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Abstract
Quantitative inversion of fracture weakness plays an important role in fracture prediction. Considering reservoirs with a 
set of vertical fractures as horizontal transversely isotropic media, the logarithmic normalized azimuthal elastic impedance 
(EI) is rewritten in terms of Fourier coefficients (FCs), the 90° ambiguity in the azimuth estimation of the symmetry axis is 
resolved by judging the sign of the second FC, and we choose the FCs with the highest sensitivity to fracture weakness and 
present a feasible inversion workflow for fracture weakness, which involves: (1) the inversion for azimuthal EI datasets from 
observed azimuthal angle gathers; (2) the prediction for the second FCs and azimuth of the symmetry axis from the estimated 
azimuthal EI datasets; and (3) the estimation of fracture weakness combining the extracted second FCs and azimuth of the 
symmetry axis iteratively, which is constrained utilizing the Cauchy sparse regularization and the low-frequency regulariza-
tion in a Bayesian framework. Tests on synthetic and field data demonstrate that the 90° ambiguity in the azimuth estimation 
of the symmetry axis has been removed, and reliable fracture weakness can be obtained when the estimated azimuth of the 
symmetry axis deviates less than 30°, which can guide the prediction of fractured reservoirs.

Keywords  Fracture weakness · Azimuth of the symmetry axis · Azimuthal Fourier coefficients · HTI · Azimuthal elastic 
impedance

1  Introduction

Subsurface fractures contribute to providing pathways for 
fluid flow and increasing the permeability of reservoirs. The 
key parameters of great interest for fractured reservoir explo-
ration are the distribution and orientation of fracture sys-
tems, which play an important role in optimizing production 

from naturally fractured reservoirs (Sayers 2009; Far et al. 
2014; Den Boer and Sayers 2018).

The seismic fracture prediction can be classified into two 
basic types: One is the seismic fracture qualitative predic-
tion, which is mainly based on the discontinuity of frac-
tures and uses the prestack seismic diffraction wave imag-
ing approach or poststack geometric seismic attributes (such 
as curvature, coherence, and discontinuity) to qualitatively 
describe macroscale fractures, such as faults. The other is 
the seismic fracture quantitative prediction, which is mainly 
based on seismic azimuthal anisotropy (such as reflection 
amplitude, velocity, and attenuation) to predict mesoscale 
fractures, including obtaining fracture density and direction 
by ellipse fitting using azimuthal anisotropy attributes and 
quantitatively inverting fracture parameters using azimuthal 
prestack seismic data (Liu et al. 2015; Chen et al. 2016; Liu 
et al. 2018; Yuan et al. 2019).

Fracture detection utilizing seismic anisotropy has been 
an active field in the past decades. Hydrocarbon reservoirs 
with vertically aligned fractures can be described by hori-
zontally transverse isotropic (HTI) media caused by a single 
set of rotationally invariant fractures in isotropic background 
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rock. The amplitude and velocity of seismic waves propa-
gating in HTI media usually exhibit significant azimuthal 
anisotropy. Reflection amplitude is superior to seismic 
velocities in characterizing fractured reservoirs due to its 
higher vertical resolution and sensitivity to the properties 
of a reservoir (Far et al. 2013). Much work has been done in 
deriving linear P-wave reflection coefficients in HTI media 
(Rüger 1998; Pšencík and Martins 2001; Shaw and Sen 
2006; Chen et al. 2014a; Pan et al. 2018a) and directly char-
acterizing fractured zones using azimuthal P-wave reflectiv-
ity data (Mallick et al. 1998; Gray and Todorovic-Marinic 
2004; Bachrach et al. 2009; Mahmoudian et al. 2015; Wang 
et al. 2019).

In recent years, amplitude variation with angle and azi-
muth (AVAZ) inversion combining with the linear slip the-
ory (Schoenberg and Douma 1988; Schoenberg and Sayers 
1995) used for modeling fractures embedded in isotropic 
host rock is widely applied to predict fractured reservoirs. 
Based on the rock physics model, Chen et al. (2014a) pro-
posed the AVAZ inversion method to estimate elastic and 
fracture weakness parameters. Pan et al. (2019) presented 
Bayesian AVAZ direct inversion for fluid indicator and frac-
ture weakness in an oil-bearing fractured reservoir. AVAZ 
inversion is an ill condition; a large number of unknown 
parameters and the cross talk between the elastic and 
fracture parameters inevitably make several-term AVAZ 
inversion unstable (Downton et al. 2006; Bachrach 2015). 
One tentative approach to reduce the number of unknown 
parameters is to implement azimuthal seismic amplitude dif-
ference inversion for fracture weakness estimation (Chen 
et al. 2017a; Pan et al. 2017; Xue et al. 2017). In addition, 
Downton and Roure (2011, 2015) rewrote azimuthal P-wave 
reflectivity in terms of Fourier coefficients (FCs) and pro-
posed an azimuthal Fourier coefficient elastic inversion 
for fracture parameters estimation. Barone and Sen (2018) 
implemented the application of real seismic data targeting 
the Haynesville Shale using a Fourier azimuthal amplitude 
variation fracture characterization method. Nevertheless, the 
suitability and reliability of AVAZ inversion in the presence 
of noise are still controversial. Moreover, it is a challenging 
task to extract reasonable space variant wavelets of each 
incident angle at different azimuths used for AVAZ inver-
sion. This can be addressed by azimuthal elastic impedance 
(EI) extended from the concept of EI (Connolly 1999; Whit-
combe 2002; Wang et al. 2006; Yin et al. 2013; Zong et al. 
2013, 2016; Mozayan et al. 2018). In the last decades, there 
were abundant studies on the application of azimuthal EI 
in anisotropic inversion (Martins 2006; Chen et al. 2014b, 
2017b; Pan et al. 2018b; Pan and Zhang 2019).

Our study is the extension of Downton and Roure (2015) 
research, which stabilizes the inversion process by treating 
the fracture weakness separately from the elastic parame-
ters using FCs. Different from traditional fracture weakness 

inversion using azimuthal reflection amplitude or azimuthal 
EI or azimuthal reflection amplitude FCs, in this paper, a 
novel azimuthal EI-based FC variation with angle inversion 
method is proposed. The normalized azimuthal EI equation 
in HTI media is rewritten by using the Fourier series expan-
sion method, the azimuth of the symmetry axis is estimated 
without 90° ambiguity using FCs, and FCs with the high-
est sensitivity to fracture weakness are chosen to estimate 
fracture weakness, which is constrained utilizing the Cauchy 
sparse regularization and the low-frequency regularization in 
a Bayesian framework. The influence of the azimuth of the 
symmetry axis on fracture weakness inversion is analyzed, 
and the proposed approach is demonstrated on both synthetic 
and real data.

2 � Method and theory

2.1 � Fourier coefficients of normalized azimuthal EI 
in logarithm domain

The P-wave reflection coefficient in HTI media is given by 
(Pan et al. 2017):

with

where � , � , and � represent P-wave velocity, S-wave velocity, 
and density of the background isotropic medium, respec-
tively. The superscript – represents the average of elastic 
parameters. g = �

2
/
�
2 is the ratio of the squared vertical 

S- and P-wave velocities in the background isotropic 
medium, and ΔN and ΔT are the normal and tangential frac-
ture weakness of layers. If the HTI model is induced by 
penny-shaped cracks, ΔT gives a direct estimate of the crack 
density and the ratio ΔN∕ΔT is a sensitive indicator of fluid 
saturation (Bakulin et al. 2000). ΔΔN

 represents the differ-
ence in normal weakness between the upper and lower lay-
ers, and ΔΔT

 represents the difference in tangential weakness 
between the upper and lower layers. � is the incident angle, 
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and � = � − �sym is the angle between the observed azimuth 
� and azimuth �sym of the symmetry axis.

Pan et al. (2017) further derived the normalized azimuthal 
EI equation as follows:

where the subscript zero represents the constant medium 
properties of elastic parameters. The dimensionality depend-
ence on the incident angle � is addressed by the introduction 
of EI0 = �� (Whitcombe 2002).

Taking logarithms on both sides of Eq. (2) yields:

with

Equation (3) is the basis of conventional EI variation 
with angle and azimuth inversion for elastic and fracture 
weakness parameters. However, the robustness of inverting 
fracture weakness from azimuthal EI is still controversial 
due to the coupling between elastic and fracture weakness 
parameters.

Downton and Roure (2011, 2015) rewrote the azimuthal 
P-wave reflection coefficient using FCs. We can also 
describe the normalized azimuthal EI in logarithm domain 
in terms of FCs and rearrange Eq. (3) as follows:

with

where r0(�) represents the DC component FC, which 
involves the three-term AVO expression with the addition of 
fracture weakness terms, r2(�) and r4(�) represent the second 
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and fourth FCs, respectively, which are only related to frac-
ture weaknesses and independent of elastic parameters, and 
the phase of the second and fourth FCs is related to azimuth 
of the symmetry axis.

Equation (4) can be further written as the weighted sum 
of cosine and sine waves by:

where an(�) and bn(�) (n = 0, 2, 4) represent the nth FCs, 
respectively. For the case of X regularly sampled data, a 
discrete Fourier transform (DFT) can be used to calculate 
an(�) and bn(�):

Note that Nyquist criterion must be met so that an(�) and 
bn(�) can be obtained by DFT. In order to estimate a2(�) 
and b2(�) , the data must be sampled no coarser than 45°. In 
order to estimate a4(�) and b4(�) , the data must be sampled 
no coarser than 22.5°.

2.2 � Sensitivity analysis of the FCs

The second and fourth FCs are related to fracture weak-
nesses and independent of elastic parameters; we use the 
isotropic medium model parameters given by Rüger and 
Tsvankin (1997) and change the normal and tangential 
weaknesses, respectively, to analyze the sensitivity of the 
second and fourth FCs to normal and tangential weaknesses. 
The P-wave velocity, S-wave velocity, and density of the 
isotropic medium model are 4.500 km/s, 2.530 km/s, and 
2.800 g/cm3, respectively. The normal and tangential weak-
nesses increase from 0 to 0.2, respectively, in increments of 
0.05. We use Eqs. (6) and (7) to calculate the second and 
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fourth FCs. Figure 1a, b shows the second FC r2(�) variation 
with the normal and tangential fracture weaknesses. Fig-
ure 2a, b shows the fourth FC r4(�) variation with the normal 
and tangential fracture weaknesses. It can be seen that when 
the incident angle is less than 30°, r4(�) hardly changes with 
normal and tangential weaknesses, and r2(�) changes signifi-
cantly with normal and tangential weaknesses. Compared 
with r4(�) , r2(�) is more sensitive to normal and tangential 
weaknesses.

Since a2(�) = r2(�) cos 2�sym and b2(�) = r2(�) sin 2�sym , 
a2(�) is a scaled version of r2(�) by the scalar cos 2�sym and 
b2(�) is a scaled version of r2(�) by the scalar sin 2�sym . In 
the case when one of a2(�) and b2(�) is zero, the other one is 
r2(�) or −r2(�) . As shown in Figs. 1a, b and 3a, b, both r2(�) 
and −r2(�) are sensitive to fracture weaknesses. As a result, 

there is always one in a2(�) and b2(�) which is sensitive to 
fracture weaknesses. In the case when a2(�) and b2(�) are the 
same, both are 

√
2r2(�)

�
2 or −

√
2r2(�)

�
2 . As shown in 

Fig. 3c–f, 
√
2r2(�)

�
2 and −

√
2r2(�)

�
2 are both sensitive 

to fracture weaknesses, so both a2(�) and b2(�) are sensitive 
to fracture weaknesses. In other cases, at least one of a2(�) 
and b2(�) is sensitive to fracture weaknesses, and its sensitiv-
ity to fracture weaknesses is greater than the sensitivity of √
2r2(�)

�
2 or −

√
2r2(�)

�
2 to fracture weaknesses. Conse-

quently, no matter how �sym changes, at least one of a2(�) 
and b2(�) is sensitive to fracture weaknesses, which indicates 
that a2(�) and b2(�) can be simultaneously combined to 
invert for fracture weaknesses.
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Fig. 1   Second FC r2(�) variation with the normal and tangential fracture weaknesses, in which a shows r2(�) in the case of changing normal 
weakness, and b shows r2(�) in the case of changing tangential weakness
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2.3 � Resolving the 90° ambiguity in the azimuth 
estimation of the symmetry axis

According to Eqs. (10) and (11), a2(�) and b2(�) are func-
tions of �sym . In order to estimate fracture weaknesses from 
a2(�) and b2(�) , �sym should be estimated first, which can 
be obtained by:

Since the signs of r2(�) and r4(�) cannot be determined, 
there is a 90° ambiguity in �sym estimate using a2(�) and 
b2(�) , and there is a 45° ambiguity in �sym estimate using 
a4(�) and b4(�) ; we propose an approach to resolve the ambi-
guity. Firstly, �sym is directly calculated from a2(�) and b2(�) 
by:

Since a2(�) = r2(�) cos 2�sym , b2(�) = r2(�) sin 2�sym , for 
the case of r2(𝜃) > 0 , if the sign of a2(�) is the same as the 
sign of cos 2�sym , and the sign of b2(�) is the same as the 
sign of sin 2�sym , the estimated �sym is correct, otherwise the 
estimated �sym = �sym + 90◦ . For the case of r2(𝜃) < 0 , if the 
sign of a2(�) is opposite to the sign of cos 2�sym , and the sign 
of b2(�) is opposite to the sign of sin 2�sym , the estimated 
�sym is correct, otherwise the estimated �sym = �sym + 90◦.

For fluid-filled cracks (Bakulin et al. 2000), the relation-
ship between the fracture weaknesses and the crack density 
e is given as:

Combining Eqs. (6), (18), and (19) gives:

Therefore, for fluid-filled cracks, there is always r2(𝜃) > 0

.
For dry (gas-filled) cracks:
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Combining Eqs. (6), (21), and (22) gives:

Thus, for dry (gas-filled) cracks, r2(�) is related to the 
incident angle, crack density, and the ratio g , and since the 
crack density e is always positive, the sign of r2(�) is only 
related to � and g . As shown in Fig. 4a–d, for the case of 
different incident angles, r2(�) increases with the ratio g and 
changes sign with increasing g , and the slope of r2(�) gradu-
ally increases with crack density. However, the change of 
the crack density does not change the corresponding ratio 
g for r2(�) changing sign, while the change of the incident 
angle changes the corresponding ratio g for r2(�) changing 
sign, and the corresponding ratio g for r2(�) changing sign 
becomes larger with increasing incident angle. Note that for 
the case of incident angle � ≤ 30 (in Fig. 4a–c), if g > 0.4 , 
there is always r2(𝜃) > 0 . For the case of incident angle 
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knowing fracture infill (content) in advance, but fracture 
infill is usually unknown, so anisotropic rock physical model 
(Zhang et al. 2013; Chen et al. 2014a; Pan et al. 2017) can 
be used to estimate fracture weaknesses, then calculate r2(�) , 
and judge its sign to further resolve ambiguity.

2.4 � Azimuthal EI‑based FC variation with angle 
inversion for fracture weakness

For each incident angle, the normalized azimuthal EI in loga-
rithm domain can be decomposed into a series of FCs, the sec-
ond and fourth FCs are only related to fracture weakness and 
independent of elastic parameters, and the previous analysis 
suggests that we use second FCs to estimate fracture weakness. 
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Here, the superscript T denotes the transpose of a matrix, 
and the symbol diag denotes a diagonal matrix; the sub-
scripts m represents the mth angle of incidence.

Equation (24) can be expressed in matrix form as:

with

(25)�NM×1 = �NM×2N�2N×1
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.

Based on Bayesian theory (Buland and More 2003), the 
posterior probability density function of the model param-
eters can be expressed as:

(26)p(�|� ) = p(�)p(�|� )

∫ p(�|� )d�
∝ p(�)p(�|� ).
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We assume that the likelihood function p(�|� ) obeys a 
Gaussian probability distribution, which is given by:

where �2
n
 is the variance of noise. Cauchy probability dis-

tribution can suppress random noise and produce a sparse 
solution with high vertical resolution (Downton 2005; Chen 
et al. 2017b; Yuan et al. 2018); we assume that the prior 
probability distribution p(�) obeys Cauchy probability dis-
tribution as follows:

where �2
m

 is the variance of model parameters. Combining 
Eqs. (26), (27), and (28), we can get the initial objective 
function for the MAP solution inversion, which is expressed 
as:

We combine the low-frequency information constraint 
obtained from well logs; the final objective function is 
obtained as follows:

where �ΔN
 and �ΔT

 are weighting factors for the normal and 
tangential fracture weaknesses, respectively. �

��
 and �

��
 

represent initial models for the normal and tangential frac-
ture weaknesses, which can be obtained by using the estima-
tion results from the anisotropic rock physics model (Zhang 
et al. 2013; Chen et al. 2014a; Pan et al. 2017). The itera-
tively reweighted least squares (IRLS) method is employed 
to solve Eq. (30) for estimating the normal and tangential 
fracture weaknesses.

2.5 � Workflow of azimuthal EI‑based FC variation 
with angle inversion for fracture weakness

A workflow of azimuthal EI-based FC variation with angle 
inversion is proposed to estimate fracture weaknesses; we 
conclude the whole process as follows:
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1.	 The constrained sparse spike inversion (CSSI) for azi-
muthal EI datasets from azimuthal angle stacks. The 
inputs include azimuthal angle stacks, azimuthal seis-
mic wavelets, and low-frequency azimuthal EI models of 
each incident angle. Since azimuth �sym of the symmetry 
axis is unknown, low-frequency azimuthal EI models are 
obtained by interpolating isotropic EI calculated from 
well log data.

2.	 The prediction for a2(�) and b2(�) from all estimated 
azimuthal EI datasets and estimation for �sym from a2(�) 
and b2(�) . The ambiguity in �sym estimate is resolved 
by judging the sign of r2(�) , which is obtained by com-
bining fracture weaknesses from the anisotropic rock 
physics model (Zhang et al. 2013; Chen et al. 2014a; 
Pan et al. 2017) and elastic parameters from well log. 
Note that for the case of regularly sampled azimuthal EI 
datasets, a2(�) and b2(�) can be calculated using a DFT 
shown in Eqs. (14) and (15). For the more complex case 
of irregularly sampled EI datasets in azimuth, a least 
squares inversion may be performed by using Eq. (8).

3.	 The estimation for fracture weaknesses using the 
extracted a2(�) , b2(�) , and �sym iteratively, which is con-
strained utilizing the Cauchy sparse regularization and 
the low-frequency regularization in a Bayesian frame-
work (Pan and Zhang 2019).

3 � Examples

3.1 � Synthetic examples

In order to validate the proposed approach, a five-layer 
medium model is established (as indicated in Table 1), in 
which the first, third, and fifth layers are isotropic medium, 
and the second and fourth layers are HTI medium resulting 
from dry cracks; the model parameters are given by Rüger 
and Tsvankin (1997). Note that the fracture symmetry axis 
azimuths of the second and fourth layers are assumed to be 
60° and 120°, respectively. Thomsen anisotropy parameters 
are given in Table 1; the normal and tangential weaknesses 
are obtained using the approximation given by Bakulin et al. 
(2000):

 
Synthetic data are generated from model parameters 

given in Table 1 convolved with a 35 Hz Ricker wavelet, 
including four azimuthal angle gathers (the given azimuths 
are 0°, 45°, 90°, and 135°, respectively), and the incident 

(31)ΔN =
2g

1 − g
�(V)

(32)ΔT = 2� .
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angle ranges from 5° to 35°. Firstly, angle gathers for each 
azimuth are stacked to obtain azimuthal angle stacks, includ-
ing three average incident angles (small incident angle 10°, 
stacked by 5°–15°; middle incident angle 20°, stacked by 
15°–25°; large incident angle 30°, stacked by 25°–35°); for 
each azimuth, the azimuthal EI datasets are obtained from 
azimuthal angle stacks and used to calculate a2(�) and b2(�) . 
Since a2(�) and b2(�) are related to �sym and the ratio g , the 
ratio g can be calculated from a constant or slowly varying 
prior known background model (Buland and More 2003). 
In order to analyze the effect of �sym on fracture weakness 
inversion, we combine a2(�) , b2(�) , and different �sym (the 
azimuth deviation Δ�sym of the symmetry axis is 0°, 15°, 
30°, 45°, 60°, 75°, and 90°, respectively) to estimate fracture 
weaknesses. Figure 5a shows the synthetic azimuthal angle 
gathers without noise; Fig. 6 shows the inversion results of 
fracture weaknesses in different Δ�sym cases, the black curve 
represents the true models, and the dashed lines of different 
colors, respectively, represent the inversion results in the 
case of different Δ�sym . It can be seen that when Δ�sym is 0°, 
the inversion results are completely consistent with the true 
models. When Δ�sym is 15°, the inversion results are slightly 
deviated from the true models. When Δ�sym is 30°, the inver-
sion results are more deviated from the true models, but 
they are basically consistent with the true model trends. As 
Δ�sym continues to increase ( Δ�sym is 45°, 60°, 75°, and 90°, 
respectively), the inversion results are gradually opposite to 
the true model trends and are no longer reliable, which indi-
cates that fracture weakness inversion results obtained by the 
proposed approach is reliable when Δ�sym is less than 30°. 

�sym should be estimated before fracture weakness inver-
sion from a2(�) and b2(�) ; we propose a stable approach 
to estimate �sym without ambiguity and also use the above 
model to validate the proposed approach. Figure 7a shows 
the directly estimated �sym , and Fig. 7b shows the corrected 
�sym using the proposed approach. Note that the directly 
estimated �sym of the second layer (pink rectangle) and 
fourth layer (green rectangle) is 150° and 30°, respectively, 
both having a 90° ambiguity, while the relevant corrected 
�sym is 60° and 120°, respectively, which indicates that 
the 90° ambiguity is successfully resolved using the pro-
posed approach. It is noted that in the proposed approach, 
the sign of r2(�) should be determined first. Here, r2(�) is 

calculated by smoothing model parameters for 100 times. 
In order to show the performance of the proposed approach 
in synthetic noisy data, white Gaussian noise with differ-
ent signal-to-noise (S/N) ratios is added to the resulting 
synthetics; the relevant synthetic noisy results are shown in 
Fig. 5b, c, respectively. The relevant directly estimated �sym 
is shown in Figs. 8a and 9a, respectively, and the relevant 
corrected �sym is shown in Figs. 8b and 9b, respectively. 
As can be seen from Fig. 8a, b, for the case of S/N = 5, in 
the second layer, the �sym directly estimated at small, mid-
dle, and large incident angles is approximately 135°, 143°, 
and 149°, respectively, and the relevant corrected �sym is 
approximately 45°, 53°, and 59°, respectively. In the fourth 
layer, the �sym directly estimated at small, middle, and large 
incident angles is approximately 173°, 27°, and 28°, respec-
tively, and the relevant corrected �sym is approximately 173°, 
117°, and 118°, respectively. As can be seen from Fig. 9a, b, 
for the case of S/N = 2, in the second layer, the �sym directly 
estimated at small, middle, and large incident angles is 
approximately 25°, 141°, and 151°, respectively, and the 
relevant corrected �sym is approximately 25°, 51°, and 61°, 
respectively. In the fourth layer, �sym directly estimated at 
small, middle, and large incident angles is approximately 
171°, 23°, and 35°, respectively, and the relevant corrected 
�sym is approximately 171°, 113°, and 125°, respectively. 
It can be seen that �sym directly estimated at small incident 
angles is unreliable, and �sym directly estimated at middle 
and large incident angles is more stable and reliable but has 
a 90° ambiguity, while the 90° ambiguity is successfully 
resolved using the proposed approach. It indicates that �sym 
can be estimated by using seismic data at middle and large 
incident angles. If there are multiple �sym estimated at mid-
dle and large incident angles, the average of multiple �sym 
can be a more stable and reliable result.

The fracture weakness can be obtained by combining 
a2(�) , b2(�) , and the estimated �sym . The above model is 
also used to validate the proposed fracture weakness inver-
sion approach. Here, the average of �sym estimated at mid-
dle and large incident angles is taken as the final �sym for 
fracture weakness inversion. Figure 10a–c shows the com-
parisons between the inversion results (red) and the true 
models (black) of the normal and tangential weaknesses. 
Here, the initial models (green) of fracture weaknesses are 

Table 1   Elastic and anisotropic parameters of the five-layer model (Rüger and Tsvankin 1997)

Layers �, km/s �, km/s �, g/cm3 �(V) �(V) � �sym,
◦

Isotropic 4.500 2.530 2.800 0.000 0.000 0.000 –
HTI 4.388 2.530 2.800 − 0.150 − 0.155 0.085 60
Isotropic 4.500 2.530 2.800 0.000 0.000 0.000 –
HTI 4.388 2.530 2.800 − 0.150 − 0.155 0.085 120
Isotropic 4.500 2.530 2.800 0.000 0.000 0.000 –
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the smooth results of true models. It can be seen that the 
inversion results are basically consistent with the true mod-
els in the case of no noise. In the case of S/N being 5 and 
2, the inversion results still show good consistency with the 
true models, which further verifies the robustness of the pro-
posed approach.

3.2 � Field data example

A 2D line through single well acquired in western China is 
used to further verify the stability of the proposed approach. 
Noise and multiples must be carefully removed to get the 
true-amplitude-processed gathers before inversion. When 
sorting azimuths, we should ensure sufficient coverage 
and S/N at each azimuth division. Here, the data were 
sorted into four azimuth sectors, including 0° (stacked by 
− 22.5°–22.5°), 45° (stacked by 22.5°–67.5°), 90° (stacked 
by 67.5°–112.5°), and 135° (stacked by 112.5°–157.5°). 
For each divided azimuth, seismic data is stacked over the 
incident angle to obtain three angle stacks, including small 
angle 10° (stacked by 5°–15°), middle angle 20° (stacked by 
15°–25°), and large angle 30° (stacked by 25°–35°). We first 
implement CSSI for azimuthal EI datasets from azimuthal 
angle stacks. Figure 11a–c shows the azimuthal angle stacks 
at different incident angles. Figure 12a–c shows the corre-
sponding azimuthal EI inversion results. 

We next implement DFT for a2(�) and b2(�) from all esti-
mated azimuthal EI datasets and estimation for �sym from 
a2(�) and b2(�) . Under the HTI medium assumption, the fast 
P-wave orientation is usually parallel to the fracture strike 
and perpendicular to the fracture symmetry axis (Delbecq 
et al. 2013). Since there is fast P-wave orientation data in 
the work area, we use the fast P-wave orientation to rotate 
90° to calculate �sym , which is used as the true �sym for com-
parison with the �sym estimated by the proposed approach. 
Figure 13a shows the true �sym calculated from the fast 
P-wave orientation. Figure 13b–d shows the estimated �sym 
at different incident angles. It can be seen that the estimated 
�sym at small incident angle is the worst and the estimated 
�sym at middle and large incident angles is relatively better. 
The estimated �sym near the well location is better than that 
away from the well location, which may be caused due to 
the unreasonable fracture weakness models away from the 
well location. The average of estimated �sym at middle and 
large incident angles is taken as the final estimated �sym . Fig-
ure 14a shows the final estimated �sym , and Fig. 14b shows 
the absolute values of the error between the final estimated 
�sym and true �sym . It can be seen that most of the final esti-
mated �sym is basically consistent with true values, and most 
of the absolute values of the error between the final esti-
mated �sym and true �sym are less than 30°. 

Finally, combining a2(�) and b2(�) , the fracture weak-
ness inversion is performed using true �sym and the final 
estimated �sym , respectively. Figure 15a, b shows the inver-
sion results of fracture weakness obtained using true �sym ; 
Fig. 16a, b shows the inversion results of fracture weakness 
obtained using the final estimated �sym . It can be seen that 
the inversion results near the well location are basically the 
same in both cases, and there are some differences in the 
inversion results away from the well location, which may be 
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caused due to the error in the �sym estimation. As a whole, 
the inversion results in both cases are basically the same. 
We plot the well logs for comparison with the inversion 
results, which show good agreement with the observation in 
wells. The large values of the inverted normal and tangential 
weaknesses near the well are consistent with the fractured 
zones in the reservoir. Therefore, the application of field data 
further verifies the validity and feasibility of the proposed 
approach.

4 � Conclusions

Fractured reservoirs with a set of vertical fractures are equiv-
alent to HTI medium under long-wavelength assumptions. A 
logarithmic normalized azimuthal EI equation is rewritten 
in terms of FCs; a novel azimuthal EI-based FC variation 
with angle inversion is proposed to estimate fracture weak-
ness. Finally, the synthetic and real data are used to verify 
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the feasibility and rationality of the proposed approach, and 
the following conclusions are obtained:

1.	 The approach based on reflection amplitude for estimat-
ing azimuth of the symmetry axis has a 90° ambiguity. 
In this paper, the ambiguity is eliminated by judging the 
sign of the second FC r2(�) . If fracture infill is known, 
for example, for fluid-filled cracks, there is always 
r2(𝜃) > 0 . If the cracks are dry (gas-filled), in this case 
it becomes complicated to determine the sign of r2(�) , 
which is related to incident angle and the ratio g . For the 
case of � ≤ 30◦ , if g > 0.4 , there is always r2(𝜃) > 0 . For 
the case of 𝜃 > 30◦ , if g < 0.4 , there is always r2(𝜃) < 0 . 
While fracture infill is usually unknown, anisotropic 
rock physical model can be used to estimate fracture 
weakness, then calculate r2(�) , and judge its sign to fur-

ther resolve ambiguity. In addition, the analysis shows 
that seismic data at middle and large incident angles 
should be used to estimate �sym . In the case that there 
are multiple �sym estimated at middle and large incident 
angles, the average of multiple �sym can be a more stable 
and reliable estimate, which contributes to reducing the 
uncertainty of the �sym estimate.

2.	 The sensitivity analysis of the FCs to fracture weak-
nesses shows that the second FC is more sensitive to 
fracture weaknesses than the fourth FC; the second FCs 
obtained from azimuthal EI data can be simultaneously 
combined to estimate fracture weaknesses. However, 
azimuth of the symmetry axis should be estimated prior 
to the fracture weakness inversion, and the fracture 
weakness inversion is affected by the estimated azimuth 
of the symmetry axis. Tests on the synthetic and real 
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data show that the inversion results of fracture weak-
nesses obtained by the proposed approach are stable and 
reliable when azimuth of the symmetry axis deviates 
less than 30°.

3.	 The proposed approach for estimating azimuth of the 
symmetry axis and fracture weaknesses depends on the 

constructed anisotropic rock physical model. The cor-
rectness of the model affects the accuracy of the azimuth 
of the symmetry axis and fracture weakness estimation, 
so questions remain about the reliability of this inver-
sion, and more work needs to be done to improve the 
reliability of fracture prediction.
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shows an average angle of 20° (middle incident angle), and c shows an average angle of 30° (large incident angle). The red curve represents the 
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