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Abstract
Deepwater turbidite lobe reservoirs have massive hydrocarbon potential and represent one of the most promising exploration 
targets for hydrocarbon industry. Key elements of turbidite lobes internal heterogeneity include the architectural hierarchy and 
complex amalgamations at each hierarchical level leading to the complex distribution of shale drapes. Due to limitation of data, 
to build models realistically honoring the reservoir architecture provides an effective way to reduce risk and improve hydrocarbon 
recovery. A variety of modeling techniques on turbidite lobes exist and can be broadly grouped into pixel-based, process-based, 
process-oriented, surface-based, object-based and a hybrid approach of two or more of these methods. The rationale and working 
process of methods is reviewed, along with their pros and cons. In terms of geological realism, object-based models can capture 
the most realistic architectures, including the multiple hierarchy and the amalgamations at different hierarchical levels. In terms of 
data conditioning, pixel-based and multiple-point statistics methods could honor the input data to the best degree. In practical, dif-
ferent methods should be adopted depending on the goal of the project. Such a review could improve the understanding of existing 
modeling methods on turbidite lobes and could benefit the hydrocarbon exploration activities of such reservoirs in offshore China.
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1 Introduction

Turbidite lobes are lobate depositional features occurring in 
distal reaches of turbidite systems as terminal splays of deep-
water channels. Turbidite lobe reservoirs have become one of 
the most promising targets for oil and gas exploration over the 

past two decades (Howell et al. 2014). Reservoir architecture 
determines the heterogeneity and connectivity of the reservoir 
(e.g., Pyrcz and Deustch 2014) and is the key to improve the 
hydrocarbon recovery (Wu et al. 2008a, b). Although char-
acterized by high lateral continuity and rather flat geometry, 
turbidite lobes are not simply tabular, non-channelized sheet-
like bodies that gradually pinch out as suggested by previous 
geologists (e.g., Mutti and Normark 1987). Instead, recent 
research using high-resolution seismic data and detailed out-
crop characterizations have concluded that deepwater lobe 
deposits internally show much more facies complexity than 
previously thought for being structured hierarchically (Ger-
vais et al. 2006; Deptuck et al. 2008; Saller et al. 2008; Prelat 
et al. 2009; Grundvåg et al. 2014) and that their geometry and 
internal partitioning can be influenced by basin topography 
(Marini et al. 2011, 2015, 2016). In this hierarchy, sand-prone 
lobe hierarchical components are commonly defined as being 
well separated by mud-prone bounding units and therefore 
not well connected. However, high-resolution outcrop stud-
ies have demonstrated that the mud-prone bounding units 
are not as continuous as the conceptual hierarchical scheme 
implies. Instead, they can be locally amalgamated (e.g., Marini 
et al. 2015) giving rise to direct contacts of sand-prone lobe 
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hierarchical units. Despite documented and recognized as key 
in controlling static reservoir connectivity and flow behavior 
(e.g., Stephen et al. 2001; Manzocchi et al. 2007; Zhang et al. 
2013), amalgamations of component units of turbidite lobe 
have not been assessed quantitatively and embedded in reser-
voir modeling workflows.

Numerical modeling is a vital tool for understanding sub-
surface reservoirs. For reservoirs, complex facies complexity 
and multiple architecture hierarchy are directly associated 
with rock properties and flow behaviors. Three-dimensional 
(3D) reservoir models integrating available datasets and 
geological concepts can provide accurate reproduction of 
the subsurface, properties at inter-well regions can be pre-
dicted, uncertainties and heterogeneities can be addressed 
by generating multiple realizations and scenarios. Numerical 
modeling is utilized at all stages from appraisal, production, 
IOR (increased oil recovery) to decommissioning stage to 
facilitate the field abandonment (Howell et al. 2014).

Geostatistical modeling has become a research focus 
recently, and many modeling methods have been published 
(e.g., Pyrcz et al. 2005; Manzocchi et al. 2007; Zhang et al. 
2009; Groenenberg et al. 2010; Bertoncello et al. 2013; 
Albertão et al. 2015; Pyrcz et al. 2015; Wang et al. 2018). 
However, several problems still exist: (1) In particular at 
exploration stage, the conditioning data and direct observa-
tions on sedimentary facies (i.e., continuous coring bore-
holes) used for modeling turbidites lobes are commonly of 
too low resolution or too sparse (i.e., low-quality seismic 
data, limited number of wells) for accurately reconstructing 
the 3D spatial distribution of fine-scale component ele-
ments of turbidite lobes; (2) despite their importance, the 
internal hierarchy of lobes and the degree and mode of 
amalgamation of lobe component elements are commonly 
overlooked. The objective of this paper, therefore, is to 
review the modeling method and particularly the existing 
work and research frontiers on deepwater lobe modeling, 
in order to provide useful insights for understanding the 
concepts, methodologies and the pros and cons of different 
modeling techniques. To be specific, classical modeling 
approaches are briefly discussed at first, then the benefit 
of recent methods over classical methods is reviewed in 
detail. These could, in turn, greatly benefit the deepwater 
exploration by reducing the risk and improving the devel-
opment efficiency.

2  Key deepwater lobe architectural 
characteristics

2.1  Architecture hierarchy

Conceptually, the deepwater lobe architecture anatomy can 
be divided into several hierarchies (e.g., Deptuck et al. 2008; 

Prelat et al. 2009). At each hierarchical level, thick sand 
bodies are separated by relatively continuous and parallel 
thinner mud drapes, representing the mud caps of single 
turbidite beds (i.e., “event” beds) or packages of thin-bedded 
turbidites. From proximal to distal, lobes can be divided into 
axis, off-axis, fringe and distal lobe fringe, with a decrease 
of thickness and grain size (Prelat et al. 2009).

Although the dimensions may vary, the hierarchical 
nature of deepwater lobe architectural elements has been 
solidly recognized both based on plan-form geometries 
(e.g., Deptuck et al. 2008) and vertical compartmentaliza-
tions (e.g., Prelat et al. 2009). For example, using subsurface 
data, four hierarchical levels of compensational stacking in 
plan view were recognized in the Golo systems (Deptuck 
et al. 2008), with “beds” stacking to form “lobe elements,” 
“lobe elements” stacking to form “composite lobes,” and 
“composite lobes” stacking to form “lobe complex” (Fig. 1). 
Hierarchical subdivisions were recognized primarily accord-
ing to the abruptness of the shift between the thickest parts 
of successive bodies, and secondarily based on bounding 
discontinuities and the amount of drape between deposi-
tional bodies. In contrast, outcrop studies generally allow 
high-resolution vertical observations, but these observations 
cannot be correlated over wide distances. Hence, the defini-
tion of the hierarchy in outcrop studies is commonly based 
on bounding surfaces separating depositional bodies. A great 
example is the Permian deepwater lobe deposits in Tanqua 
Karoo Basin, South Africa, in which a fourfold hierarchy 
from “bed” to “lobe element” to “lobe” to “lobe complex” 
has been recognized based on the characteristics and geom-
etry of fine-grained units that bound the sand-prone bodies 
(Prelat et al. 2009; Fig. 1). The lobe hierarchical units are 
well separated by fine-grain units which are termed inter-
lobe, inter-lobe element and inter-bed, respectively. This 
fourfold hierarchical scheme has been widely applied with 
slight modifications in recent literature on turbidite lobes 
from different systems (e.g., Marini et al. 2011, 2015; Zhang 
et al. 2017) and is adopted tout court in the present paper.

2.2  Sandbody amalgamation

The process by which turbidite sandstone beds are amalga-
mated forming composite beds has been frequently observed 
by sedimentologists dealing with turbidite lobe deposits 
around the globe (Stephen et al. 2001; Romans et al. 2009; 
Funk and Pyles 2012). The degree of amalgamations can 
be quantified using the amalgamation ratio of Chapin et al. 
(1994), which has been demonstrated to well quantify the 
static connectivity of turbidite sandstone (Stephen et al. 
2001; Manzocchi et al. 2007). Therefore, after classifying 
lobe deposits based on hierarchy of component elements, 
it is important that the amalgamation ratio is defined and 
quantified for all of the recognized hierarchical scales 
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(Zhang et al. 2013; Zhang et al. 2015).Excellent examples 
showing different scales of lobe amalgamation include the 
lobe deposits in the Tanqua Karoo Basin (Prelat et al. 2009, 
Fig. 2), the Central Basin of Spitsbergen, Arctic Norway 
(Grundvåg et al. 2014) and the Laga basin of the upper 
Miocene foreland basin system of Apennines (Marini et al. 
2015). It is noteworthy that the high-level lobe components 
(e.g., lobe complexes) are more likely to separate from each 
other by very thick hemipelagic mudstones which makes 
them less prone to amalgamation.

Turbidite lobes are generally characterized by interbed-
ded sandstones and mudstones which can be both laterally 
continuous. Sandstone connectivity is controlled by sand 
fraction (net to gross ratio) and degree of amalgamations 
(amalgamation ratio); intervals with high sand fraction 
do not necessarily possess high connectivity (Fig. 3a). 

Different architectural elements of turbidites are likely to 
be characterized by different net to gross ratio and amal-
gamation ratio relationships (Fig.  3b). Whichever the 
hierarchical scale, amalgamation leads to erosion of their 
fine-grained deposits which bound component element 
of lobes and act as key flow barriers (e.g., inter-lobes), 
thereby resulting in a higher connectivity of the reservoir 
parts of lobes. To effectively incorporate these hierarchi-
cal amalgamations into reservoir models is hence vital to 
realistically represent the reservoir connectivity and heter-
ogeneity. However, this requires that the hierarchical amal-
gamations are quantified as input parameters. Since it is 
virtually impossible to recognize the amalgamations using 
subsurface data (well logging, seismic), to quantitatively 
compile existing outcrop studies where the hierarchical 
amalgamations are documented is thus essential.
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3  Stochastic reservoir modeling of turbidite 
lobes

In a typical reservoir model workflow, after a depositional 
model has been conceptualized including definition of 
sedimentary facies, architectural elements and hierarchy, 
a decision must be made upon the modeling technique 
to be used for modeling the 3D spatial distribution of 

the lowest rank building block of the reservoir, which is 
sedimentary facies or facies association. After accurate 
characterization, facies/facies association models are then 
converted into petrophysical models. Existing algorithms 
commonly used in geostatistical modeling of reservoirs 
can be broadly grouped into three categories of alternative 
techniques: pixel-based methods, multiple-point statistics 
and object-based methods (Pyrcz and Deutsch 2014).
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Fig. 2  Outcrop interpretations showing lobe amalgamations (black arrows) and lobe element amalgamations (white arrows). Individual lobe is 
labeled as numbers (2–6) and inter-lobe is labeled C-F. Within each lobe, the black lines represent the inter-lobe element shales. Modified from 
Fig. 17 of Prelat et al. (2009)
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Pixel-based methods are based on assigning properties to 
grid cells according to the occurrence probability distribu-
tion function (PDF), which is computed for each grid cell. 
These methods allow direct conditioning by hard data and 
can be used for the stochastic modeling of discrete (e.g., rock 
types) and continuous attributes (e.g., porosity and permea-
bility). It can be achieved by a number of algorithms such as 
indicator Kriging, truncated Gaussian simulation (TGS) and 
sequential indicator simulation (SIS). The sequential indica-
tor simulation (SIS) is the most commonly used method and 
commonly applied in commercial packages. When modeling 
a reservoir using SIS after defining operative facies, the first 
step is to compute spatial proportions and semivariograms 
that are needed to inform the algorithm on size and spatial 
distribution of facies in the model unit. Secondly, the attrib-
ute to be modeled is described through a binary indicator 
variable (e.g., seismic impedance). It takes the value “1” if 
the attribute is encountered at a given location and “0” oth-
erwise. The indicator variable is in turn defined by its aver-
age frequency and a semivariogram that characterizes the 
spatial continuity (Seifert and Jensen 1999). Thirdly, the SIS 
method assigns the attribute to each grid cell sequentially, 
following a random path through the three-dimensional grid. 
Although the SIS method can well honor the input data (e.g., 
facies proportions from wells) and has been proven effec-
tive in many case studies (e.g., Seifert and Jensen 1999), 
there are two limitations with such pixel-based modeling. 
The first limitation is that it is difficult to model architectures 
with well-defined margins and discrete shapes because the 
geostatistical algorithms tend to create smoothly varying 
fields (Ringrose and Bentley 2015). By contrast, object-
based modeling is preferable when the model units have 
well-defined geometries and hierarchies (e.g., fluvial chan-
nels and turbidite lobes). The second limitation is that the 
semivariograms will always be applied along a linear axis 
of anisotropy therefore leading to relatively linear features 
(Seifert and Jensen 2000). The variogram-based SIS method 
is based on “two-point” statistics, in other words, it accounts 
for correlation between pairs of points only. This limitation 
has been overcome by the modeling using multiple-point 
statistics.

The multiple-point geostatistics (MPS), which has been 
proposed and developed quite recently (Caers 2001; Stre-
belle et al. 2003; Yin et al. 2008), represents an improve-
ment because it characterizes the spatial structure by 
considering several points. Although the MPS method 
is also pixel-based, it does not require any preliminary 
data transformation and thus is grouped as an independent 
modeling method herein. The MPS starts with scanning 
a training image within a fixed dimension. The training 
image (2D or 3D) provides a conceptual description of 
the geological heterogeneity; it can be an unconditional 
realization generated by an object-based algorithm, or a 

simulated realization of an analogous field, or simply a 
geologist’s sketch processed with computer-aided design 
tools and properly digitized (Strebelle et al. 2003). The 
next step of MPS method is to scan all the grid nodes 
based on the template of training image; the frequency of 
instances of a model element occurring next to similar and 
different elements are recorded, as is their relative position 
(Strebelle et al. 2003). It looks for patterns matching the 
training image and then computes the probabilities and 
draw simulated value.

Unlike the pixel-based modeling discussed above, the 
object-based modeling places bodies with specific shapes 
in 3D space, while another model element (or a group of 
model elements) is defined as the background (Holden et al. 
1998). The object-based modeling is based on the “marked 
point process” (Holden et al. 1998): The marked point is a 
position in the 3D volume and is selected randomly. To this 
point, object which is assigned to a series of parameters like 
shape template, dimension and orientation is placed into a 
model initialized with a background until some predefined 
criteria is reached (e.g., the proportion of the object).

The object-based modeling includes two steps. The first 
step is to define a series of properties (e.g., dimensions, 
shapes) to the object to be modeled, based on outcrop ana-
logues or well data. At this step, rules constraining the 
placement of the objects are also applied (e.g., erosions, 
intersections). The next step is to place objects into 3D vol-
ume, in contrast to the pixel-based modeling that assigns 
data to the models cells and proceeds along a random path. 
The object-based techniques are a considerable improve-
ment over traditional variogram-based methods in terms 
of well capturing the architectures with clear geometries 
and margins. They have been proven effective in modeling 
those reservoirs where facies are organized in clear geomet-
ric units and so that can be easily parameterized as objects 
with simple shapes. The successful applications of object-
based modeling include modeling the fluvial channels (e.g., 
Deutsch and Tran 2002), deepwater channelized deposits 
(e.g., Larue and Hovadik 2006) and deepwater sheet-like 
deposits (e.g., Stephen et al. 2001; Manzocchi et al. 2007; 
Zhang et al. 2013, 2015).

Reservoir elements of deepwater lobe deposits are well 
organized into a hierarchical manner and they are the objec-
tives of the current paper. Existing modeling work focus-
ing on turbidite lobes are reviewed below. Beside those 
described above, there are a number of alternative modeling 
methods which cannot be easily be grouped as “pixel-based” 
or “object-based.” Instead, the modeling methods used are 
named according to the most characteristic property of the 
modeling. Such modeling work includes process-based, 
process-oriented, surface-based and object-based modeling. 
They are discussed below in detail along with their pros and 
cons.
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3.1  Object‑based modeling

An important feature of deepwater lobe reservoirs is that 
their architectural elements are structured into a hierarchi-
cal manner with certain lobate geometries which could be 
well parameterized (e.g., dimensions, shapes) and show 
an overall sand–mud binary fashion, all suggesting object-
based modeling method is a suitable approach to model 
such reservoirs (Pyrcz and Deutsch 2014). Object-based 
modeling techniques have been widely applied to deposi-
tional systems which are characterized by apparent shapes 
and geometries, for example the fluvial and turbidite chan-
nel systems (e.g., Larue and Hovadik 2006) and turbidite 
lobe systems (Deutsch and Tran 1999; Stephen et al. 2001; 
Manzocchi et al. 2007; Zhang et al. 2013, 2015). Notably, 
Deutsch and Tran (1999) proposed the “LOBESIM” pro-
gram that deals with channel, levee and lobe facies mod-
els. However, it seems like few studies on deepwater lobes 
using this program have been published since. Stephen et al. 
(2001) generated a series of Monte Carlo realizations of 2D 
cross-sectional models including interbedded shales and 
sandstone beds. In their models, the shales beds are locally 
removed giving rise to sand-on-sand contacts so that a cer-
tain amalgamation ratio can be characterized (Fig. 4). The 
resulting models with specific amalgamation ratios were 

flow simulated, and the results demonstrated that the amal-
gamation ratio can be related to the single-phase upscaled 
ratio of vertical to horizontal permeability by a log-linear 
relationship and to the fraction of oil recovered by a linear 
relationship.

Manzocchi et al. (2007) used an object-based modeling 
approach (vbFIFT) to generate a suite of 3D bed-scale 
models under a principle that when each sandstone bed is 
placed, and it has the potential to be erosive over its entire 
length. This method is based on a “compression method.” 
First, vbFIFT generates a random system with a net/gross 
ratio equivalent to the target amalgamation ratio. Second, 
all cells containing shale are compressed vertically with 
respect to those containing sand. The degree of compression 
is controlled by a parameter CF = (1 − NTG−1)/(1 − AR−1). 
The resultant (thinner) models have a lower net/gross ratio 
than the initial model but the same amalgamation ratio. 
Conventional modeling work uses the net/gross ratio as the 
key controlling parameter and has an underlying assumption 
that the net/gross ratio is equivalent to the amalgamation 
ratio (e.g., Larue and Hovadik 2006). However, it has been 
demonstrated that the amalgamation ratio of natural systems 
is usually significantly lower than the net/gross ratio (e.g., 
Fig. 3), and hence, conventional models tend to be more 
connected than a natural system at the same net/gross ratio. 
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A unique advantage of vbFIFT modeling method over con-
ventional modeling method is that vbFIFT allows generating 
models with independent NTG and AR as input parameters.

The connectivity of sandstone beds is a fundamental 
control on the eventual hydrocarbon recovery of a reservoir 
(e.g., King 1990; Larue and Legarre 2004). Static connectiv-
ity can be defined as the fractional volume of the largest con-
nected cluster (Ainsworth 2005; Larue and Hovadik 2006). 
Manzocchi et al. (2007) used vbFIFT to model a series of 
faulted and unfaulted turbidites and demonstrated that for 
unfaulted turbidites (Fig. 5), AR is the dominant control on 
connectivity. When AR is low, the final connectivity can be 
lower than 10% even if NTG exceeds 90%. For faulted mod-
els, the connectivity is controlled by complex interactions 
of multiple structural and sedimentological factors. Having 
noted that the complete lobe architectural hierarchy and the 
amalgamations at each hierarchical level are not fully hon-
ored, the vbFIFT method has been modified in such a way 
that these two problems could be tackled.

Zhang et al. (2013, 2015) used the modified version of 
vbFIFT to build a suite of lobe models that have the com-
plete hierarchy and associated amalgamations. Their output 
lobe models better characterize the bed-lobe element-lobe 
hierarchy, the pinch out geometry of hierarchical units and 
their amalgamation features compared to other modeling 
studies. When assuming the shales are impermeable, intense 
pressure stratification at the onset of production in the hier-
archical models with a lower lobe element amalgamation is 
associated with poor performance in terms of both produc-
tion rates and sweep efficiency (Zhang et al. 2015).

The possible problems associated with these object-
based modeling work are as follows. First, to realistically 
model the amalgamations is key to represent the reservoir 
architecture and compartmentalization. Although some 
amalgamations have been incorporated into modeling, the 
amalgamation characteristics at different hierarchical scales 
require more solid parameterization. Second, channels that 
feed distributary lobes could be preserved and erode into 
the proximal lobes and might modify the overall connec-
tivity; however, channels are not well modeled. Third, it is 
sometimes impossible to condition object-based models to 
dense dataset, and the run-time can be large for large mod-
els. Updating of models is also inconvenient. Wang et al. 
(2018) presented a promising optimization-simulation meth-
odology allowing conditioning 3D object-based fluvial mod-
els to dense well data. However, limitations associated with 
object parameterization and conditioning to soft data exist. 
Also, the extent to which this methodology can be applied 
to turbidite modeling remains unknown.

3.2  Process‑based modeling

Process-based modeling uses physical equations to simulate 
the fundamental depositional processes to produce a numeri-
cal representation of the reservoir geology. There are many 
published studies regarding modeling of sedimentological 
and stratigraphic processes (e.g., SEDSIM, Tetzlaff 1991; 
Alluvism, Pyrcz et al. 2009). Delft 3D software, which has 
been widely applied in hydrodynamic modeling, is also 
used to model depositional process (e.g., Wang et al. 2016). 

(a) (b)

(d)(c)

Fig. 5  a Schematic example output vbFIFT lobe model (NTG = 0.8, Amalgamation ratio = 0.55) with sandstone in yellow and mudstone in 
black. b The largest cluster in purple formed by mutually connected sandstone beds, the fraction of this cluster volume relative to the whole 
model volume gives the static connectivity. c Traditional object-based models by placing sandstone beds (yellow) into a mud background 
(black). d Models with the same NTG = 0.65, bed size distributions as c generated by the compress-based modeling method. All modified from 
Manzocchi et al. (2007)
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Notably, Li et al. (2013) noticed the erosion of mud drapes 
in fluvial point-bars and improved the Alluvsim algorithm 
to realistically represent the partly erosion of mud drapes 
(i.e., amalgamation of fluvial channel). However, published 
process-based modeling work focusing on deepwater lobes 
is relatively less.

Reza et  al. (2006) proposed ModDRE” (Modeling 
Deepwater Reservoir Elements) which is a process-based 
technique able to honor the morphological and sequence 
stratigraphy factors. Three architectural elements are con-
sidered: channel, lobe, hemipelagite. Bathymetric data can 
be directly incorporated as input and realistic geological and 
engineering attributes can be well integrated into the res-
ervoir models. Notably, this technique allows representing 
erosions caused by both channels and lobes, models honor-
ing realistic spatial distribution of architectural elements can 
be used as training image for MPS modeling. However, the 
erosions are not well quantified, and it is rather difficult to 
condition to real reservoir data (e.g., wells).

Groenenberg et al. (2010) used the outcrops of turbidite 
lobes in Tanqua Karoo as an analogue and aimed to better 
understand the interplay of allogenic and autogenic process. 
They have used a software called “FanBuilder” to generate 
conceptual process-based models. Input parameters include 
the initial bathymetry of the model domain and physical 
properties of flows (e.g., flow thickness, volume, veloc-
ity and concentration). Their models have successfully 

replicated some aspects of depositional architecture of 
lobes (e.g., finger-like pinch out geometries), suggesting 
that lobes do not fine and thin from the center in a sim-
ple manner (Fig. 6). Besides, the influence of underlying 
relief on the sites of deposition has been highlighted by their 
models, suggesting the importance of autogenic controls on 
the depositional architecture of deepwater lobe deposits. In 
their work, a bed-lobe element-lobe hierarchy is roughly 
captured by setting many single flow events (beds) into the 
modeling domain 6 km by 6 km. Also using the FanBuilder 
software, Athmer et al. (2010) combined analogue sandbox 
experiments and numerical flow simulations to investigate 
the influence of relay ramps on the distribution of turbidite 
currents. This work considered the structural background 
and successfully modeled its theoretical control on the lobe-
like turbidite current.

Aas et al. (2014) used a process-based modeling software 
called “MassFLOW3D” to recreate the thickness and grain-
size distribution of a single turbidite sandstone bed from 
the Peira Cava sub-basin of SE France. Although the broad 
deposition trend can be obtained within the majority of their 
simulation runs, the finer detail of the results varies greatly. 
Hawie et al. (2018) simulated the stratigraphic evolution of 
turbidite lobes in tectonically active slope basin with a series 
of diffusion-based DionisosFlow™ forward stratigraphic 
models, in which proper stratigraphic ordering and real-
istic compensational stacking are well represented. These 

E
le

va
tio

n,
 m

Lobe element 4
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

E
le

va
tio

n,
 m

Lobe element 3
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

E
le

va
tio

n,
 m

Lobe element 2
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

E
le

va
tio

n,
 m

Lobe element 7
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

E
le

va
tio

n,
 m

Lobe element 6
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

E
le

va
tio

n,
 m

Lobe element 5
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

E
le

va
tio

n,
 m

Lobe element 1
2.33
0.16

-1.01
-3.18
-5.35
-7.52

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

Length of cross-section profile, m

Original substrate

Depocenter of local thickening

Fig. 6  Seven lobe elements showing compensational stacking in a lobe model. Modified from Groenenberg et al. (2010)
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process-based modeling studies are valuable since they help 
reveal the complicated interplay of sedimentary processes 
and the final architectures using the well-constrained ana-
logues. Additionally, they can benefit the understanding of 
deepwater turbidity flow-deposit interactions, but shortcom-
ings exist. First, there is a mismatch between the modeling 
results and outcrop analogues. In fact, it is difficult to con-
dition process-based models to specific outcrop analogues 
and subsurface reservoirs. Second, although process-based 
modeling can represent multi-hierarchies, published exam-
ples focused on two-fold hierarchies, while failing to honor 
the complete lobe hierarchy (more than two-fold). Third, 
amalgamations between beds and lobe elements are not well 
quantified. The sequences are entirely depositional with no 
erosion in Groenenberg et al. (2010) and the models of Aas 
et al. (2014) focused only on a single bed; the improved 
Alluvism (Li et al. 2013) and MoDRE (Reza et al. 2006) 
method could represent sand body amalgamations resulting 
from complex interactions of multiple geological processes, 
but the amalgamations cannot be parameterized.

3.3  Object‑oriented modeling (SBED)

The SBED software (an acronym for “Sedimentary Bed-
ding”, Geomodeling™) is a process-orientated, stochastic 
modeling approach allowing detailed digital reconstructions 
of fine-scale sedimentary reservoir heterogeneities (Wen 
2005). This particular method focuses on simulating the 
results of the sedimentary process: the bedforms, rather than 
simulating the physical process ruling the genesis of sedi-
mentary rocks (e.g., Stokes’ Law) (Scaglioni et al. 2006). 
Therefore, it can not be simply grouped as the “process-
based modeling” as discussed above. It focuses on small-
scale bedding structures observed at core scales (where cell 
dimensions are millimeters to centimeters) and consists of 
building a time series of elevation surfaces corresponding to 
the sedimentary beddings. These surfaces are then sequen-
tially migrated by vectors to simulate the lamina deposition, 
conditioned to certain geometric rules allowing new sets of 
surfaces to erode previously deposited laminas. The bed-
ding geometries, bedform orientations, net/gross ratio and 
boundary conditions (e.g., eroded boundary) can be edited 
to represent core data. Resulting centimeters to millimeters-
scale SBED models can well honor the core measurements 
and the small-scale heterogeneities (e.g., Elfenbein et al. 
2005, Fig. 7).

The process-oriented SBED approach has been applied to 
many non-marine depositional systems (e.g., fluvial chan-
nels). One important limitation of this approach is that it 
is focuses on such a fine scale that large-scale modeling 
(field scale) can be virtually difficult. Although the SBED 
approach has not been applied to turbidite lobes yet, it is 
the only existing software allows modeling the fine-scale 

bedding structures and relevant to the amalgamations since it 
allows the subsequent bedforms to erode previous ones. This 
function is similar to the critical function of the object-based 
modeling (vbFIFT) except the latter focuses on the erosions 
at larger scales (bed, lobe element and lobe) and therefore 
can well represent larger scale heterogeneities.

3.4  Surface‑based modeling

As deposition processes occur, sedimentary surfaces are 
repeatedly formed and eroded. The preserved sedimentary 
surfaces can therefore effectively reflect the depositional 
processes. Surface-based modeling approach has been intro-
duced recently (Pyrcz and Deutsch 2003; Pyrcz et al. 2005; 
Sech et al. 2009; Huang et al. 2013) to reproduce the end 
results created by depositional process rather than the physi-
cal process itself. The surface-based modeling approach has 
been applied to various depositional systems (e.g., turbidite 
channels, deltaic systems and turbidite lobes). Those pub-
lished examples on surface-based modeling of turbidite 
lobes are of focus and discussed herein.

A group of workers have used surface-based techniques 
to generate geometric lobes characterized by bounding 
surfaces (top and bottom boundaries) (Pyrcz and Deutsch 
2003; Pyrcz et al. 2005; Zhang et al. 2009) with a focus on 
representing the heterogeneity within reservoir elements 
constrained by surfaces. Two scales of hierarchy are con-
sidered in these studies: the small-scale geometries (“flow 
event deposits”) and the large-scale geometries (“lobe”) 
(Fig. 8). The flow event deposits were modeled within 
lobes by two steps. First, the geometry assigned to pre-
defined aspects such as source location, bathymetry, flow 
path and characteristic shape is generated. Second, a sto-
chastic residual account for fluctuations in the bounding 

X, Y

Z

Typically
~30-50 m

Typically
~30-50 m

Fig. 7  An example output showing flaser-bedded heterolithic bedding 
model generated by the SBED software. Mud lamina is shown in dark 
and sand in light. Model size is about 50 *50 *50  cm. Taken from 
Fig. 4 in Elfenbein et al. (2005)
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surfaces is added. The stochastic residual is characterized 
by a semivariogram model able to reflect the well data. If 
the surface geometry contradicts data outside a tolerance, 
the geometry is rejected. Their resulting models have well 
captured the geometries and the compensational stacking 
of small-scale flow events within reservoir-scale lobes. 
Lithofacies, porosity and permeability properties honor-
ing the given data were assigned to the resulting geometric 
lobe models (Fig. 9). However, the facies properties are 
not directly simulated, and the convergence may be very 
slow when their models are conditioned to many wells. 
These shortcomings have been overcome by an improved 
surface-based modeling approach proposed by Zhang et al. 
(2009) which allows more robust conditional algorithms 
and greater integration of deepwater geological informa-
tion. Bertoncello et al. (2013) have presented a workflow 
allowing better conditioning surface-based models to 
hard data from wells and seismic data, based on an opti-
mization of the parameters controlling the model global 
and local spatial characteristics (Fig. 8). Their modeling 
started from a given base topography and stacked events 
(or thicknesses) to create a new surface from that base 
and repeated this process by taking the new surface as the 
base surface on which the next event is stacked. Notably, 
their work used two types of events: depositional events 
with positive thickness and erosional events with negative 
thickness. The erosion events are stochastically modeled 
constrained only by a simple rule that locations with a high 
gradient will have a higher probability of erosion than the 
regions with a low gradient. This is not necessarily the 

case since the intensity of erosions also depends on other 
properties such as grain concentration and flow thickness.

Applying the surface-based modeling method to turbidite 
lobes is an active research trend. The surface-based mod-
eling methods have several advantages. First, the surfaces 
can be easily derived from seismic surveys and well-log 
correlations and hence can flexibly reproduce the geologi-
cal interpretations, especially the large-scale interpreta-
tions (e.g., the sequence stratigraphy framework). Second, 
it has been proven effective in terms of integrating petro-
physical properties to the geometrical model generated by 
the surface-based method. In addition, the published work 
introduced above has shown that surface-based models can 
well capture the geometries and compensational stacking 
pattern of turbidite lobes (Figs. 8, 9). Besides, they have 
successfully reproduced another level of hierarchy within 
lobe (i.e., small-scale flow event deposits). This flow event 
deposit scale is perhaps equivalent to the lobe element scale 
introduced by Prelat et al. (2009). Recent surface-based tech-
niques presented by Sech et al. (2009) can represent discrete 
amalgamations with shallow-marine depositional systems 
and allows direct flow simulation without upscaling, per-
haps reflecting a great improvement of the surface-based 
modeling. However, several shortcomings associated with 
these published surface-based methods exist. First, to date, 
only two-fold hierarchies have been considered for turbidite 
lobes despite these methods allow multi-hierarchical mode-
ling. Second, detailed characterizations of turbidite outcrops 
reveal that the depositional surfaces within turbibite lobes 
can be rather complex, yet the surfaces generated by the 
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Fig. 8  The workflow of and resulting models of the surface-based modeling. Modified from Pyrcz et al. (2005) and Bertoncello et al. (2013)
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surface-based modeling techniques are perhaps too simplis-
tic. Third, the surface generation rules are not well quanti-
fied; amalgamations at different hierarchical scales have not 
been parameterized and therefore cannot fully represent the 
complex surface interactions (e.g., lobe surfaces are better 
preserved by lobe element surfaces).

3.5  Two‑point and multiple‑point modeling

Pixel-based modeling focuses on minimizing the estimation 
error between “two points”, which is suitable for modeling 
heterogeneous, poorly connected sedimentary facies while 
incapable of capturing sedimentary facies with clear shapes 
and geometries (Deutsch and Tran 1999). Since deepwa-
ter reservoir (channels, lobes) are characterized by com-
plex stacking of geological bodies with clear margins and 
geometries, few studies have applied “two-point” techniques 
to deepwater turbidite reservoirs. One exception includes 
Felletti (2004) where the Castagnola Fm turbidites outcrops 

are used as analogs to constrain a pixel-based modeling 
using a software HERESIM 4.0. Their models can honor 
the lithofacies proportions calculated from each outcrop 
logs, while is difficult to capture the reservoir architectures 
between outcrop logs. Falivene et al. (2006) built a suite of 
turbidite models using different modeling techniques based 
on turbidite outcrop data. Comparison of the models has 
demonstrated that two-point techniques cannot represent 
laterally continuous shale drapes and tend to overestimate 
the connectivity.

The workflow of MPS modeling allows integrating 
diverse type of data from wells, seismic and geological 
concepts, and can provide very realistic-looking archi-
tectures. Different simulation constraints can be imposed 
on the MPS model to account for spatial variations (both 
horizontal and vertical) of facies proportions and body 
geometry such as orientation and sizes (Strebelle and Levy 
2008, Zhang 2008). Widely used MPS algorithms include 
SNESIM (Strebelle et al. 2003), FILTERSIM (Zhang et al. 

(a)

(b)

Well 1 Well 3 Well 4 Well 7 Well 1 Well 3 Well 4 Well 7 Permeability,
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Fig. 9  Example output lobe model using process-based and surface-based modeling approach. a Two realizations of lobe model conditioned 
to well data and associated permeability trends. b A fence diagram of the first realization (30 times vertical exaggeration). Color scheme is the 
same as (b). Taken from Pyrcz et al. (2005)
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2006) and SIMPAT (Arpat and Caers 2004). The key to 
MPS is the design of training image. To this end, Pyrcz 
et al. (2008) proposed training image libraries for differ-
ent depositional systems. Maharaja (2008) and Boucher 
(2010) developed unconditioned object-based techniques 
allows direct generation of training images. A unique 
advantage of MPS is that experiences of geologists can be 
effectively incorporated into models. For example, Zhang 
et al. (2016) established training images of deepwater 
turbidite channels based on depositional models inter-
preted from shallow, high frequency seismic data. Roy 
and Strebelle (2008) used multiple small-scale training 
images to mimic the large-scale complex interactions of 
shallow channels and deepwater turbidite lobes, result-
ing models can represent the complex architectures and 
honor various types of inputs such as facies proportions 
calculated from individual wells. Yunus (2016) used out-
crop data and well data to build deepwater turbidite fan 
models using MPS techniques. Resulting models realisti-
cally reproduced the compensational stacking of 7 fans and 
complex distribution of channel, lobe, hemipelagic facies 
within each fan (Fig. 10). These works demonstrate the 
applicability of MPS to turbidite lobe reservoirs, yet they 
are not necessarily the modeling technique of choice for 
turbidite lobes because: (1) To date, it is difficult to model 
continuous properties (Pyrcz and Deustch 2014) and may 
not honor depositional regions (Strebelle and Levy 2008); 
(2) to reproduce detailed distribution and contact relation-
ships of small-scale component units is still challenging; 
(3) the outcome of MPS modeling heavily relies on the 

training image which is a product of 3D architecture itself 
(Ringrose and Bentley 2015), in other words, MPS tech-
niques require more pre-work than two-point techniques.

3.6  Other modeling techniques

Since the pioneering work of Hektoen and Holden (1999), 
aiming to better honor the geological concepts, consider-
able efforts have been focused on the process-mimicking 
modeling methods (Pyrcz and Deustch 2014). Conventional 
surface-based or object-based modeling is constructed to 
reproduce the final end-result of the reservoir architecture 
and properties, while process-mimicking modeling tends to 
integrate rules or geological processes at the very begin-
ning. Therefore, process-mimicking methods are particularly 
suitable for those reservoirs whose inter-element stacking 
patterns and associated heterogeneities can be constrained 
to certain rules, for example the deepwater lobe reservoirs. 
Depending on the detailed aims, process-mimicking meth-
ods have a variety of terminologies, such as event-based 
(Pyrcz et al. 2005), rule-based (Pyrcz et al. 2015), surface-
based, process-oriented (Wen 2005), hybrid (Michael et al. 
2010) and the like. Studies regarding application of process-
mimicking methods are vast and descriptions of such studies 
are summarized by Pyrcz et al. (2015) and not discussed 
herein. It should be noted that process-mimicking methods 
can be divided into the object-based front and the surface-
based front. In fact, surface-based modeling is a variant of 
object-based modeling and the line between these two meth-
ods is not that clear. In other words, the process-mimicking 
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Fig. 10  Models built using Multiple-Point-Statistics methods including 7 deepwater fans, modified from Yunus (2016)



329Petroleum Science (2020) 17:317–333 

1 3

method aims to provide a set of rules to mimic geological 
processes in such a way that reservoir elements are inter-
acted in a geologically realistic manner; therefore, it is a 
combination of object-based, surface-based methods. Three 
types of rules are identified in process-mimicking methods: 
drafted rules, Markov rules and morpho-dynamical rules. 
In short, process-mimicking methods use geological rules 
in a forward manner to make the final model more realistic; 
theoretically, it is very suitable for modeling deepwater lobe 
reservoirs because it could well capture the lobe architec-
tural hierarchy and the specific organization of architectural 
elements (e.g., compensational stacking or amalgamation of 
lobe elements). However, at present, such work on deepwater 
lobe reservoirs are relatively scarce and conditioning pro-
cess-mimicking models to dense data remains a challenge.

The cellular automata method is another actively used 
method in terms of modeling deepwater turbidity systems. 
For instance, the CATS (Cellular Automata for Turbidite 
Systems) developed at IFPEN, France, which is indeed a 
forward process-based modeling method, has been utilized 
to model the deepwater turbidity flow processes while con-
sidering the impact of paleo-topography and structural back-
ground. For example, the CATS has been used to predict the 
sedimentary architecture of a turbidite reservoir in the Cam-
pos Basin, Brazil (Albertão et al. 2015), and demonstrated 
that the substratum composition and the depositional law 
are the most sensible parameters by performing a sensitiv-
ity analysis. However, this set of modeling work focuses 
on modeling the large-scale features such as increasing 
flow velocities in confined settings and successive filling 
of contiguous sub-basins, although they improved the data 
conditioning and running speed, they might not be suitable 
when applied to practical reservoir modeling. The reasons 
are as follows; first, it is extremely difficult to reproduce the 
reservoir-scale architecture and the associated heterogeneity; 
second, the modeling results are highly dependent on the 
input parameters of flow properties and are perhaps not the 
answer to improve the geological realism, at least presently.

4  Discussions

In real reservoir modeling work, three factors are particu-
larly considered for modeling techniques selection: (1) geo-
logical complexity; (2) types and properties of available 
data; (3) pros and cons of modeling techniques. As stated 
above, the geological complexity of turbidite lobes is mainly 
characterized by the geometries and stacking patterns of 
sand-prone lobe component units and the spatial distribution 
of their shale barriers at different hierarchical levels. Lobe 
complexes are separated by basinal thick pelagic/hemipe-
lagic mudstones reflecting allogenic controls (e.g., relative 
sea level). It therefore seems practical to deterministically 

define such large-scale hierarchical components at the first 
step. Smaller scale hierarchical components are controlled 
by autogenic factors (e.g., channel avulsion). Within a lobe, 
lobe elements display complex stacking pattern with occa-
sional amalgamations. Within a lobe element, rapid deposi-
tions result in poorly preserved, discontinuous mudstones. 
The lateral and vertical heterogeneity at sandstone bed scale 
is rather low due to high sandstone amalgamations. In terms 
of reproducing the geological complexity of turbidite lobes, 
object-based techniques offer the most appropriate way 
to model multiple hierarchies and geometric and stacking 
characteristics of hierarchical components and associated 
shales. Surface-based/process-mimicking techniques also 
prove effective for reproducing hierarchies and realistic 
architectures, but have not parameterized the amalgama-
tions between hierarchical components, representation of 
geological bodies which are very laterally extensive can be 
also difficult. Pixel-based techniques are perhaps not suitable 
since turbidite lobes are characterized by clear shapes and 
geometries (Fig. 11).

In turbidite lobe reservoir exploration and development, 
seismic data are characterized by high lateral resolution, but 
vertical resolution is often too low to represent the vertical 
heterogeneity; the number of wells is often limited due to the 
high cost of drilling, continuous coring are highly expensive. 
A recent trend is to use databases based on quantitative out-
crop characterizations (Funk and Pyles 2012; Howell et al. 
2014; Zhang et al. 2017) to guide subsurface reservoir mod-
eling. MPS techniques allow conditioning to several types 
of data and could directly use outcrops as training images. 
Pixel-based techniques allow limitless conditioning to well 
data; however, the variograms calculated from well data are 
perhaps incapable of reflecting the reservoir architectures at 
inter-well regions (Fig. 11). Object-based techniques require 
strong geological knowledge and quantitative parameteri-
zation of object dimensions, shapes and amalgamations. 
On the premise, object-based techniques are appropriate to 
model the heterogeneity within lobe reservoirs. Condition 
object-based models to dense well data can be very difficult 
and time-consuming. Geological concepts and quantified 
parameters gained from outcrops could offset this disadvan-
tage. Meanwhile, it is a common case that only a few wells 
are drilled for turbidite reservoirs which are often at scales 
of several kms to 10s’ kms. Therefore, this difficulty of con-
ditioning to dense well data might not become an issue for 
object-based modeling in this circumstance. Process-based 
techniques have the worst capability to honor seismic and 
well data. In terms of conditioning to dense data, surface-
based techniques perhaps lie intermediate of process-based 
and object-based techniques (Fig. 11).

Heterogeneities at different scales (pore-laminae-archi-
tectural element-static reservoir model-dynamic flow model) 
could all impact the final flow performances (Ringrose and 
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Bentley 2015). Heterogeneities at which hierarchical scale 
is the focus for reservoir modeling could vary depend on the 
nature of the depositional system and specific targets at dif-
ferent exploration and development stages (Wu 2010). Com-
monly, pore-laminae characteristics are not considered in 
reservoir modeling because of data inaccessibility and heavy 
computing power required. For turbidite lobe reservoirs in 
specific, large-scale lobe complexes and lobes have great 
lateral connectivity (km-tens of kms) but low to zero vertical 
connectivity. The sandstone-scale bed connectivity has been 
demonstrated to be the key control on static connectivity and 
flow performances (King 1990; Stephen et al. 2001; Falivene 
et al. 2006; Manzocchi et al. 2007). Further, modeling hon-
oring the complete bed-lobe element-lobe-lobe complex 
hierarchical scales has demonstrated that the connectivity 
and flow performances are both poor when lobe elements 
are poorly connected (which is normal in natural turbidite 
systems) even if sandstone beds are 100% connected (Zhang 
et al. 2015). Therefore, hierarchical characterization and 
stochastic modeling of deepwater turbidite lobe reservoirs 
should focus on lobe element and sandstone bed scale, given 
that lobes and lobe complexes or other hierarchically higher 
components are barely inter-connected.

Deepwater channels which feed downstream turbidite 
lobes are also promising hydrocarbon reservoirs. Architec-
tural hierarchy, stacking patterns and facies associations 

of deepwater channels are widely studied and modeled 
(e.g., Falivene et al. 2006; Labourdette 2007; Zhang et al. 
2016). In general, the modeling techniques discussed in 
the present paper can be equally applied to model deepwa-
ter channels. However, to date, few modeling studies have 
focused on the transition belt from upstream feeder chan-
nels to downstream lobes. The transition between channels 
and lobes (“Channel-lobe transition zone”, Wynn et al. 
2002) are critical in terms of linking different depositional 
environment (slope vs basin-floor) and flow rheology (ero-
sional-prone vs depositional-prone). More efforts should 
be paid to how turbidite lobes are evolved and linked with 
feeder channels if a complete source-to-sink geological 
model is to build. Additionally, hyperpycnites could be 
commonly developed in deep sea (Migeon et al. 2012) and 
deep lacustrine environment (Yang et al. 2017). Character-
ized by couplets of basal upward-coarsening interval and 
upper upward-fining interval, hyperpycnite deposits are 
often developed associated with turbidites and debrites. 
As potential hydrocarbon reservoirs, hyperpycnites in 
deepwater environment are perhaps overlooked. Modeling 
methods discussed herein could be applied to hyperpycnal 
lobes which have similar geometrical characteristics and 
stacking patterns with turbidite lobes, despite their internal 
facies associations may vary.
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5  Conclusions

1. Deepwater lobe reservoir architecture can be described 
within an architectural hierarchy which represents sedi-
mentary cycles controlled by allogenic or autogenic fac-
tors. Deepwater lobe reservoirs are generally structured 
into a multiple-fold hierarchy from small-scale beds to 
large-scale lobe complexes, at each hierarchical scale, 
thick sand-prone units are always draped by thin, fine-
grained units. Unless amalgamated or faulted, a specific 
hierarchical element is draped by shales and thus not 
connected with its contiguous hierarchical element, sug-
gesting the amalgamation is the key for reservoir con-
nectivity.

2. Existing modeling work on turbidite lobes include pixel-
based and multiple-point statistics, object-based meth-
ods, surface-based methods, process-oriented methods, 
process-based methods and process-mimicking methods. 
Each modeling method has unique features such as input 
statistics, ability to honor the inputs. For example, con-
ventional pixel-based techniques allow limitless condi-
tioning to well data yet could not reproduce reservoir 
architectures with clear shapes and geometries; process-
based modeling and object-based modeling methods 
have great advantage in terms of honoring geological 
realism but dense data conditioning for these two meth-
ods are very difficult, while surface-based and process-
oriented modeling methods are likely the opposite. For 
turbidite lobes, object-based modeling methods could 
well represent the internal architectural hierarchy and 
amalgamations, hence could reproduce the complex 
interactions of shale drapes and sandy units that have 
great reservoir potential to the best degree. However, 
how to condition object-based models to dense data sets 
remains a challenge. In short, to choose the modeling 
methods depends on the specific content and goals of 
the project, for instance, the available data, the model 
scale and the depositional environment.

3. Notwithstanding specific pros and cons, modeling meth-
ods of deepwater turbidite lobes reviewed herein allow 
3D visualization and reproduction of reservoir architec-
ture and heterogeneity, sensitivity analysis can be easily 
performed, uncertainty can be quantitatively assessed, 
which facilitate the decision-making for all stages of 
field life. This review provides a small window for better 
understanding the deepwater lobe architecture and con-
nectivity, and for a purpose-oriented selection of exist-
ing modeling methods according to specific aims of a 
project. In contrast to conventional modeling with a sin-
gle, all-purpose method, a hybrid of different modeling 
methods is more flexible and becoming more popular.

4. Recent modeling work mainly focus on reproduce the 
sedimentological characteristics of deepwater lobe reser-
voirs, while other factors, such as topography (e.g., salt 
domes) and structural factors, could also play an impor-
tant role in controlling the final reservoir architectures 
(Pan et al. 2012). Modeling methods incorporating such 
factors are still scarce; besides, more attention should be 
paid to model the reservoir dynamic behaviors.
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