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Abstract
For large-scale 3D seismic data, target-oriented reservoir imaging is more attractive than conventional full-volume migration, 
in terms of computation efficiency. Gaussian beam migration (GBM) is one of the most robust depth imaging method, which 
not only keeps the advantages of ray methods, such as high efficiency and flexibility, but also allows us to solve caustics and 
multipathing problems. But conventional Gaussian beam migration requires slant stack for prestack data, and ray tracing 
from beam center location to subsurface, which is not easy to be directly applied for target-oriented imaging. In this paper, 
we modify the conventional Gaussian beam migration scheme, by shooting rays from subsurface image points to receivers 
to implement wavefield back-propagation. This modification helps us to achieve a better subsurface illumination in complex 
structure and allows simple implementation for target reservoir imaging. Significantly, compared with the wavefield-based 
GBM, our method does not reconstruct the subsurface snapshots, which has higher efficiency. But the proposed method is 
not as efficient as the conventional Gaussian beam migration. Synthetic and field data examples demonstrate the validity and 
the target-oriented imaging capability of our method.

Keywords Gaussian beam migration · Target-oriented imaging · Illumination · Ray tracing

1 Introduction

Gaussian beam method started its successful path in geo-
physics in the early 1980s (Popov 1981; Kachalov and 
Popov 1981; Červený et al. 1982; Popov 1982; Červený 
1983; Červený and Pšenčík 1983a, b, 1984). Its reliance on 
ray theory enables it to keep the advantages of ray-based 

methods. For instance, it provides physical insight of the 
propagation of the seismic wave, which makes it easier for us 
to describe the wave phenomena in quite complicated geo-
physical models. In addition, it is more efficient than wave 
equation migration. However, there are still some shortcom-
ings of conventional ray-based Kirchhoff migration, such as 
caustics (Babich and Popov 1989; Popov 1982, 2002) and 
multipathing problem (Bleistein 1999; Hill 2001; Gray et al. 
2002; Liu and Palacharla 2011). Conversely, Gaussian beam 
migration (GBM) avoids the thorny problem of amplitude 
singularity in the vicinity of caustics using dynamic ray trac-
ing with a complex-valued initial beam parameter. In the 
meantime, its decomposition of local plane wave in different 
directions enables it to propagate different angles to sub-
surface image point independently, which allows us to deal 
with multipathing. All of these characteristics make GBM a 
robust and versatile depth imaging tool, with accuracy com-
parable to wave equation migration and with flexibility and 
efficiency comparable to Kirchhoff migration.

GBM has been recognized as a flexible, accurate and ele-
gant depth imaging technique. Hill (1990, 2001) proposed 
the basic poststack and prestack GBM schemes. Briefly, 
his method can be explained as follows: Hill used a local 
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slant-stack approximation with a series of Gaussian window, 
then ray tracing from the beam center location, finally plane 
wave components in different directions are back-propagated 
to the subsurface image point. If a phase correction factor is 
applied to compensate the phase change of Gaussian beams 
emanating at geophone locations different from beam center 
locations, this approximation will be valid when the velocity 
field near the surface is constant. Unfortunately, it is likely 
to break down in the condition that surface elevation var-
ies rapidly. For these situations, many researchers extended 
their work and have made progress. Nowack et al. (2003) 
and Gray (2005) developed Hill’s method to common-shot 
and common-receiver gathers in order to accommodate the 
requirements of orthogonal land and marine bottom cable 
geometries. Meantime, it has been extended to complex 
topography (Gray 2005; Yue et al. 2010, 2012). In addition, 
taking into account the complexity of subsurface media, 
GBM has been applied to elastic media (Casasanta and Gray 
2015; Yang et al. 2017) and anisotropic media (Alkhalifah 
1995; Zhu et al. 2007; Protasov 2015; Li et al. 2018). For 
the true amplitude GBM, one branch is proposed by Gray 
and Bleistein (2009). Another branch is the least squares 
GBM (Hu et al. 2016; Yang et al. 2018). Moreover, the true 
amplitude GBM will be benefit to amplitude-versus-angle 
(AVA) and lithological analysis. A common feature of all 
these methods is to form plane wave using the local slant 
stack and then to project it to subsurface according to the 
traveltime relationship, which can be categorized as travel-
time-based GBM (Yang and Zhu 2017).

On the other hand, Popov et al. (2007, 2008, 2010) 
provided the promising method similar to wave equation 
migration, which adopts frequency-domain Green’s func-
tion to construct time domain direct and back-propagated 
wavefields and then applies crosscorrelation imaging con-
dition. Unlike the traveltime-based GBM, the subsurface 
image point is determined by the maximum of coher-
ency between the source and receiver wavefields, which 
is remarkably similar to reverse time migration (RTM). 
Besides, it carries out the ray tracing from the subsur-
face image point to the geophone, so it has the capacity 
to achieve accurate target-oriented imaging. Thereafter, 
Huang et al. (2017) extended Popov’s method (2010) to 
elastic media; they calculated decoupled back-propagated 
wavefields by introducing elastic Green’s functions of P- 
and S-waves, which is expressed by a summation of elas-
todynamic Gaussian beam. Furthermore, considering the 
viscosity of subsurface media, Bai et al. (2016) proposed 
a multiple-component Gaussian beam reverse time migra-
tion (GBRTM) to implement seismic records compensa-
tion for frequency-dependent absorption and dispersion. 
Likewise, these methods can be categorized as wavefield-
based GBM. Although the wavefield-based GBM can 
obtain better results than the traditional traveltime-based 

GBM, it is difficult to be applied in industry production 
because of prohibitive computational cost. Overall, in spite 
of some drawbacks, the wavefield-based GBM still pro-
vides us a new idea about accurate target-oriented imaging 
using Gaussian beam.

For large-scale 3D seismic data, target-oriented reser-
voir imaging is more attractive than traditional full-volume 
migration because of high efficiency and short turnaround 
period (Liu and Wang 2008). For example, in time-lapse 
reservoir study, efficiently computing local images close 
to reservoir is important to investigate reservoir dynamic 
status during oil and gas exploration. Because the quality 
of the image results is not a linear function of the num-
ber of the input shots, the main reflectors can be depicted 
from a small part of shots; that is, this method enables us 
to significantly reduce the original datasets in the case 
when a detailed migrated result is not required. In addi-
tion, the image points of target-oriented reservoir imag-
ing are determined point by point, for example, Popov’s 
method (2010). On the contrary, Hill’s method (2001) is a 
data-driven algorithm, which mainly focuses on the data 
analysis. Firstly, it extracts the sampling point stored in 
the datasets (local slant-stack), which contains traveltime 
and attribute characteristics of acquisition such as coordi-
nates of sources and receivers, offset and azimuth, and so 
on. Then it projects the sampling points to image domain 
according to traveltime isochron.

It is universally acknowledged that Hill’s method is 
competitive in view of computational efficiency and Pop-
ov’s method is attractive in term of the accurate target-
oriented imaging. It should be noted as well that Popov’s 
method is relatively inefficient on account of the calcula-
tion and storage of wavefield at multiple time.

In this paper, we start by describing prestack GBM and 
analyze the main migration procedure. Combining these 
methods (Hill 2001; Gray and Bleistein 2009; Popov et al. 
2010), we propose a target-oriented GBM using a modi-
fied ray tracing scheme in order to satisfy the demands of 
target-oriented imaging. Next, considering that computa-
tion in frequency domain is particularly inefficiency, we 
have derived a time domain formula using inverse Fourier 
transform and Hilbert transform. Meantime, we present 
an extraction strategy of angle domain common image 
gathers (ADCIGs) using the proposed method to meet 
the demands of the iterative velocity-model-building and 
the AVA analysis. Furthermore, we provide a single-shot 
work flow of subdomain parallel algorithm and implement 
numerical experimentations on synthetic and field data to 
confirm the validity and the target-oriented imaging capa-
bility of our method. Finally, we make a discussion from 
the computational grid and the migration velocity analysis, 
respectively.
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2  Theory

Prestack GBM is proposed first for common-offset gathers 
(Hill 2001; Albertin et al. 2004) and later is extended to com-
mon-shot gathers (Nowack et al. 2003; Gray 2005). The above 
theories of prestack GBM merely emphasize its kinematic 
imaging capability without considering its amplitude fidel-
ity; hence, Gray and Bleistein (2009) presented true ampli-
tude GBM based on true amplitude wave equation migration 
(Zhang et al. 2007) and produced ADCIGs. Meantime, pre-
stack GBM is applied to subsurface target-oriented imaging 
and it carries out the ray tracing from the subsurface image 
point to the geophone (Popov et al. 2010). In general, prestack 
GBM is implemented by the crosscorrelation between upgoing 
and downgoing wavefields, constructed by the Green’s func-
tions expressed in Gaussian beam.

2.1  Review of Gaussian beam migration

According to Gray and Bleistein (2009), the 2D upgoing and 
downgoing wavefields expression in frequency domain has 
the following form

here Pup and Pdown are the upgoing (recorded) and the 
downgoing (source) wavefields, respectively, and * denotes 
complex conjugation; Vs and Vg are surface velocities at the 
source xs and geophone xg; θs and θg are takeoff angles the 
rays from source and geophone location to image points 
x0; τs, τg and AART,s, AART,g are real-valued traveltimes 
and amplitudes from asymptotic ray theory (ART); and 
G(x0;x;ω) is the Green’s function for the wave equation.

For the Gaussian beam method, in order to obtain the main 
asymptotic term of the Green’s function, we must sum Gauss-
ian beams over angles θ emanated from the source point x in 
different directions. Accordingly, the Green’s function expres-
sion can be expressed:

(1)

Pup(��;��;�) = 2∫ dxgPup(��;��;�)
cos �g

Vg

√
−i�AART,gexp[ − i��g]
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where variable s is the path length along the ray, A is the 
amplitude of Gaussian beam and τ(s) is the traveltime along 
the raypath, obtained by solving Eq. (4); P(s) and Q(s) that 
determine the wavefront curvature and the beam width 
(Hill 1990) are the dynamic parameters obtained by solv-
ing Eq. (5)

here xi(s) are the ray coordinates in the Cartesian coordi-
nates; s and n are ray-centered coordinates; pi(s) are the com-
ponents of the slowness vector along the raypath.

Assume that As, Ag and Ts, Tg are the complex amplitudes 
and traveltimes at the source xs and geophone xg, respec-
tively. Thus Eq. (3) can be simplified to the following form

the above Green’s functions can avoid caustics and accom-
modate multipathing only with considerable effort, which is 
different from the Green’s function in Kirchhoff migration. 
Next, we denote that

Equation (7) means that the complex amplitude at nega-
tive frequency is the complex conjugate of complex ampli-
tude at positive frequency. Furthermore, considering that 
the complex conjugate of e exponent equal to the complex 
conjugate of its power exponent, we can obtain the complex 
conjugate of Green’s function as follows:
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Zhang et al. (2007) proposes the following crosscorrela-
tion imaging condition in frequency domain:

and inserting Eqs. (1) and (2) into Eq. (9), we obtain

Although our method differs from Hill’s (2001) and 
(Gray and Bleistein 2009) derivation of prestack GBM, 
most of the steps are identical. Usually, we need to first 
determine a series of beam center locations and then 
adopt the local slant-stack strategy because the Gauss-
ian beam wavefront curvature is zero at its initial loca-
tion on the beam center. In addition, the local slant-stack 
results in some kinematic error because the wavefront cur-
vature gradually becomes nonzero when away from the 
beam center, even then, this error usually is negligible. 
It should be noted as well that it is likely to break down 
in the condition that the receiver location is far from the 
beam center and surface velocity and/or surface elevation 
vary rapidly. For these situations, on the one hand, Hill 
(1990) introduced a Gaussian window function to ensure 
that the traces far from a beam center are downweighted 
exponentially relative to traces close to a beam center, 
so the amplitude error is slight. On the other hand, Gray 
(2005) extended Hill’s method to complex topography by a 
modification of local slant-stack. Instead of these choices, 
we insert Eq. (8) into Eq. (10) directly without the slant-
stack approximation and rearrange terms to arrive at the 
migration formula in frequency domain:

where

and it represents frequency weighted seismic records. Equa-
tion (11) is a quadruple integral of the geophone location, 
frequency, takeoff angle emanated from the source and 
receiver, which expresses a migrated result as a sum over all 
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(12)W(��;��;�) = |�|Pup(��;��;�),

receivers locations, where each geophone contributes partial 
images in different directions.

It is obvious that straightforward implementation of 
Eq. (11) would demand numerous costly summation over 
frequency ω. To reduce the computational load of Eq. (11), 
we exchange the order of integration and obtain

here cosθs/Vs and cosθg/Vg are the frequency-independent 
variables and ∫dθs∫dθg means the integration for each beam. 
Thus, the innermost integration can be understood as the 
crosscorrelation at an image point between the beams ema-
nated from the source and receiver. Meantime, considering 
traveltime and amplitude are complex, the integrand is a 
complex as well. We denote

then focused on the real part of the integrand, and the quad-
ruple integral can be reduced to triple integral by transform-
ing the integral variable frequency to time using the inverse 
Fourier transform and Hilbert transform (Gao et al. 2015). 
Therefore, the migration formula in time domain can be 
expressed as follows

here W̄  denotes the inverse Fourier transform of W and sub-
script H denotes the Hilbert transform. The detailed deri-
vation process of Eq. (15) is given in Appendix A of this 
paper. It should be noted as well that the imaginary part of 
the traveltime, required by Eq. (15) in beam formation before 
imaging, is determined by ray tracing during migration pro-
cedure. In order to avoid repeated calculation, a feasible 
method is to first calculate the counterpart of W̄  and W̄H and 
then match the imaginary traveltime of a subsurface image 
point with the counterpart (Hale 1992b).

2.2  Target‑oriented Gaussian beam migration using 
a modified ray tracing scheme

The conventional GBM requires a local slant-stack with a 
series of Gaussian windows, then ray tracing from the beam 
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center location, finally plane waves components in different 
directions are back-propagated to the underground image 
point by Green’s function. The Green’s function is the 
wavefield generated by a point (impulse or delta function) 
source. In acoustic media, the Green’s function is the pres-
sure generated by an impulse source, which is a scalar. For 
elastic seismology, the Green’s function is the displacement 
generated by a single force, which is a second-order tensor. 
Next, we assume that the Green’s function G(x0;xg;ω) is the 
response at point x0 to a source at point xg. More specifically, 
if G(x0;xg;ω) is the retarded solution, which represents the 
waves expanding from the point source, then its complex 
conjugate G*(x0;xg;ω) is the advanced solution, which rep-
resents waves imploding toward the point source (Hill 2001). 
According to the reciprocity theorem between the fields and 
the source, the following relation is established:

where G*(xg;x0;ω) is constructed by the rays from the image 
point x0 to the geophone location xg, which is opposite to 
G*(x0;xg;ω). It is obvious that Green’s function G*(xg;x0;ω) 
is the appropriate choice in the target-oriented imaging. 
Simultaneously, assuming that the whole region is Ω and 
the target region is Ωi, we derive the target-oriented Gauss-
ian beam migration (TOGBM) formula as follows:

2.3  Extraction of ADCIGs

In the traditional sense, crosscorrelation imaging condi-
tion is not amplitude-preserved, which will be influenced 
by the intensity of illumination, for example, the amplitude 
will be weak in areas of inadequate illumination. However, 
Xu et al. (2001) and Zhang et al. (2007) proved that if the 
image results based on crosscorrelation imaging condition 
is transformed into angle domain, ADCIGs will contain the 
angle-dependent reflection coefficient, i.e., crosscorrelation 
imaging condition is amplitude-preserved in angle domain. 
Furthermore, ADCIGs can be applied to the iterative veloc-
ity-model-building and AVA analysis, so we develop the 
extraction method for TOGBM.

Extraction of ADCIGs in wave equation migration is 
mainly based on the space-shift imaging condition and the 
time shift imaging condition (Save and Fomel 2003, 2005, 
2006). It is necessary to first extract local offset domain 
common image gathers (L-ODCIGs) and time shift com-
mon image gathers (TSCIGs), which represent the focus-
ability of wavefields in space direction and in time direction, 

(16)G∗(��;��;�) = G∗(��;��;�),

(17)

I(��;��)
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∫
0

d�s
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∫
0

d�g
cos�s
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.

respectively. Then L-ODCIGs and TSCIGs can be trans-
formed into ADCIGs according to the angular mapping 
relation. Unlike wave equation migration, ADCIGs in GBM 
can be directly extracted without mapping transformations 
because the Gaussian beam contains the subsurface angle 
information during migration procedure, which is extremely 
handy and efficient.

According to Gray and Bleistein (2009), the similar 
extraction steps of ADCIGs for TOGBM can be given as 
follows: (1) summing the ray angles from the source and 
image point to calculate the opening angle for migrating 
a sample onto an image location; (2) placing the migrated 
amplitude into the position of ADCIGs according to that 
opening angle. The detailed formula and derivation process 
on how to extract ADCIGs for TOGBM are discussed in 
Appendix B of this paper.

3  TOGBM workflow

The work flow of the conventional GBM can be briefly sum-
marized in four steps: (1) determining the beam center loca-
tion according to the beam center interval; (2) local slant-
stack with a series of Gaussian windows; (3) ray tracing 
from the beam center location; (4) plane waves components 
in different directions are back-propagated to the subsur-
face image point. However, as shown in Fig. 1, our method 
adopts a upgoing ray tracing scheme, which requires the 
rays from the subsurface image point to the geophone in 
different takeoff angles αg; it is possible for us to select one 
point in migration domain randomly, i.e., the migration pro-
cess of each image point is absolutely independent; thus, our 
method can achieve the target-oriented imaging which is of 
significant importance for 3D migration with huge seismic 
data.

Surface

Source

Geophone

Target Ωi

x0

xs xg

θs θg

Center ray

Paraxial ray

Ω

gα

Fig. 1  Diagram of the target-oriented Gaussian beam migration
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Popov et al. (2010) propose a high level of algorithm par-
allelization. Similarly, according to Eq. (17), we design the 
following single-shot work flow (see Fig. 2) to implement 
the algorithm. We first take the velocity field and single-shot 

seismic records as the inputs. Then before migration of each 
target region, we carry out the seismic records process-
ing using Fourier transform and Hilbert transform. Next, 
we make full use of the characteristic that the migration 

Input:
Velocity field v(x,z); Single shot seismic

records Pup(xg;xs;t)

Loop1 over takeoff angles θs at xs

Radiate center ray from xs

No

No

Loop1 end?

Yes

Seismic records frequency weighting

Loop2 end?

Yes

Hilbert transform to time domain

Output:
Single shot target-oriented image

results I(x0;xs)|x0ϵΩi

Yes Yes

Yes Yes

No

No

No

No
Loop3 end? Loop5 end? Loop6 end?

Loop7 end?

Calculate image values I(x0;xs)
of x0 from xg

Calculate ray-centered coordinates
of xg and Tg, Ag

Loop7 over geophones xg

Calculate ray-centered coordinates
of x0 and Ts, As

Loop5 over θs

No

Yes

Radiate center ray from x0

Loop3 over x0ϵΩi

Parallel start and each Ωi assigns
a compute node

Loop4 end?

Calculate P, Q and    alone the rayτ

Pup(x0;xs;t) Fourier transform to
frequency Pup(x0;xs;  ) ω

Loop2 over frequency   ω

Loop4 over takeoff angles  g at x0α

Loop6 over gα

Calculate P, Q and    alone the rayτ

Fig. 2  Flowchart of TOGBM for single-shot seismic records
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process of each image point is absolutely independent and 
adopt a parallel algorithm that each target region assigns a 
compute node. It is obvious that the parallel algorithm of 
multiple regions can enhance the computational efficiency 
significantly. Finally, we output single target-oriented image 
results.

4  Numerical examples

In this section, based on the above theory and algorithm, 
we test the performance of our method using five numerical 
examples including four synthetic examples and a field data 
example. The first example is the 2D SEG/EAGE salt model 
as shown in Fig. 3. The model is characterized by the high 
velocity of the salt body, which is about twice as fast as the 
sedimentary layer, the sharp changes in lateral velocity, and 
very large dip angle of the left flank. The grid size of the 
model is 645 × 300, and sample intervals of distance and 
depth are 24 m and 12 m, respectively. Dataset has 325 shots 

and 88 geophones with 24 -m receiver interval per shot, and 
each trace has 626 samples with sample rate 8 ms.

Figure 4 shows the depth images migrated with the con-
ventional method and the proposed method. It is obvious that 
the conventional method (see Fig. 4a) restores accurately 
the basic structure of the model, but it produces the poor 
image results at flanks and bottoms of the salt. Compared to 
the conventional method, our method generates the clearer 
image profiles for the adumbration of the salt. Two magni-
fied rectangular windows from these two migration results 
are displayed in Fig. 5. Apparently, the event is more con-
tinuous migrated by our method (see Fig. 5b, d) than the 
conventional method (see Fig. 5a, c). It should be noted as 
well that the reducing of frequency also inevitably appears 
in our method, which is likely to result from (1) back-prop-
agation of the seismic records without the local slant-stack 
approximation and (2) the construction of Green’s function 
with upgoing ray tracing strategy.

The second example is implemented on an ocean model 
to demonstrate the target-oriented imaging capability of our 
method. The dataset is simulated by a staggered-grid finite-
difference method with tenth-order accuracy in space and 
second-order accuracy in time, and the dominant frequency 
is 30 Hz. As shown in Fig. 6, the model contains two steep 
faults, and high-velocity natural gas hydrate reservoirs are 
formed on both sides of the fault. Besides, there is a low-
velocity oil and gas reservoir in the left sag, and the bottom 
of the model is the intrusive rock mass with steep dip angle. 
The ocean model is 8.0 km long and 4.0 km deep. Begin-
ning at 1.0 km from the left edge of this model, a total of 
61 shots are simulated with a shot interval of 100 m, and 
401 geophones are evenly distributed on the surface with 
20-m interval. The record duration is 3 s, and time sample 
interval is 4 ms.

Likewise, we first obtain the migrated result by the con-
ventional method (see Fig. 7). Although the main structures 
can be basically identified, there are some noise near the 
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faults. Considering the characteristic of the ocean model, we 
select four target regions (see Fig. 9) to migrate simultane-
ously using different computer nodes. Before the migration, 
we need to obtain a smoothed velocity model (see Fig. 8) 
with a damping least squares method because ray trac-
ing requires the second-order derivations of the velocity, 

which ensures the stability of dynamic ray tracing (Popov 
et al. 2010). Besides, we draw the 1st and 41st shot raypath 
(marked by white lines in Fig. 8) and two image points in 
target regions (marked by red lines in Fig. 8). Figure 9 shows 
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the image results in four target regions, and it is easy to see 
that our method produces a clear image and image posi-
tion is consistent with model. Furthermore, we compare the 
results in four target regions by the conventional method 
and our method. As shown in Fig. 10, our method makes 
less noise near the faults and produces a clearer profile 
than the convention method; only dispersion phenomenon 
still appears owing to the input synthetic seismic records 
using the finite-difference modeling method. Furthermore, 
we compare the efficiency of GBM and TOGBM for the 

ocean model, and the results are descripted in Table 1. As 
expected, the cost of TOGBM is about eight times of that of 
GBM for full model, because upgoing rays need to be shot 
from every image location in the target region that is very 
time-consuming. However, TOGBM enhances the computa-
tion efficiency significantly compared to GBM for the small 
target region, especially for target region A of the ocean 
model.

In the third example, we use the BP velocity model (Bil-
lette and Brandsberg-Dahl 2004) to test the adaptability 
of our method for large subsurface volumes. As shown in 
Fig. 11, the distance and depth of the BP model are about 
67 km and 12 km, which are eight times and triple the ocean 
model (see Fig. 6), respectively. The grid size of the model is 
5395 × 1911, and sample intervals of distance and depth are 
12.5 m and 6.25 m. The synthetic seismic data consists of 
1348 shots and 1201 geophones with 12.5 m receiver inter-
val per shot, and each trace has 2001 samples with sample 
rate of 6 ms. For each shot, the offsets range from − 15,000 
to 0 m and shot increment is 50 m. The size of the complete 
dataset, divided into 7 pieces over the shot axis, is about 
12.43 GB.

It should be noted that BP dataset includes variable den-
sity, but we have to equate the density to one throughout 
the model because GBM is currently based on the classical 
wave equation without considering density information. We 
first carry out the conventional method using the BP dataset. 
The migration result is depicted in Fig. 12. It is obvious 
that the shallow layers have better image results than the 
deep layers and the outline of salt body can been recognized. 
Besides, some small low- and high-speed bodies can arise 
in the profile as well. Unfortunately, the structure beneath 
the salt body is almost invisible, which is likely to result 
from the insufficient density of ray beneath the salt. Further-
more, in order to illustrate the problem of the conventional 
method, we emanate a fan of rays from all shot locations on 
the surface and compute the ray folds of subsurface image 
points according to the coordinates of raypath points. As 
shown in Fig. 13, the energy of migration result is nearly 
consistent with the density of ray, i.e., when the ray folds of 
some region are little, the energy of the events is also weak, 
for example, the complex rugose multivalued salt body in 
the left and the deeply rooted salt body in the central part.

For comparison, we select six target regions, the same 
as (Popov et al. 2010), which is aimed to reconstruct the 
structure of this complex model containing a complex 
rugose multivalued salt body in the left part and a deeply 
rooted salt body in the central part. The target-oriented 
imaging results are depicted in Fig.  14. The position 
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Table 1  The comparison of computational costs between GBM and TOGBM for the ocean model. All methods are run on an Intel workstation 
(Xeon E5-2630 2.2 GHz)

Methods GBM TOGBM

Target region All All A B C D

Grid parameters 801 × 401 801 × 401 66 × 81 201 × 71 151 × 66 195 × 61
Calculating time, min 176.0 1367.5 21.3 110.9 116.2 95.7
Normalized time 1.00 7.77 0.12 0.63 0.66 0.54
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where the events occur and the model actual interface 
position are almost same. Figure 15 shows the compari-
son between the conventional method and our method, 
and it is obvious that our method restores the structures 
of six target region better than the conventional method. 
It should be noted as well that our method is no match 
for the Popov’s method, because Popov’s method directly 
computes time domain Green’s function with the help 
of frequency-domain Gaussian beam and implements a 

reverse time migration workflow. But our method theo-
retically has higher computational efficiency for two rea-
sons: (1) without carrying out inverse Fourier transform 
for each subsurface image point and (2) imaging based 
the traveltime relationship without calculating and storing 
the wavefields at multiple time. For more comparison, see 
also Popov et al. (2010). Meantime, during the numeri-
cal experimentation, unexpectedly we discover that our 
method is still inefficient when an image of a large sub-
surface volume is required, such as target A and B in the 
BP model, which is an inherent shortcoming of the upgo-
ing ray tracing strategy.

In the fourth example, we carry out migration velocity 
analysis using our method on the Marmousi model (see 
Fig.  16). The migration results using different migra-
tion velocities are shown in Fig. 17. It is obvious that 
the accuracy of migration velocity has great influence on 
the accuracy of image locations. Furthermore, we extract 
the ADCIGs at 8 km during the migration procedure to 
analyze (see Fig. 18). When the migration velocity is too 
small or too large, the ADCIGs will bend up or down, 
respectively. In addition, if the migration velocity is 
accurate and the algorithm is also amplitude-preserved, 
the ADCIGs can be applied to the AVA and lithological 
analysis.
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The final example is the application of a field land data 
in eastern China by our method, which covers a buried 
hill drape structure. The velocity model in Fig. 19a is con-
structed by the traditional ray tomography method and 
the common-shot gathers is already preprocessed with 

denoising, muting and bandpass filtering. The 201th shot 
gather and recording geometry are shown in Fig. 19b, 
c, respectively. Migration results with the conventional 
method and our method are depicted in Fig. 20. Compared 
with the conventional method (see Fig. 20a), our method 
(see Fig. 20b) produces a clearer image in the shallow layer 
(marked by red arrows) and makes reflectors more continu-
ous and faults clearer near the buried hill (marked by blue 
arrows).

5  Discussion

In this section, we further discuss our method from two 
aspects, which are the computational grid and what should 
be careful when using the proposed method in application, 
respectively.

As is well known, the computational grid is consid-
erably important for numerical experimentation. When 
the grid is inappropriate, it will not only affect the accu-
racy, but also reduce the efficiency. For the conventional 
method, Hale (1992a) proposed a coarse grid algorithm 
(see Fig. 21a) considering that the traveltime and ampli-
tude of Gaussian beam vary smoothly within a wavelength 
range. In this paper, we carry out our method using Hale’s 
trick: first compute the image value in a coarse grid and 
then interpolate to the refined grid. However, because 
the migration process of each image point is absolutely 
independent, Popov et al. (2010) applied an irregular grid 
of randomly distributed points using a random number 
generator (see Fig. 21b) to the target-oriented imaging 
method. They carried out stacking of the different irregu-
lar grids and performed interpolation on a regular grid for 
visualization. Likewise, our method can be implemented 
on a random grid as well theoretically. In addition, it is 
possible for us to develop our method to the variable grid 
(see Fig. 21c, d) for different types of targets in a subse-
quent study.

When using the proposed method in application, we 
should be careful about the following aspects: (1) The 
anti-noise ability of our method is not as good as that 
of the conventional method for data with low signal-
to-noise ratio, because the conventional using the local 
slant-stack approximation can achieve this purpose eas-
ily. (2) It should be noted as well that our method is 
more time-consuming than the conventional method 
when migration for large subsurface region is required, 
because upgoing rays need to be shot from every image 
location in the target region, which will require a huge 
amount of computations.
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6  Conclusion

To satisfy the requirements of target-oriented imaging, we 
have provided a target-oriented GBM using a modified ray 
tracing scheme. Specifically, we modify the conventional 
Gaussian beam migration scheme, by shooting rays from 
subsurface image points to receivers to implement wavefield 
back-propagation. Meantime, considering that computation 
in frequency domain is particularly inefficiency, we have 
derived a time domain formula using inverse Fourier trans-
form and Hilbert transform. In addition, making full use of 
the feature that the imaging process of each subsurface point 
is absolutely independent, the subdomain parallel algorithm 
has been applied, which can enhance the computational effi-
ciency significantly. Synthetic and field data examples con-
firm the validity and the target-oriented imaging capability 
of our method.

We would like to emphasize the following advantages of 
our method: the adaptability to the complex target structure 
and the irregular topography using the variable grid and 

the random grid; the promising application in industry due 
to the greater efficiency compared to the wavefield-based 
GBM. It should be noted as well that our method is more 
time-consuming than the conventional method when migra-
tion for large subsurface region is required.

Furthermore, we would like to draw attention to the fact 
that our method has high potential for use in the iterative 
velocity-model-building because the extraction of ADCIGs 
using our method is extremely handy and efficient. Mean-
time, amplitude-preserved ADCIGs are of significant impor-
tance for the AVA and lithological analysis. In the future, 
the true amplitude method and the least squares framework 
could be introduced to improve the fidelity of amplitude.
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Appendix 1: Derivation of migration formula 
in time domain

This appendix gives a detailed derivation process of migra-
tion formula in time domain. Here, beginning with Eq. (13), 
the migration formula in frequency domain after exchanging 
the order of integration has the following form

here cosθs/Vs and cosθg/Vg are the frequency-independent 
variables and ∫dθs∫dθg means the integration for each beam. 
The innermost integration can be expressed as

where this integration can be understood as the crosscorrela-
tion at an image point between the beams emanated from the 
source and receiver. Hence, we obtain

Meantime, considering traveltime and amplitude are 
complex, the integrand is a complex as well. Thus, we first 
consider the amplitude term of the innermost integration, 
then we denote

where Eq. (21) means that the complex amplitude at nega-
tive frequency is the complex conjugate of complex ampli-
tude at positive frequency. Furthermore, the complex travel-
time is taken into account likewise and we denote

then, inserting Eqs. (21) and (22) into Eq. (19) and rearrang-
ing terms, we obtain
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where exp[ωTim] must be the attenuation term result from 
Im(P/Q) > 0 in Gaussian beam, which is equivalent to the 
complex-value filtering for frequency weighted seismic 
records. Next, we denote

According to Hale (1992b), the first term of Eq. (24) has 
the form of an inverse Fourier transform 1/2π∫exp[− iωt] and 
the multiplication of the second term by − isgn(ω) in fre-
quency domain is equivalent to a Hilbert transform in time 
domain. Therefore, Eq. (23) can be expressed as follows

where W̄  denotes the inverse Fourier transform of W and 
subscript H denotes the Hilbert transform. Finally, insert-
ing Eq. (25) into Eq. (20), we can obtain the migration in 
time domain

Appendix 2: Extraction of angle domain 
common image gathers

As shown in Fig. 22, the complex traveltime at a point R 
near the center ray satisfies the following approximation 
(Červený and Pšenčík 2001)
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where (s, n) are ray-centered coordinates, vM and �M
,s

 are 
the velocity and its derivative at a point M, respectively; 
ΓM= P(M)/Q(M), P and Q are the dynamic parameters at a 
point M. In order to deduce the form at Cartesian coordinate 
system of Eq. (27), we introduce the local Cartesian coordi-
nates (t’, n’) near the center ray, whose origin of coordinates 
is a point M. According to simple geometric relationship, we 
can obtain the conversion formula between local Cartesian 
coordinates and ray-centered coordinates

and inserting Eq. (28) into Eq. (27), we obtain

Meantime, considering the conversion relationship between 
Cartesian coordinates and local Cartesian coordinates

and we denote

where θ is the center ray propagation angle and σ is the 
rotation matrix. Hence, Eq. (30) can be written as n� = �x 
and further considering 

(
n
′
)T

= x
T
�
T (T denotes the matrix 

transposition), Eq. (29) can be simplified to the following 
form

here

(27)�(R) ≈ �
M +

(s − sM)

vM
−

1

2

vM
,s
(s − sM)2

(vM)2
+

1

2
ΓMn2,

(28)n ≈ n�,s − sM ≈ t�

[
1 −

vM
,n
n�

vM

]
,

(29)�(R) ≈ �
M +

t�

vM
−

vM
,n
t�n�

(vM)2
−

1

2

vM
,s
(t�)2

(vM)2
+

1

2
ΓM(n�)2.

(30)
n� = (x − xM)cos� − (z − zM)sin�,

t� = (x − xM)sin� + (z − zM)cos�,

(31)
n
′ =

[
n�

t�

]
, x =

[
x − xM

z − zM

]
, l =

[
cos�(M)

sin�(M)

]
,

� =

[
cos�(M) −sin�(M)

sin�(M) cos�(M)

]
,

(32)�(R) ≈ �
M +

l
T
x

vM
+

1

2
x
T�x,

(33)
� = �

T��,� = (vM)−2
[
(vM)2ΓM −vM

,n

−vM
,n

−vM
,s

]
,

v,n = v,xcos� − v,zsin�,v,s = v,xsin� + v,zcos�.

According to Eq. (32), the real-valued traveltime of a point 
R at the paraxial ray can be expressed as follows

where pM
x

 and pM
z

 are the horizontal and vertical slowness, 
respectively, and Re(W) denotes the real part of complex 
matrix W. Next, we take the derivative of Eq. (34) along the 
x direction and obtain

here  W11 and  W12 are the top-left and top-right elements of 
matrix W, then considering pR

x
= ��(R)∕�x , we obtain

Similarly, we can deduce the formula along the z direction

then the propagation angle of a point R at the paraxial ray 
can be calculated by the following formula

(See Fig. 22).
As shown in Fig. 23, xs and xg are the source and geophone 

location, respectively; x0 is the subsurface image point; θ is the 
incident angle of the source ray, i.e., the reflection angle with 
respect to the normal; �̂�s and �̂�g are unit vectors along the rays 
from source and image point, respectively; �̂� is the dip vector, 
which is perpendicular to the reflector and v is the migration 
dip; αs is the propagation angle of the source ray which can be 
obtained by Eq. (38), and αg is the initial angle of the upgoing 
ray tracing. In order to extract the ADCIGs, we merely need to 
calculate the opening angle at the image point x0 and place the 
migrated amplitude into the position of ADCIGs according to 
that opening angle. According to simple angle relationship, the 
opening angle formula can be expressed as follows

(See Fig. 23).

(34)
�(R) = �(M) +

[
pM
x
(xR − xM) + pM

z
(zR − zM)

]

+
1

2

[
xR − xM

zR − zM

]
⋅ Re(�) ⋅

[
xR − xM zR − zM

]
,

(35)

��(R)

�x
= pM

x
+ Re(W11)(x

R − xM) + Re(W12)(z
R − zM),

(36)pR
x
= pM

x
+ Re(W11)(x

R − xM) + Re(W12)(z
R − zM).

(37)pR
z
= pM

z
+ Re(W21)(x

R − xM) + Re(W22)(z
R − zM),

(38)𝛼s =

⎧⎪⎨⎪⎩

−π + arctan(pR
x

�
pR
z
), pR

x
< 0,pR

z
< 0;

π + arctan(pR
x

�
pR
z
), pR

x
> 0,pR

z
< 0;

arctan(pR
x

�
pR
z
), others.

(39)� =
1

2

[
π − (�g − �s)

]
.
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