol 
demands of all stations for all types of petrol products are 
satisfied. Constraints (6) and (7) ensure that for each product, 
a corresponding truck must be assigned to execute the task. 
Constraint (8) ensures that the total amount of petrol loaded 
in a truck does not exceed the maximum available load. Con-
straints (9) and (10) ensure that subroutes are eliminated 
from the truck movements. These constraints guarantee that 
a truck starts at the depot, and a closed loop from petrol sta-
tion to petrol station is not allowed in this model. Constraint 
(11) ensures that in a single-truck trip, the unloading time 
and travel time occur between the arrival times at the petrol 
stations based on an adjacent visit sequence. Constraint (12) 
ensures that the loading time and travel time occur between 
two adjacent trips of a truck. Constraint (13) ensures that 
for two adjacent truck trips, the second trip can only occur 
after the first trip ends. Constraint (14) ensures that the time 
of arrival of the truck occurs later than the starting time of 
the time window. Constraint (15) ensures that the time of 
arrival at each petrol station occurs earlier than the ending 
time of the time window. Constraints (16) and (17) define 
the domains of the decision variables.

4.1 � Valid inequalities

Based on constraints (1–17), a basic model of the pet-
rol truck routing problem is established. However, this 
problem requires that the solution be completed within a 
limited time. In our approach, it might be better to reduce 
the calculation time using the branch-and-bound solver 
Gurobi. According to the previous research (Gendron and 
Crainic 1994) that adding valid inequalities can reduce 
the search space of the branch-and-bound algorithm, we 
propose several valid inequalities to improve the compu-
tational speed for this problem.

(1)	 Assignment constraints 

Constraint (18) requires that the truck with the first 
number in the sequence executes the task first. Assuming 
that three vehicles are used and that a task requires only 
one vehicle, three optimal solutions exist. By eliminating 

(18)uk ≥ uk+1, k = 1, 2,… , |K| − 1
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these redundant solutions, the number of unnecessary 
searches can be reduced.

Constraint (19) ensures that the corresponding delivery 
route is arranged after truck k is enabled.

(2)	 Routing constraints 

Constraint (20) ensures that each truck can enter each 
petrol station only once. This constraint corresponds to 
constraint (4) but is expressed differently. Constraint (21) 
ensures that one truck can travel to only a limited number of 
petrol stations at one time considering the limitation of the 
capacity of the truck. These two constraints can eliminate 
solutions that dissatisfy these conditions.

Constraint (22) ensures that when the truck enters station 
i, the truck completes the delivery task at the station.

5 � Proposed heuristic procedure

The model is a mixed-integer linear programming 
(MILP) model that contains a large number of binary 
variables. This problem requires a delivery plan that is 
generated every day; thus, the results should be com-
pleted in a relatively short amount of time. Therefore, 
we propose an algorithm that combines the branch-and-
bound method with a tabu list and the Metropolis accept-
ance criterion.

An initial solution should be established. First, two types 
of libraries are built for each station that requires a visit; one 
type is called a “direct-reach library”, and the other type is 
called a “return-and-reach library”. In the first library, if a 
truck can drive from station A to station B within the time 
window, then station B is added to the direct-reach library 
of station A. In the second library, if a truck can drive from 
station A to the depot, load petrol products at the depot and 
then drive to station B in the requirements of the time win-
dow, then station B can be added to the return-and-reach 
library. We search all stations and obtain these two types of 
libraries for each station.

(19)Muk ≥
∑

i∈NT

∑

j∈NT

xi,j,k,e, k ∈ K, e ∈ E

(20)
∑

j∈NC

xi,j,k,e ≤ 1, i ∈ NT , k ∈ K, e ∈ E

(21)
∑

i∈NT

∑

j∈NT

xi,j,k,e ≤ R, k ∈ K, e ∈ E

(22)
∑

j∈NT

xi,j,k,e ≤
∑

g∈G

yi,g,k,e, i ∈ NC, k ∈ K, e ∈ E

The second step is to assign each element of the library a 
likelihood of being selected. To reduce the number of trucks 
in the initial solution, stations that have a similar time win-
dow are assigned a higher probability of adjacent arrange-
ment in the sequence of a truck. Moreover, to maintain a 
certain randomness in the subsequent search operation, other 
farther stations are assigned a nonzero probability of selec-
tion, thereby allowing two stations with time windows that 
are far apart to be adjacently arranged in sequence.

To generate the initial solution, a truck will find the top 
entry in the list of stations arranged in sequence. Taking 
this station as the first visited station, another station in the 
direct-reach library of the first station is randomly selected 
as the second visited station. Of course, this station is then 
removed from the list of stations arranged in sequence, as 
well as from the direct-reach library and the return-and-
reach library. Furthermore, if it is not possible for the truck 
to go to the next station because of the loading capacity, 
then the truck must return to the depot to load before visiting 
other stations, and we must select a station in the return-and-
reach library. We use this method until there are no stations 
in the direct-reach library or the return-and-reach library of 
the last station in the truck sequence. Subsequently, the next 
truck route is planned.

After the initial solution is generated, the solution is 
iterated with the goal of using fewer trucks and identifying 
shorter paths. As shown in Fig. 2, in previous studies, local 
search methods were used to analyse the route of a truck 
or two trucks using strategies such as relocate, exchange, 
cross, swap, and reverse. These methods randomly select 
one or two routes and then search for one station or a few 
stations in the neighbourhood of a given station to obtain 
an improved solution. However, a variety of sequences can 
be generated, and the solution determined is not necessarily 
the best solution; thus, a follow-up operation is required. 
Therefore, we propose a method for improving the efficiency 
of the above operations. First, several routes are randomly 
selected. Then, the MILP model with valid inequalities is 
solved to obtain the optimal solution. Next, we continue to 
select other routes, and the optimal solution of these routes 
is found. Using this method, the number of trucks used can 
be reduced, and the travel distance can be decreased; thus, a 
better result can be achieved.

For small-scale problems, the state-of-the-art Gurobi 
solver (Gurobi Optimization, LLC. 2018) can be used to 
calculate the optimal solution in a few seconds. Using this 
approach, a fast computational speed can be achieved for 
improved solutions or even optimal solutions by decompos-
ing the original problem into multiple small-scale problems.
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5.1 � Search strategy

In this study, we use the random route selection method 
to search for the optimal solution based on the following 
strategies.

Method 1  Randomly select the routes of two trucks for opti-
mal arrangement.

Method 2  Randomly select the routes of three trucks for 
optimal arrangement.

Method 3  Randomly select the routes of four trucks for opti-
mal arrangement.

The routes in the above three methods are randomly 
selected. Next, using the above model, the optimal solution 
is obtained using the Gurobi solver with the branch-and-
bound method. In the early stage of the search, method 3 
can rapidly reduce the number of trucks. When the single 
search time of method 3 exceeds a certain limit, method 2 
and method 1 are adopted for faster searching.

Method 4  The route of the truck with the smallest number 
of stations and the route of one random truck.

Method 5  The route of the truck with the smallest number 
of stations and the routes of two random trucks.

An important goal of the search is to reduce the number 
of trucks; when only one or two stations exist in a route, 
it is straightforward for these stations to be combined into 
another route. Therefore, a process that merges the routes of 
trucks with few stations to visit and other routes can reduce 
the number of trucks.

Method 6  A random station from the routes of the trucks 
with the smallest number of stations and the route of one 
random truck.

Method 7  A random station from the routes of the trucks 
with the smallest number of stations and the routes of two 
random trucks.

Similarly, considering that some routes cannot easily 
combine multiple stations in one route, it is better to insert 
specific stations sequentially into other routes, such that 
the stations visited by the truck, or trucks, with the small-
est number of stations can be added to other routes instead. 
In this way, the number of trucks is reduced.

Method 8  Select a random station from the route of one 
random truck and then randomly select a route of a truck.

Method 9  Select a random station from the route of one ran-
dom truck and then randomly select the routes of two trucks.
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Fig. 2   Directly identifying the best routes. Note: 2-opt means 2-optimization, it is a local search algorithm for solving travelling salesman prob-
lem
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In the late search stages, particularly, if there are many 
stations on the routes of some trucks, the solution is 
relatively fixed, and it is not straightforward to generate 
improved solutions simply by rearranging the truck routes. 
Thus, selecting a random station from the route of one ran-
dom truck and then associating the station with the routes 
of another one or two trucks can help avoid obtaining a 
local optimum solution. This strategy must be performed 
based on the Metropolis acceptance criterion.

5.2 � Tabu list

A neighbourhood search is a metaheuristic method for 
solving a set of combinatorial optimization and global 
optimization problems. The tabu list is used to accelerate 
the search by suppressing certain experienced operations.

Considering the strategies mentioned above, to avoid 
the random selection of trucks matching the previously 
selected trucks and reduce unnecessary search processes, 
we developed a tabu list to record the steps of the previ-
ously selected trucks. Because selected trucks are assigned 
to the best solution, there is no need to select the same 
trucks in the following search steps; thus, such combina-
tions are not selected. Only after there are changes to these 
routes are these combinations removed from the tabu list.

5.3 � Metropolis acceptance criterion

The annealing process in thermodynamics essentially 
achieves a state of minimum energy between molecules 
with slowly decreasing temperature. Let us assume that 
there are n conditions that are finite and discrete in ther-
modynamic system S and that the energy of condition i is 
Ei. At temperature Tk, thermal equilibrium is approached 
over time, and the probability of achieving condition i is 
as follows:

We apply the Metropolis acceptance criterion to our algo-
rithm. This criterion can accept a solution that is not better 
than the original value. When using methods 6, 7, 8, and 9, 
the solution of the new generation may be no better than the 
original solution. Thus, the Metropolis acceptance criterion 
allows the search algorithm to avoid the local optimal solu-
tion, with a certain probability of obtaining a solution worse 
than the current solution.

(23)Pi(Tk) = Ck exp

(
−
Ei

Tk

)

6 � Computational results

To obtain effective solutions for the petrol truck routing 
problem, we construct two cases and report their compu-
tational results. To our knowledge, no suitable benchmarks 
exist for the problems of interest in this study. Thus, we 
modified the well-known instances of the VRPTW intro-
duced by Solomon (1987) in Sect. 6.1 to make this bench-
mark case match our problem. In Sect. 6.2, we provide the 
details of real cases in Beijing, China. The proposed solution 
algorithm was implemented in Python 3.6 using Gurobi 7.5 
as the MILP solver and run on a PC with an Intel Core i7 
3.40 GHz CPU and 8 GB of RAM.

6.1 � Solomon benchmark

In this section, several modified Solomon’s benchmark prob-
lems are adapted as test instances to investigate the perfor-
mance of the proposed model. In the remainder of this sec-
tion, the test data set and experiment settings are introduced 
first, followed by the computational results of the proposed 
model based on this data set.

6.1.1 � Test data set and experiment settings

The well-known Solomon’s benchmark problems were 
chosen as the test data sets in several previous studies of 
the VRPTW problem (Barbucha 2014; Markov et al. 2016; 

Table 1   The major characteristics of the selected Solomon’s bench-
mark problems

a To suit the needs of our problem, the distance is 1/10 of that in the 
original problem

Problem Geographical locations of 
customers

Time window width

C101.25 Clustered 45–81
C102.25 Clustered 45–1135
C105.25 Clustered 89–163
C106.25 Clustered 29–205
C107.25 Clustered 180
C108.25 Clustered 177–325
C109.25 Clustered 360
R101.25a Random 10
R105.25a Random 30
R201.25 Random 55–211
R205.25 Random 240
RC201.25 Rand./Clus. 120
RC205.25 Random/Clustered 60–480
RC206.25 Random/Clustered 240
RC207.25 Random/Clustered 113–556
RC208.25 Random/Clustered 349–662
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Zhang et al. 2017). Several factors were considered when 
these benchmark problems were generated, such as the geo-
graphical locations of the customers and the tightness of the 
time windows. In this study, we selected several examples 
that are similar to our petrol truck routing problem. Sixteen 
of the benchmark problems were chosen and adapted for the 
demonstration of the proposed model. Their major charac-
teristics are listed in Table 1.

Three types of problems according to the geographi-
cal locations of customers are shown in Table 1. For each 
problem type, some instances are chosen with different time 
window widths. For each problem instance, there are 25 cus-
tomers. According to the characteristics of the problems we 
have studied, we assume that each truck starts at a depot 
with a maximum capacity of 2 units of products, that each 
compartment can carry a unit and that each station requires 
one unit of product. We calculate the optimal solution by 
implementing the complete model in the Gurobi solver. The 
travel times are equal to the distance between two stations 
or between a station and the depot, and the service times 
are the same as those in the benchmark cases. This data set 
is selected to demonstrate the applicability of the proposed 
model for problem instances with different characteristics.

In our approach, the maximum number of search itera-
tions is set to 2000. In the local search improvement phases, 
the search stops if the best feasible solution has not been 
improved for 200 consecutive iterations. Each problem 
instance is tested 10 times, and the minimum and average 
solutions are obtained.

6.1.2 � Computational results of the proposed model 
for a typical problem instance

In this section, one of the problem instances (R101.25) in 
Table 1 is selected as a typical example to demonstrate the 
performance of the proposed model. R101.25 is considered a 
typical example because the randomly distributed geographi-
cal locations of customers are similar to the actual geographi-
cal distribution of petrol stations, and the time window width 
(approximately 1 h) is similar to the width of the time win-
dow of petrol distribution. The computational results of the 
proposed model for R101.25 are shown in Table 2.

For R101.25, the optimal solution yielded by our algo-
rithm is consistent with the best solution, and the average 
solution is acceptable. In addition, the average time of the 
solution is related to the width of the time window. To vali-
date the method, some examples have longer time windows, 
thereby reducing the solution time. In general, the time win-
dow length is close to the actual calculation examples, such 
as for C101.25, C105.25, C106.25, C107.25, R101.25a, 
R105.25a, R201.25, R205.25, and RC201.25, and the solu-
tion time is shorter.

6.2 � A real case in China

In this section, we describe the computational experiments 
conducted to assess the performance of our model and algo-
rithm. The details of the real instances in Beijing, China, are 
provided in Sect. 6.2.1. In Sect. 6.2.2, we analyse the results 
of the computational experiments obtained by our approach.

Table 2   Computational results of the proposed method

Problem Optimal result 
yielded by the 
proposed algo-
rithm

Best result 
yielded by the 
accurate algo-
rithm

Best gap, % Mean result 
yielded by the 
proposed algo-
rithm

Worst result 
yielded by the 
proposed algo-
rithm

Worst gap, % Average itera-
tion

Average 
CPU 
time, s

C101.25 615.4 615.4 0.00 619.0 623.7 1.33 344.85 146.1
C102.25 615.4 615.4 0.00 615.9 616.7 0.21 235.8 1225.57
C105.25 615.4 615.4 0.00 615.4 615.4 0.00 304.35 206.8
C106.25 615.4 615.4 0.00 617.2 623.7 1.33 331.3 153.9
C107.25 615.4 615.4 0.00 615.4 615.4 0.00 309.4 350.6
C108.25 615.4 615.4 0.00 615.4 615.4 0.00 302.9 1027.4
C109.25 615.4 615.4 0.00 615.4 615.4 0.00 264.4 1520.3
R101.25 773.7 773.7 0.00 778.5 798.9 3.15 344.95 143.1
R105.25 768.4 771.6 0.41 773.7 778.5 1.30 321.1 426
R201.25 771.6 781.6 1.28 793.1 806.2 4.29 377 203
R205.25 768.4 772.2 0.49 774.9 778.5 1.30 263.3 497.5
RC201.25 1022.8 1030.3 0.73 1030.7 1031.6 0.85 255.8 411.1
RC205.25 1021.8 1025.2 0.33 1025.7 1026.2 0.43 293.2 1402.8
RC206.25 1019.5 1022.8 0.32 1024.5 1025.2 0.56 255.4 1066.9
RC207.25 1019.5 1019.5 0.00 1019.8 1020.8 0.13 267.7 1637.2
RC208.25 1019.5 1019.5 0.00 1019.5 1019.5 0.00 243.8 1099.4
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6.2.1 � Background

We created an instance based on real data gathered in Bei-
jing by Baidu Map. The investigation involves instances with 
one depot and up to 100 filling stations, with each station 
requiring three types of petrol products. We assume that 

the number of trucks is adequate and that the size of each 
truck is the same. Each truck has two compartments, and to 
control the quality of the petrol product and ensure safety 
during the transport process, the petrol in each compart-
ment must be fully unloaded after arriving at the station. 
The demand for petrol at different petrol stations is differ-
ent. Some stations have high demands for certain types of 
petrol products. Among these stations, the stations with a 
special demand for petrol products are shown in Table 3, 
and the demand of other petrol stations for all types of pet-
rol products is 20,000 L. Considering the characteristics of 
urban traffic in Beijing, the Manhattan distance is used to 
simplify the paths between stations and between a station 
and the depot. The locations of all petrol stations and the 
depot are shown in Fig. 3. The distribution plan starts at 5 
A.M., when trucks begin to deliver the petrol products from 

Table 3   Stations with a special demand for petrol products

Stations #95 Gasoline, L #92 Gasoline, L #0 Diesel

#30 40,000 40,000 20,000
#35 40,000 20,000 20,000
#36 40,000 40,000 20,000
#45 20,000 20,000 40,000
#100 40,000 20,000 20,000
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the depot to the stations. The total working time is 19 h, the 
time window is divided into 1900 sections, and every hour 
contains 100 divisions. A depot located on the west side of 
the study region is responsible for the petrol supply of these 
stations. The goods must be delivered within the given time 
range because adding time windows to the application makes 
the problem more complex. The trucks spend time waiting at 
customer locations to satisfy the time window requirements. 

6.2.2 � Computational results

The real case was run five times using the proposed method, 
and the results are listed in Table 4. We set the maximum 
number of iterations to 5000, and the loop is stopped when 
a better solution cannot be obtained after 200 consecutive 
iterations.

According to the distribution plan, all stations with a high 
demand for petrol are loaded with a petrol truck, and the 
truck arrives at the target petrol station once. For stations 
with similar time windows and demands for different types 
of petrol products, using a truck to finish two of these three 
tasks along one route is convenient for the petrol station at 
which unloading occurs; this plan is similar to that of the 
actual process. Comparing the results of five calculations, 
the gap between the best and worst results is 1.18%. This 
overall planning for a full-day delivery scheme is better than 
single-route planning and effectively minimizes the delivery 
time and the number of trucks. In this case, the smallest 
calculation time is 2304.6 s, the average solution time is 
2758.0 s, and the largest calculation time is 3704.8 s; there-
fore, the computational speed is acceptable.

7 � Conclusions

We have proposed a mathematical model of the multire-
turn-to-depot petrol truck routing problem with time win-
dows and developed a heuristic algorithm for addressing 
large-scale instances of this problem. The objective of this 
model is to minimize the total costs while considering the 
travel cost and fixed cost of using the trucks. The heuristic 

algorithm combines the branch-and-bound method with a 
tabu list and the Metropolis acceptance criterion. After the 
initial solution is generated, an improved solution is reached 
by constantly searching for the local optimum. Two cases are 
reported. The first case demonstrates the optimality and sta-
bility of the proposed algorithm, and the second case shows 
that this method can be applied to a real city petrol truck 
routing problem with 100 stations and three types of petrol 
products. The computational results show that this heuris-
tic approach produces acceptable solutions with reasonable 
calculation times.
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