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Abstract
To establish the relationship among reservoir characteristics and rock physical parameters, we construct the well-bore rock 
physical models firstly, considering the influence factors, such as mineral composition, shale content, porosity, fluid type 
and saturation. Then with analyzing the change rules of elastic parameters along with the above influence factors and the 
cross-plots among elastic parameters, the sensitive elastic parameters of tight sandstone reservoir are determined, and the 
rock physics template of sweet spot is constructed to guide pre-stack seismic inversion. The results show that velocity ratio 
and Poisson impedance are the most sensitive elastic parameters to indicate the lithologic and gas-bearing properties of 
sweet spot in tight sandstone reservoir. The high-quality sweet spot is characterized by the lower velocity ratio and Poisson 
impedance. Finally, the actual seismic data are selected to predict the sweet spots in tight sandstone gas reservoirs, so as to 
verify the validity of the rock physical simulation results. The significant consistency between the relative logging curves and 
inversion results in different wells implies that the utilization of well-bore rock physical simulation can guide the prediction 
of sweet spot in tight sandstone gas reservoirs.

Keywords  Tight sandstone reservoir · Sweet spot · Sensitive elastic parameter · Well-bore rock physical simulation · Rock 
physics template · Pre-stack seismic inversion

1  Introduction

Although conventional reservoirs remain a very important 
part of the world’s oil and gas supply, horizontal drilling and 
multistage fracturing have now made it possible to exploit 
and develop unconventional reservoirs (Sharma and Chopra 
2016). Recently, the tight sandstone gas reservoir is one of 
the most important exploration and development targets of 
unconventional reservoirs in China. And the tight sandstone 
gas has become the most promising energy in the natural 
gas resource field, with 39% of total gas reserves and 25% 
of total gas production (Zou et al. 2016; Dai et al. 2017). It 
is a fact that the prediction of the effective reservoirs rich in 
gas resources is the key issue to the exploration of the tight 
sandstone gas reservoirs (Hart 2008; Albrecht and Reiten-
bach 2014). The effective gas reservoirs with relatively high 
porosity and permeability, which develop in the large-scale 
tight sandstone, can be defined as sweet spot of tight sand-
stone reservoir (Yang et al. 2013; Cudjoe et al. 2016). At 
present, the techniques such as facies-controlled modeling, 
seismic inversion, are used to realize the reservoir descrip-
tion and fluid prediction (He et al. 2011; Amiri et al. 2015; 
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Zheng et al. 2018; Qian et al. 2019). But for tight sandstone 
reservoir, the impedance difference between sweet spots and 
adjacent formations is small, and pure post-stack seismic 
inversion cannot fully meet the needs of these predictions 
and descriptions. As a consequence, the pre-stack seismic 
inversion, which can reveal the reservoir petro-physical char-
acteristics, has been widely used to predict the sweet spots 
of tight sandstone reservoir (Chen et al. 2009; Bosch et al. 
2010; Zong et al. 2016; Zhang et al. 2017a, b).

Recent advances in pre-stack seismic data analysis show 
that some elastic parameters appear to be correlated with for-
mation lithology, porosity and pore fluid (Sena et al. 2011; 
Zhang et al. 2012a, b). Accordingly, these parameters can 
yet be regarded as effective factors to predict sweet spots. 
However, constrained by the complexity and variability of 
reservoirs, the elastic parameters of different reservoirs often 
have some range of overlap (Bachrach 2006; Sengupta and 
Bachrach 2007), and the variance caused by the analysis of 
elastic parameters may lead to further error in inversion of 
sweet spot. Thus, to improve the accuracy in predicting the 
sweet spot of tight sandstone reservoir, it is essential to build 
up the relationship between the elastic and petro-physical 
characteristics of tight sandstone reservoir and determine the 
sensitive elastic parameters for lithology, porosity and pore 
fluid of sweet spot. Based on the P-wave velocity, S-wave 
velocity and bulk density from well logs and rock test data, 
the reservoir petro-physical properties can be extended to 
seismic attributes, so as to understand the elastic modulus in 
relation to five constituents: lithology, porosity, permeabil-
ity, fluid type and saturation (Berryman et al. 2002; Khalid 
and Ghazi 2013; Khalid et al. 2014; Ahmed et al. 2015), 
and find the most sensitive hydrocarbon indicators to pore 
fluid (Feng et al. 2007). We have to admit that the method 
to determine the best indicator using well logs and rock test 
data is not suitable for the area with little or no wells, and 
the best indicator needs to be calibrated and tested for the 
local situation (Chen et al. 2009). Seismic rock physical 
analysis is an important technique to establish the connec-
tion between reservoir elastic parameters and petro-physical 
properties in the research area with little and no wells (Mol-
lajan et al. 2015; Ahmed et al. 2016; Ehsan et al. 2016).

So, the well-bore rock physical simulation of sweet spot 
of tight sandstone reservoir was carried out in this paper. 
With analyzing the differences among sweet spot, tight sand-
stone and mudstone, and the variation of elastic parameters 
of different sweet spots, the main purpose of this paper is 
to determine the sensitive elastic parameters for lithology, 
porosity and fluid saturation of sweet spot, respectively, and 
establish the physical recognition template of sweet spot. 
Eventually, the technologies of rock physics analysis and 
pre-stack elastic parameters inversion were perfectly com-
bined to predict the sweet spot of tight sandstone reservoir 
in a case study.

2 � Well‑bore rock physical simulation

2.1 � Forward simulation research idea

Actually, reservoir rock is a saturated porous medium consist-
ing of solid matrix and pore fluids with heterogeneity and ani-
sotropy properties, which lead to the complexity of the seismic 
wave propagation process. In order to simulate the velocity 
characteristics of the rock, the rock is usually described as an 
equivalent body, which is simplified as a two-phase medium.

Utilizing rock physical test results and well-logging data 
of research area, solid models and pore-fluid models are built 
after supposing parameters such as mineral components, 
porosity, pore-fluid type and saturation. Then, well-bore reser-
voir models with different research targets can be constructed 
by different combinations of solid models and pore-fluid 
models. On this basis, the velocities and densities of well-
bore reservoirs are simulated utilizing difference rock physi-
cal simulation equations (Shuey 1985; Hyndman and Spence 
1992; Jakobsen et al. 2000) and the Gassmann’s poroelastic 
model (Gassmann 1951). For theoretical well-bore reservoir 
models, the elastic parameters are calculated with the simula-
tion of P-wave velocity, S-wave velocity and density firstly, and 
then the sensitive elastic parameters of sweet spot for lithol-
ogy prediction and fluid identification can be determined with 
analyzing the variation rules of elastic parameters changing 
with the reservoir petro-physical properties. On this basis, the 
rock physical template of sweet spot is built. For actual well-
bore reservoir models lacking S-wave velocity, genetic algo-
rithm method is introduced into simulation process. By com-
paring the P-wave velocity and bulk density of well-logging 
data with corresponding simulation results, mineral model of 
actual well-bore reservoir model is adjusted constantly using 
genetic algorithm method. When the error between measured 
and simulated results satisfies certain conditions, the currently 
S-wave velocity is the prediction result. Finally, combined with 
S-wave velocity prediction results and rock physical template, 
the sweet spot of tight sandstone reservoir can be predicted 
with the help of pre-stack seismic inversion (Fig. 1).

2.2 � Forward principle and method

After Khalid et al. (2015), the Gassmann’s relation can be rep-
resented in the following form as:

where ϕ is the reservoir porosity. Since the effective shear 
modulus (μsat) is not affected by the nature and amount of 
pore fluids, Gassmann’s model assumes:

(1)Ksat = Kdry +

[
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Kdry

Kma
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here μdry is the shear modulus of rock frame.
The above Gassmann relation is used to simulate the 

physical characteristics of the rock with completely satu-
rated single-phase fluid. While as the tight sandstone, its 
pore spaces usually contain two or more phase fluids, and 
the pore fluids may be unsaturated. So an equivalent volume 
modulus formula for partially saturated mixed fluids should 
be introduced into Gassmann relation so as to simulate the 
physical characteristic of tight sandstone (Wang 2016; Si 
et al. 2017). Usually, the Kfl of pore fluids is determined 
by Wood’s average relation, but Mavko and Mukerji (1998) 
pointed out that partial pore filling is not complete in the 
case of low porosity of rocks, which will reduce the appli-
cability of Wood model. So the weighted Wood and Patchy 
model is used to calculate the Kfl of the tight sandstone res-
ervoir in this paper.

where KPatchy and KWood are the bulk modulus of pore fluids 
calculated by Patchy relation and Wood relation, respec-
tively. a and b are weighted coefficients, and a + b = 1.

As the important intermediate parameters to obtain the 
modulus of fluid saturated rock, the Kdry and μdry of drained 
rock should be calculated. At present, there are several meth-
ods to calculate the modulus of drained rock (Berryman 1995; 
Xu and White 1995; Lee 2006). Due to the low degree of 
research on deep tight sandstone reservoir in the East China 
Sea Shelf Basin, the pore structure data of tight sandstone in 

(3)Kfl = a × KPatchy + b × KWood

this basin are not perfect, which lead to the difficult applica-
tion of Xu–White model. In this paper, we used the revised 
Pride experience model (Pride et al. 2004) with the following 
expressions:

The parameter c is named rock consolidation parameter, 
and γ is an adjusting parameter, calculated by the relation: 
� = (1 + 2c)∕(1 + c) . The value of c is related to the pore 
shape and the ratio of bulk and shear modulus of solid matrix, 
which can reflect the pore structure to some extent (Pride 
2005). By comparing the elastic curves calculated by different 
rock consolidation parameters and the rock physical test results 
of drained sandstones, we can get the best rock consolidation 
parameter suitable for the research area.

The elastic modulus of solid matrix is calculated by the cor-
responding modulus of each mineral in the rock, using VRH 
average model.

(4)Kdry =
Kma(1 − �)

(1 + c�)

(5)�dry =
�ma(1 − �)

(1 + �c�)
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Fig. 1   Research idea for sweet spot prediction based on well-bore rock physical simulation
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where Mi is the elastic modulus of single mineral (mainly 
represents bulk and shear modulus in this paper) and fi is the 
content of the mineral.

Based on the modified Gassmann relation, the P-wave 
and S-wave velocity of tight sandstone can be calculated 
using the relations as follows:

where the bulk density (ρsat) of fluid saturated rock as a func-
tion of porosity (ϕ), fluid (ρfl) and matrix (ρma) density is 
given:

where ρi is the density of single mineral, fi is the content 
of the mineral, Swater is the saturation of brine, Sgas is the 
saturation of gas, ρwater is the density of brine, and ρgas is 
the density of gas.

The above relations are used to simulate the effect of 
pore fluids on seismic response where various parameters 
(e.g., the bulk and shear modulus of minerals, the bulk 
modulus of fluids, the densities of minerals and fluids and 
porosity, saturation of brine and gas) are mandatory. The 
modulus and density of rock component are mostly meas-
ured in the laboratory, and the content can be supposed 
during the simulation process. According to the Mineral 
Handbook of Schlumberger and Ahmed et al. (2016), parts 
of inputs are given in Table 1:

(7)Vp =

√

(

Ksat +
4

3
�sat

)/

�sat

(8)Vs =
√

�sat∕�sat

(9)�sat = �ma + ��fl =

N
∑

i=1

fi�i + �(Swater�water + Sgas�gas)

Mineral content, porosity and water saturation are the 
important parameters to reflect the physical properties of 
reservoir rock. To determine the sensitive elastic parameters 
of sweet spot of tight sandstone reservoir, mudstone model, 
tight sandstone model, water-bearing sandstone model and 
sweet spot model are supposed in this paper where the cor-
responding physical parameters are obtained from rock test 
results and well-logging data of research area, and detailed 
values are shown in Table 2:

2.3 � Analysis of simulation results and optimization 
of sensitive elastic parameters

Aiming at predicting the sweet spot of tight sandstone res-
ervoir, a technological process of successive approxima-
tion, which is from lithology prediction to physical prop-
erty prediction to gas-bearing prediction, has been designed. 
Firstly, the sandstone reservoir (lithologic model) is pre-
dicted from clastic rocks, then the relatively high porosity 
and permeability reservoir (physical model) is searched 
from tight sandstone, and finally the high-quality reservoir 
(gas-bearing model) is predicted. Based on this deepening 
process, three theoretical well-bore reservoir models with 
different research targets are built based on the four con-
structed rock models. Model a is used to select the elas-
tic parameters which can reveal the change of lithology by 
altering the shale content mainly. Model b mainly changes 
porosity so as to choose the elastic parameters sensitive to 
the physical characteristics of tight sandstone. With chang-
ing the water saturation, model c can tell us the sensitive 
elastic parameters of gas-bearing properties (Fig. 2). After 
constructing well-bore reservoir physical models, the elastic 
parameters can be calculated using the above method and 

Table 1   Bulk and shear modulus and densities of minerals and fluids used in Gassmann’s poroelastic model

Rock component Quartz Potassium feld-
spar

Anorthose Calcite Clay Brine Gas

K, GPa 37.8 45.8 75.6 76.2 25.0 3.16 0.0552
μ, GPa 44.4 27.8 25.6 30.3 18.5 – –
ρ, g/cm3 2.65 2.57 2.61 2.71 2.5 1.178 0.143

Table 2   Mineral content, porosity and water saturation of the five rock physical models

Rock physical model Mineral content, % Porosity, % Water saturation, %

Quartz Potassium 
feldspar

Anorthose Calcite Clay

Mudstone 4.5 2.0 2.5 1.0 90 0 100
Tight sandstone 61.6–79.6 4.2 6.5 3.7 5–20 1–4 0–100
Water-bearing sandstone 61.6–79.6 4.2 6.5 3.7 5–20 6–14 60–100
Sweet spot 61.6–79.6 4.2 6.5 3.7 5–20 6–14 0–60
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data. At present, there are various elastic parameters and 
corresponding combination parameters; in this paper, we 
mainly choose P-wave impedance (AI), S-wave impedance 
(SI), velocity ratio (Vp/Vs), shear modulus (μ), bulk modulus 
(K), lame constant (λ), Poisson impedance (PI) and fluid 
factor (F) (Table 3).

From the simulation results of model a, velocity ratio, 
lame constant, Poisson impedance and fluid factor change 
regularly with shale content alteration; the values of these 
elastic parameters decrease with the decrease in shale con-
tent (Fig. 2a). Comparing the elastic parameter curves of 
pure gas sandstone and pure water sandstone with different 
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porosity, we can see that: only S-wave impedance and shear 
modulus are not affected by the change of pore fluid basi-
cally, presented as the decrease in S-wave impedance and 
shear modulus vary with the increase in porosity (Fig. 2b). 
For the sandstones with different water saturation, most 
of elastic parameters except S-wave impedance and shear 
modulus perform as regularly variation with water saturation 
on the condition of same porosity. But comparing the elastic 
parameter curves of well-bore reservoir models with same 
water saturation and different porosity, only lame constant, 
Poisson impedance and fluid factor are not affected by the 
change of porosity (Fig. 2c). According to the theoretical 
well-bore simulation results, velocity ratio, S-wave imped-
ance, lame constant, Poisson impedance and fluid factor may 
be the sensitive elastic parameters to identify the sweet spot.

From I to V are represented as different rock models, 
I is mudstone model, II are tight sandstone models with 
different shale content, III are effective sandstone models 
with different porosity (dotted line indicates pure gas sand-
stone Sw = 0%; solid line indicates pure water sandstone 
Sw = 100%), IV and V are sweet spot models and water-
bearing models, respectively, with different saturation (dot-
ted line indicates sandstone with 6% porosity; solid line 
indicates sandstone with 12% porosity). The detail mineral 
content of every rock models is supposed in Table 2.

In order to further discuss the validity of the above elastic 
parameters, which have been determined through the theo-
retical well-bore rock physical simulation, the change rules 
of the elastic parameters with the alteration of shale content, 
porosity and water saturation have been verified. Velocity 
ratio of sandstone increases varies with the increase in shale 
content, porosity and water saturation, but the controlling 
factors affecting velocity ratio of sandstone are different with 
the difference of porosity. For the sandstone with low poros-
ity (< 10%), velocity ratio is mainly affected by shale content 
and porosity, while for the high-porosity (> 14%) sandstone, 
the influence of water saturation on velocity ratio is increas-
ing; particularly for the high-porosity sandstone with water 
saturation bigger than 90%, its velocity ratio has been higher 
than mudstone (Fig. 3a). However, on the condition of actual 
geological conditions, velocity ratio can distinguish most 
of sandstones and mudstones. The main affecting factor of 
S-wave impedance and shear modulus is porosity, shown 

as the decrease with the increase in porosity, and when the 
porosity increases to a certain extent, the S-wave imped-
ance and shear modulus tend to be stable. Comparing the 
variation of S-wave impedance and shear modulus vary with 
water saturation under the same porosity condition, S-wave 
impedance of sandstone with high porosity is influenced 
by the fluid properties more obviously, its value increases 
slowly with the increased water saturation (Fig. 3b), while 
shear modulus is almost impervious to pore fluid (Fig. 3c). 
Lame constant, Poisson impedance and fluid factor are com-
monly used for fluid prediction, but lame constant and fluid 
factor increase first and then decrease with the increase in 
porosity, which indicate that the lame constant and fluid fac-
tor of tight sandstone will overlap with low porosity reser-
voir, and with the increase in water saturation, the overlap 
range is becoming wider (Fig. 3d, e). At the same condi-
tion, the overlap problem of Poisson impedance will occur 
when the water saturation of tight sandstone is bigger than 
80%. For most tight sandstone reservoirs, Poisson imped-
ance decreases with the increase in porosity and the decrease 
in water saturation obviously, the low Poisson impedance 
maybe indicated the high quantity reservoir. And compared 
with lame constant and fluid factor, Poisson impedance is 
less affected by shale content (Fig. 3f). 

From the above theoretical well-bore rock physical 
simulation results, it is denoted that velocity ratio can dis-
tinguish most of sandstones and mudstones on the actual 
geological conditions, low velocity ratio reflects the pure 
tight sandstone. Shear modulus is a good indicator to reflect 
the physical properties of sandstone, but when the porosity 
of sandstone is large, the shear modulus tends to be stable 
and the recognition effect of physical properties begins to 
weaken. Poisson impedance changes regularly with porosity 
and water saturation, and the low PI indicates high-quality 
reservoir with the high porosity and gas saturation.

3 � The rock physics template of sweet spot

Usually, the elastic parameters of sweet spot are influenced 
by multi-geophysical properties, and it’s difficult to pre-
dict and describe the sweet spot distribution precisely just 
using single elastic parameter. The target of the interaction 

Table 3   Calculation equations of elastic parameters used in the article (Russell et al. 2003; Quakenbush et al. 2006; Pei et al. 2010; Yin et al. 
2015)

Elastic parameter Formulas Elastic parameter Formulas

P-wave impedance AI = ρ * Vp S-wave impedance SI = ρ * Vs

Velocity ratio γ = Vp/Vs Shear modulus μ = ρ * Vs
2

Bulk modulus K = ρ * (Vp
2 − 4/3 * Vs

2) Lame constant λ = ρ * (Vp
2 − 2 * Vs

2)
Poisson impedance PI = AI − cSI Fluid factor F = AI2 − bSI2
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analysis among elastic parameters is to build up the relation-
ship between elastic parameters and reservoir geophysical 
properties. With the optimization of the best indicators for 
the lithology and fluid characteristics of sweet spot, the rock 
physics template of reservoir can be constructed, so as to 
determine the elastic criterion for the sweet spot prediction.

According to the elastic parameters’ change rules, there is 
a preliminary conclusion that velocity ratio, shear modulus 
and Poisson impedance can reflect the changes of lithology, 

porosity and pore fluid among different rocks, respectively. 
But we note that the variation of porosity can be revealed 
by Poisson impedance, and the reservoir with high poros-
ity is characterized by the low Poisson impedance. So the 
cross-plot between velocity ratio and Poisson impedance is 
mainly painted in this paper. Under the same shale content, 
sweet spot and water-bearing sandstone can be distinguished 
obviously using velocity ratio and Poisson impedance, and 
the elastic characters of sweet spot show low velocity ratio 
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and Poisson impedance. The contrast between sweet spot 
and tight sandstone with the similar mineral content implies 
that the velocity ratio of sweet spot is higher than that of 
tight sandstone, while the Poisson impedance of sweet spot 
is lower than that of tight sandstone. Although the veloc-
ity ratio of sweet spot increases with the shale content, it 
is still lower than the velocity ratio of mudstone with the 
value reaching to 1.77 (Fig. 4). We can use velocity ratio 
and Poisson impedance to distinguish sweet spot from tight 
sandstone, water-bearing sandstone and mudstone effec-
tively. Thus, velocity ratio and Poisson impedance are uti-
lized to construct the rock physics template of sweet spot in 
this article.

On the basis of the construction of rock physics template 
of sweet spot, the actual data, which are calculated from 
well-logging data, are projected onto the template (Fig. 4). 
The result shows that the mudstone, tight sandstone and 
water-bearing sandstone are mainly concentrated in the 
area with high velocity ratio and Poisson impedance, and 
the elastic property of sweet spot is characterized by low 
velocity ratio and Poisson impedance. As can be noticed, the 
elastic parameters of tight sandstone, sweet spot and water-
bearing sandstone are overlap, but we can identify most of 
sweet spots using velocity ratio and Poisson impedance.

In general, velocity ratio and Poisson impedance are 
the most sensitive elastic parameters for the prediction of 
sweet spot. Velocity ratio is the best lithologic indicator to 
distinguish sandstone and mudstone. On the basis of the 

prediction of sandstone, Poisson impedance can reflect the 
distribution of natural gas bearing in the reservoir with high 
porosity effectively. For the research area, the range of veloc-
ity ratio of sandstone is about 1.5–1.65, and the Poisson 
impedance of gas-bearing reservoir is probably less than 
2100 m/s g/cm3. Under the guidance of the above elastic 
criterion, the pre-stack seismic inversion can be carried out 
to predict the sweet spot.

4 � Application effects of forward simulation 
and discussions

4.1 � Reservoir characteristic of test area

The test area is located in a basin in the East China Sea. The 
buried depth of the target layers is generally over 3500 m, 
with the formation pressure between 34 and 62 MPa, and the 
formation temperature between 142 and 170 °C, belongs to 
the deep clastic rock tight reservoir with high temperature 
and pressure. As the target layers in this paper, the single 
sand body of layer A and B is thick and may be the potential 
strata with a high-quality reservoir (Fig. 5a). Indicated by 
the statistical results of the core porosity and permeability 
in different wells, it can be seen that the difference in core 
porosity between A and B layers is not significant, the vari-
ation range of core porosity in A layer is about 6%–15%, 
and that in B layer is about 4%–14%. But the difference in 
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core permeability between A and B layers is large, and the 
permeability of A layer is generally greater than 1 md, with 
the maximum permeability even reaching 45 md, and the 
permeability of B layer is mainly concentrated in 0–3 md.

According to the Industry Standard of China’s Tight 
Sandstone Gas (2011), the reservoir with porosity less 
than 10% and permeability less than 1 md is defined as 
the tight sandstone reservoir (Zhang et al. 2017a, b). The 
reservoir background of target layers in the research area 
is mainly the tight sandstone reservoir, but develops rela-
tively high-porosity and permeability-effective reservoirs, 
and the quality of reservoir in A layer is better than that 
in B layer obviously (Fig. 5a, b). Meanwhile, the statisti-
cal result of mineral composition reveals that the content of 
sandstone minerals in different wells and tectonic positions 
is almost the same (Fig. 5c), the content of quartz is about 
66.1%–70.4%, and that of potassium feldspar and anorthose 

is about 18.4%–22.7%. The interstitial minerals are mainly 
authigenic minerals (such as calcite and dolomite) and argil-
laceous matrix, with the content of 9.3%–11.2%.

4.2 � The pre‑stack inversion of sweet spots

Pre-stack seismic inversion is a feasible and effective way 
to obtain sensitive elastic parameters from pre-stack seismic 
data. To test the feasibility of the optimized elastic param-
eters for predicting sweet spot, five pre-stack angle gather 
data and five wells’ logging data are used to invert velocity 
ratio and Poisson impedance.

Seismic wavelet will affect the accuracy of inversion 
results, and seismic wavelet optimization can be achieved 
by well-to-seismic calibration, so during the pre-stack inver-
sion process, multi-round well-to-seismic calibration for five 
pre-stack angle gather data was carried out utilizing five 
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well’ logging data. For each pre-stack angle gather data, 
seismic wavelets from five wells were extracted firstly, and 
their synthetic records were fitted separately. Then by adjust-
ing and comparing the matching relationships of seismic 
events between the actual seismic data and five synthetic 
seismograms constantly, the wavelets were determined, if 
the matching relationships were good. Otherwise, the above 
steps were repeated until the matching relationships were 
good. Finally, an average seismic wavelet was obtained by 
fitting multiple seismic wavelets from five pre-stack angle 
gather data, and this average seismic wavelet was introduced 
into the pre-stack inversion. On the basis of the workflow 
of the inversion method, the inversion results are shown in 
Figs. 6 and 7.

Figure 6 displays the inverted result of velocity ratio. 
The resolution of the inverted result is relatively high, and 
the reservoir and surrounding rock can be distinguished 
clearly. According to the color code, the red yellow color 
reflects the velocity ratio with the value lower than 1.65 and 
indicates the distribution of sandstone (Fig. 6a). Usually, 
the sandstone is characterized by low Gamma ray, and the 
Gamma value of sandstone is generally less than 80 API. 
The contrasts between the curves of Gamma ray (GR) and 
the well-side inversion results, and the logging interpretation 
results and velocity ratio plane map of layer A in different 
wells, show that the vertical and horizontal distributions of 

sandstone reflected by the velocity ratio and Gamma ray are 
almost the same (Fig. 6b, c).

As demonstrated from the rock physics template, the dif-
ferences in the velocity ratio for the sweet spot and water-
bearing sandstone are very small, which means that it is dif-
ficult to identify the fluid type through a simple application 
of the velocity ratio. The Poisson impedance can distinguish 
the sweet spot and water-bearing sandstone effectively. With 
the decrease in the value of Poisson impedance, the color 
changes from light blue to red. On the basis of the above 
elastic criterion of sweet spot, the Poisson impedance with 
the value lower than 2100 m/s g/cm3 is mainly characterized 
as the red yellow color (Fig. 7a), and from the comparisons 
between the curves of porosity (por) and gas saturation (Sg) 
and the well-side Poisson impedance inversion results, and 
the logging interpretation results and Poisson impedance 
plane map of layer A, the vertical and horizontal distribu-
tions of sweet spot reflected by the Poisson impedance and 
logging data are almost the same too, the more red the color 
is, the higher the porosity and gas saturation the reservoir 
is (Fig. 7b, c).

Meanwhile, the average well-side inversion results 
and average well calculation results of velocity ratio and 
Poisson impedance have been compared. The comparison 
results show that the errors between inversion results and 
calculation results of velocity ratio in different wells are 
generally less than 3% (Fig. 8a), and the errors between 
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inversion results and calculation results of Poisson imped-
ance are generally less than 2% (Fig. 8b), which further 
prove that velocity ratio and Poisson impedance can be 
used to reveal the lithologic and gas-bearing properties of 
sweet spots. Finally, the above real data applications have 
illustrated that the pre-stack seismic inversion method 
based on well-bore rock physical simulation can be used 
to predict the sweet spots in tight sandstone reservoirs.

5 � Discussions

During the rock physical simulation processing, it is 
necessary to select appropriate models for rock physical 
simulation of tight sandstone. As the deep tight sandstone 
reservoirs developed in the East China Sea, the research 
degree of this tight sandstone reservoir is low, and pore 
structure data are not perfect, so Xu–White model, which 
is based on different pore structure and corresponding con-
tents (Zhang et al. 2012a, b; Wang 2016; Jia et al. 2018), 
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cannot be utilized to simulate the elastic modulus of tight 
sandstone, while the rock consolidation parameter of Pride 
model can indicate the degree of consolidation among par-
ticles and the shape of voids formed among particles, and 
may reflect the pore structure to some extent (Pride 2005, 
Lee 2006). So Pride model is introduced in this paper, 
to solve the difficult of pore structure description. Take 
bulk modulus as an example, comparing the rock physical 
test results and bulk modulus curves of drained sandstone, 
Pride model with the rock consolidation parameter 7 can 
be used to simulate the elastic parameters of drained rock 
in test area (Fig. 9a). But follow-up with the deepening of 
the study of tight sandstone reservoirs in the East China 
Sea, the Pride model can be replaced by Xu–White model 
to obtain more accurate simulation results. For bulk modu-
lus of pore-fluid simulation, Wood model gives the vari-
ation of bulk modulus with water saturation in saturated 
fluid state, while Patchy model is more suitable for pore 
fluid with non-uniform patchy distribution (Zhang et al. 
2012a, b). But in actual geological situation, occurrence 
states of most pore fluids in tight reservoir are between 
saturated fluid state and non-uniform patchy distribution. 
So the weighted Wood and Patchy model is obtained by 
synthesizing the above two models to simulate the bulk 
modulus of pore fluid in tight sandstone reservoir. The 
real data distributions prove that the variation trend of 
bulk modulus with water saturation simulated by weighted 
Wood and Patchy model, with the weighted coefficient 
a between 0.4 and 0.6, is close to that reflected by well 
interpretation results of test area (Fig. 9b). However, the 
occurrence state of pore fluid in tight sandstone reservoir 
is very complex in real situation. How to calculate the 
elastic parameters of low pore fluid accurately is still a 

difficult problem to be solved in rock physical simulation 
of tight sandstone reservoir.

From the rock physical simulation results of tight sand-
stone reservoir, we can see that Poisson impedance is more 
sensitive to gas-bearing property of tight reservoir than 
other elastic parameters, such as velocity ratio, lame con-
stant, fluid factor. Statistical results of velocity and density in 
test area show that the variation regularity of P- and S-wave 
velocities with lithology is poor, and the difference between 
sweet spot and water-bearing sandstone is small (Fig. 10a, 
b). While density can distinguish sweet spot and water-
bearing sandstone well, the densities of most sweet spots 
are lower than that of water-bearing sandstone (Fig. 10c). 
Reflected in the elastic parameters, the velocity ratio lacks 
density parameters. Although lame constant and fluid factor 
involve density in the calculation processing, the difference 
between density and velocity is too large due to the square 
of P- and S-wave velocities, which reduces the differentia-
tion of density (Fig. 10d, e). In contrast, Poisson impedance 
is calculated from the multiplication of density and velocity 
difference, and the density strengthens its capacity to dis-
tinguish sweet spot from water-bearing sandstone and tight 
sandstone (Fig. 10f). In addition, the parameter c of Poisson 
impedance can be calculated from the Greenberg–Castagna 
mudstone baseline equation according to the geological situ-
ation of actual area. By adjusting this parameter, Poisson 
impedance can satisfy the prediction of sweet spot in differ-
ent research areas. Therefore, this paper considers that Pois-
son impedance has higher accuracy and wider applicability 
for sweet spot prediction of tight sandstone reservoirs.

As a widely used method for predicting sweet spot of tight 
sandstone reservoir, pre-stack seismic inversion needs the 
support of rock physical simulation in the inversion process. 
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On the basis of rock physical forward modeling and simula-
tion of tight sandstone reservoir, the most sensitive elastic 
parameters for identifying lithology and gas properties of the 
test area in this paper are velocity ratio and Poisson imped-
ance, which has pointed out the inversion directions for 
pre-stack seismic inversion. Another important application 
of rock physical simulation is predicting S-wave velocity. 
During the pre-stack seismic inversion process, wells which 
are used to control inversion should contain P- and S-wave 
velocity, while W6 and W7 wells distributed in the north of 
the test area belong to old wells without S-wave velocity. So 
in the course of project research, the S-wave velocities of the 
above-mentioned wells are predicted by rock physical simu-
lation and genetic algorithm, so as to provide constraints for 
pre-stack seismic inversion in this area. Restricted by the 
number of words in the article, this part of study is not in 
the article. Most importantly, a more effective rock physical 
criterion for sweet spot identification in test area is deter-
mined utilizing rock physical template. Relative to velocity 
and density, this rock physical criterion enhances the verti-
cal resolution accuracy of logging interpretation, and guides 
the fine interpretation of seismic data, which can help con-
struct a more precisely stratigraphic framework in inversion 
process and reduce the uncertainty of inversion. Generally 
speaking, with the help of well-bore rock physical simula-
tion, pre-stack seismic inversion and interpretation of the test 
area may reach a new quantitative or semiquantitative level 
from traditional qualitative interpretation.

6 � Conclusions

Five rock models and three well-bore rock physical models 
are built after supposing parameters such as mineral com-
ponents, porosity, pore-fluid type and saturation. Then, the 
relationship between lithology and elastic parameters is 
clarified by using the rock physical simulation method of 
tight reservoir. Generally speaking, velocity ratio and Pois-
son impedance is the best elastic parameter pair to reveal 
the lithologic and gas properties of sweet spot. Although 
the velocity ratio of high-porosity water-bearing sandstone 
is larger than that of mudstone, it can still be used to distin-
guish most of sandstone. Poisson impedance can distinguish 
sweet spot from water-bearing sandstone effectively and 
changes regularly with the varied porosity and gas satura-
tion. Sweet spot is mainly characterized by the low velocity 
ratio and Poisson impedance.

Considering the influences of shale content, porosity, 
fluid type and saturation comprehensively, the rock physics 
template is constructed and the elastic criterion for predict-
ing the lithologic and gas-bearing properties of sweet spot 
is determined. The sweet spot in test area can be defined as 
the tight sandstone reservoir with velocity ratio lower than 

1.67 and Poisson impedance lower than 2100 m/s g/cm3. 
The comparison between the log curves and corresponding 
geophysical parameters in different wells and the well-side 
inversion results implies that velocity ratio indicates the dis-
tribution of sandstone accurately, and Poisson impedance is 
the best indicator to predict the sweet spot in tight sandstone 
reservoir, which proves that the comprehensive utilization 
of well-bore rock physical simulation and pre-stack seismic 
inversion can predict the sweet spot of tight sandstone res-
ervoir effectively.

The well-bore forward simulation results of this paper 
prove that the conclusion that low velocity ratio and low 
Poisson impedance can effectively characterize dessert of 
tight sandstone reservoir is correct. Then combined with the 
actual geological conditions of research area, the thresholds 
of velocity ratio and Poisson impedance have been deter-
mined further, providing a theoretical basis for semiquanti-
tative or quantitative interpretation of inversion results. In 
addition, this paper can also provide a research idea and 
method for sweet spot prediction of other small fault basins 
with similar geological conditions in eastern China. It should 
be noted that the optimization of sensitive elastic parameters 
of sweet spot and its thresholds should be depending on the 
actual geological conditions of different research areas.
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