
Vol:.(1234567890)

Petroleum Science (2020) 17:70–85
https://doi.org/10.1007/s12182-019-00372-6

1 3

ORIGINAL PAPER

Construction of a novel brittleness index equation and analysis 
of anisotropic brittleness characteristics for unconventional shale 
formations

Ke‑Ran Qian1,2,3,5 · Tao Liu1,2,3,5 · Jun‑Zhou Liu1,2,3,5 · Xi‑Wu Liu1,2,3,5 · Zhi‑Liang He2,4 · Da‑Jian Jiang1,2,3,5

Received: 15 October 2017 / Published online: 11 October 2019 
© The Author(s) 2019

Abstract
The brittleness prediction of shale formations is of interest to researchers nowadays. Conventional methods of brittleness 
prediction are usually based on isotropic models while shale is anisotropic. In order to obtain a better prediction of shale 
brittleness, our study firstly proposed a novel brittleness index equation based on the Voigt–Reuss–Hill average, which 
combines two classical isotropic methods. The proposed method introduces upper and lower brittleness bounds, which take 
the uncertainty of brittleness prediction into consideration. In addition, this method can give us acceptable predictions by 
using limited input values. Secondly, an anisotropic rock physics model was constructed. Two parameters were introduced 
into our model, which can be used to simulate the lamination of clay minerals and the dip angle of formation. In addition, 
rock physics templates have been built to analyze the sensitivity of brittleness parameters. Finally, the effects of kerogen, 
pore structure, clay lamination and shale formation dip have been investigated in terms of anisotropy. The prediction shows 
that the vertical/horizontal Young’s modulus is always below one while the vertical/horizontal Poisson’s ratio (PR) can be 
either greater or less than 1. Our study finds different degrees of shale lamination may be the explanation for the random 
distribution of Vani (the ratio of vertical PR to horizontal PR).
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1  Introduction

Shale reservoir exploration has become an important 
research area in recent years. The industrial scale produc-
tion of shale oil/gas has led to a revolution in hydrocarbon 

exploration. Unlike conventional sandy reservoirs, shale 
formations are typically low porosity and low permeability, 
which means that conventional methods are no longer effec-
tive (Johnston and Christensen 2012). Deep learning and 
artificial intelligence have become more and more popular in 
hydrocarbon exploration (Lin et al. 2018), while the devel-
opment of engineering technology brings more commercial 
potential into unconventional exploration. For instance, to 
optimize shale pore space, hydraulic fracturing has been 
widely implemented (Rickman et al. 2008). Through inject-
ing fluids into the borehole, artificial fractures can be formed 
in the shale formations, and then, proppant is used to keep 
the fractures open, all of which improves the porosity and 
permeability of the target area.

Brittleness, a significant parameter of a shale “sweet 
spot,” can play a critical role in hydraulic fracturing and 
horizontal well trajectory design (Jarvie et al. 2007). Brit-
tleness is a research topic in many fields, such as petroleum 
engineering (drilling, fracturing, etc.), geology, geochem-
istry and geophysics. Different fields have their own defi-
nitions of brittleness (Rickman et al. 2008). The literature 
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shows that there are dozens of equations that can be used to 
define brittleness. In a variety of brittleness evaluation sys-
tems, laboratory measurements result in the most accurate 
brittleness values. However, laboratory measurements can-
not be widely used owing to high coring costs and limited 
sampling. In order to estimate brittleness more economically 
and obtain 2D/3D brittleness distributions, using geophysi-
cal data (seismic data or well logging data) in brittleness 
prediction seems to be a straightforward choice (Goodway 
et al. 1999, 2010).

Unfortunately, brittleness cannot be measured directly 
from either well log data or seismic data (Li et al. 2012). 
Therefore, geophysicists usually use elastic data and the 
volume fraction of minerals to characterize the brittleness 
indirectly with the help of a brittleness index equation. The 
advantage of geophysical data is that it can provide 2D/3D 
elastic information (such as velocity, density, etc.) on the 
target area, which can help us to model 2D/3D brittleness 
distributions. Furthermore, different elastic parameters show 
different sensitivity to brittleness, and the brittleness index 
(BI) can be used to reconstruct different elastic parameters 
and make them more sensitive to brittleness. This means that 
construction of a reasonable brittleness index is a significant 
factor in brittleness prediction (Huang et al. 2015). If the 
elements of the BI are elastic parameters, we call the brit-
tleness prediction based on this category of BI—“the elastic 
parameter-based method.” “The mineralogy-based method” 
is another category of BI, which obviously means the ele-
ments in BI equations are volume fractions of different min-
erals. The mineralogy method uses the volume percentage 
of brittle minerals to characterize the rock brittleness, since 
the brittleness of rock will be proportional to the volume 
fraction of brittle minerals (Liu and Sun 2015).

The existing brittleness index formulas are subdivided 
into the mineralogy method or the elastic parameter 
method; very few methods consider both two categories 
simultaneously. Both methods have their own advantages 

and disadvantages. On the one hand, the elastic parameter 
method seems to give a more accurate result, since many 
elastic parameters (i.e., Young’s modulus, Lamé constants, 
etc.) can describe brittleness and these elastic parameters 
contain the information on both mineralogy and pore fluid. 
However, the accuracy of predictions based on this method 
is subject to the accuracy of the input elastic parameters. 
On the other hand, the accuracy of predictions based on 
the mineralogy method is not so good by comparison, but 
this method is still widely used in oil industry since the 
input parameters are easy to obtain. Due to the high cost 
of shale exploration wells, the required data is scarce. The 
accuracy and reliability of brittleness predictions of shale 
formations need to be improved. Hence, in this paper, we 
attempt to combine these two types of brittleness formulas 
and strive to obtain a novel BI equation with higher accu-
racy brittleness predictions while simultaneously using 
less input data.

Admittedly, the brittleness index can provide us an effec-
tive way to predict brittleness, but brittleness indexes are 
mostly based on the assumption of isotropy (Huang et al. 
2015). It is widely known that shale is highly anisotropic. 
We believe therefore that we should consider the properties 
of shale brittleness in anisotropic terms. As shown in Fig. 1, 
the well trajectory of a horizontal well in a shale formation 
usually passes through anisotropic formations (e.g., vertical, 
tilted or horizontal transverse isotropic formations, VTI, TTI 
or HTI). Ignoring shale anisotropy will cause errors in brit-
tleness estimation. In the oil industry, however, the common 
way to evaluate shale brittleness is based on using isotropic 
parameters (i.e., Young’s modulus and Poisson’s ratio), since 
these can be easily calculated from measured elastic wave 
velocities from geophysical data. The rock physics model 
has been proven as a useful tool for reservoir characteriza-
tion, which can be used to estimate the brittleness of shale 
reservoirs (Hornby et al. 1994; Vanorio et al. 2008). Aniso-
tropic rock physics modeling offers us a new way to estimate 
the brittleness of shale in an anisotropic way.

E3 v31

VTI TTI HTI

E1 v12

(a) (b) (c)

Fig. 1   A diagram indicating the well trajectory of a horizontal well in a shale formation. Wells usually successively penetrate through VTI, TTI 
and HTI formations (transverse isotropic formation with vertical, tilted and horizontal axis). Different sections of the well in the diagram are 
shown in (a), (b) and (c). The elastic compliance tensor for a TI medium can be represented in terms of Young’s modulus (Ei) corresponding to 
axis xi, Poisson’s ratio (vij) which relates the strain along axis xj to stress applied along axis xi
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In order to build a reasonable anisotropic shale model, we 
need to consider the possible origins of shale anisotropy. Based 
on published research, several factors contribute the anisotropy 
of shale. The causes of shale anisotropy can be summarized 
as follows:

(1)	 A preferred orientation of clay and kerogen particles 
can be used to explain the VTI quality (Vernik and Nur 
1992; Vernik and Landis 1996; Vernik and Liu 1997; 
Johansen et al. 2004);

(2)	 SEM (scanning electron microscopy) and XRD (X-ray 
diffraction) observations show that sometimes shale 
pores are typically flattened with associated micro-
fractures, which may further enhances shale anisotropy;

(3)	 Clay minerals have their own intrinsic anisotropy (Say-
ers 1994, 2005; Sondergeld and Rai 2011; Guo and Li 
2015). In our study, we intend to construct a rock phys-
ics model, which can take the different causes of shale 
anisotropy into consideration.

Rock physics templates (RPTs) are an effective tool to link 
elastic properties with reservoir properties in terms of a rock 
physics model. Guo et al. (2012a, b) constructed RPTs to ana-
lyze geo-mechanical properties in terms of seismic attributes. 
Avseth and Carcione (2015) built different RPTs to study the 
effects of kerogen content, pore fluid saturation and in situ 
pressure.

Therefore, in order to analyze the anisotropic properties 
of shale brittleness, we firstly create an anisotropic shale rock 
physics model to build a bridge between anisotropic elastic 
parameters and physical properties. Following on from this, we 
construct rock physics templates based on the model in order 
to analyze the sensitivity of brittleness parameters. Finally, we 
discuss anisotropic brittleness in terms of physical properties 
(lamination, pore structure, etc.).

2 � Construction of a novel brittleness index

2.1 � The classic brittleness index equation

In order to describe the brittleness of a shale reservoir, various 
brittleness equations have been proposed (Li et al. 2012). In 
this chapter, we pay attention to their respective characteristics 
and try to reshape them to allow for extraction of more infor-
mation on brittleness.

As described above, the commonly used brittleness equa-
tions are mainly based on the weight content of minerals and 
elastic parameters, as shown in Eqs. (1)–(9). BI_1 to BI_3 and 
BI_6 to BI_8 belong to the group of elastic parameters-based 

brittleness indexes, while BI_4 and BI_5 belong to mineral-
ogy-based brittleness indexes.

Rickman et al. (2008) propose an average brittleness equa-
tion based on the analysis of the Barnett shale:

where YM is Young’s modulus (GPa), PR represents Pois-
son’s ratio (dimensionless). ΔYM and ΔPR represent the 
normalized Young’s modulus and normalized Poisson’s 
ratio, respectively. The real data range of Barnett shale 
Young’s modulus and Poisson’s ratio determines the con-
stants in the equations.

The general form of Rickman’s equation is that.

where YM3 and PR3 correspond to ΔYM and ΔPR, respec-
tively. YM1 and YM2 represent the maximum and mini-
mum value of Young’s modulus for the target formation, 
respectively. PR1 and PR2 represent the maximum and 
minimum values of Poisson’s ratio for the target formation, 
respectively.

Guo et al. (2012a) constructed a brittleness index based 
on the opinion that the brittleness index is proportional to 
Young’s modulus and inversely proportional to Poisson’s ratio.

Liu and Sun (2015) defined the brittleness index by the 
ratio of normalized Young’s modulus and normalized Pois-
son’s ratio.

where YM3 and PR3 represent the normalized Young’s mod-
ulus and normalized Poisson’s ratio, respectively.

The following Eqs. BI_4 and BI_5 are the brittleness index 
based on mineralogy-based equations:

(1)
ΔYM =

YM − 1

8 − 1
;ΔPR =

0.4 − PR

0.4 − 0.15

BI =
ΔYM + ΔPR

2
× 100

(2)

YM3 =
100 (YM − YM1)

(YM2 − YM1)

PR3 =
100 (PR − PR2)

(PR1 − PR2)

BI_1 =
YM3 + PR3

2

(3)BI_2 =
YM

PR

(4)BI_3 =
YM3

PR3

(5)BI_4 =
Quartz

Total
∗ 100%
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where Quartz, Total, Calcite represent the weight content of 
quartz, total minerals and calcite, respectively.

Guo et al. (2012a) defined the brittleness index using Lamé 
parameters:

Chen et al. (2014) indicated that the ratio of Young’s 
modulus and Lamé parameters can represent the highly 
brittle strata:

Huang et al. (2015) proposed a more sensitive brittleness 
index:

where K is bulk modulus.
As discussed above, the various brittleness indexes pro-

posed have different definitions and have been derived for 
different purposes. We should choose the most appropriate 
brittleness index to arrive at better brittleness evaluations.

BI_1 to BI_3 are all brittleness indexes defined by 
Young’s modulus and Poisson’s ratio. They all show that 
brittleness index is proportional to Young’s modulus and 
inversely proportional to Poisson’s ratio. However, the 
weighted average in BI_1 does not consider the difference 
between Young’s modulus and Poisson’s ratio. BI_1 should 
be further verified by more shale data to prove its feasibility 
in different scenarios. BI_2 and BI_3 define brittleness index 
using the ratio of Young’s modulus and Poisson’s ratio. The 
normalizations in BI_3 avoid outliers and improve the stabil-
ity of calculation. However, the normalizations can also lead 
to a decrease in sensitivity and zero values of Poisson’s ratio, 
which is the reason why a singular value occurred.

Besides, BI_1 to BI_3 and BI_6 to BI_8 have different 
magnitudes so we cannot compare these brittleness indexes 
using a uniform reference system.

BI_4 and BI_5 are all mineralogy-based brittleness 
indexes. BI_4 regards quartz as the brittle mineral, while 
BI_5 regards quartz and calcite as brittle minerals. BI_4 
and BI_5 are simple to calculate, but the given brittleness 
indexes are relatively rough and inaccurate when compared 
to elastic parameter based brittleness indexes.

(6)BI_5 =
Quartz + Calcite

Total
∗ 100%

(7)BI_6 =
� + 2�

�

(8)BI_7 =
YM

�

(9)BI_8 =
3K − 5�

�
=

2� − 2�

�
=

1

�
− 4

2.2 � An improved brittleness equation based 
on the Voigt–Reuss–Hill average theory

As shown in Fig. 2, Fig. 2a, b shows two hypothetical rocks. 
Sample (a) contains 40% quartz and 10% calcite, and sample 
(b) consists of 40% calcite and 10% quartz. If the brittleness 
value of these two rocks is found to be the same using the 
formula BI_5, the mineral composition of the two rocks is 
different and therefore the brittleness is obviously differ-
ent. This means that the formula considering the mineral 
percentages has some limitations and fails to predict the 
accurate brittleness under some circumstances.

As mentioned above, the advantage of the mineral com-
position method is the requirement for fewer input parame-
ters, but the accuracy of predictions is low. While the advan-
tage of the elastic parameter method is the high prediction 
accuracy, but more input parameters are required.

The proposed hybrid algorithm in this paper combines the 
two methods. Based on the mineral composition method, the 
precision of our new method approaches to elastic param-
eter-based method while the input parameters are only the 
mineral composition of the shale.

Shale is usually composed of a variety of minerals, each 
having different brittleness. Minerals such as quartz and cal-
cite have usually been considered as brittle minerals, and 
clay and kerogens are considered as non-brittle minerals. If 
we use the mineralogy-based method, the selection of the 
brittle mineral will have an impact on the final brittleness 
prediction, for example, BI_4 considers that the brittle-
ness of the rock is only related to the quartz content, while 
BI_5 considers that the brittleness of the rock is related to 
both quartz and calcite content. In practice, all the various 
mineral components have an impact on the brittleness of 
the rock. Hence, we use elasticity information such as the 

10% Quartz

40% Quartz

50% Other

40% Calcite

10% Calcite

50% Other

Fig. 2   Two rock samples a contains 40% quartz and 10% calcite b 
10% quartz and 40% calcite
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velocity and density of pure minerals (as shown in Table 1) 
to calculate the brittleness of each pure mineral component 
(as shown in Table 2). Since the quartz content is usually 
known as the most important indicator affecting the brit-
tleness index of a rock, the brittleness index of quartz is 
assumed to one, and the “pure brittleness index” of other 
minerals is calculated relative to quartz. Finally, the brittle-
ness index is been obtained by bringing the pure brittleness 
index into the VRH brittleness equation by using the per-
centage content of each mineral.

When the available information is limited, in order to 
obtain more realistic prediction results, petrophysicists usu-
ally use the approach of determining the upper and lower 
limits of the target parameters by simulating the extreme 
situations (Mavko et al. 2009). This leads to the prediction 
of the reasonable ranges of the target parameter’s upper and 
lower limits. In the absence of geometric details relating to 
the mutual coupling of each mineral, the Voigt–Reuss–Hill 
theory (Mavko et al. 2009) is often been used to predict 
the equivalent elastic modulus of a mixture of minerals and 
pores.

When the input information is only the “pure brittleness 
index” and volume fraction of each mineral component, 
the specific geometric details of the mineral coupling are 
missing. The upper and lower limits of the equivalent brit-
tleness are analyzed by referring to the idea of VRH upper 
and lower limits, and the coupling state of each mineral 
is assumed to be the most extreme series–parallel con-
nection. In addition, using the Hill average, the final brit-
tleness prediction result is the average of the upper and 
lower brittleness. Figure 3 shows the Voigt model and 
Reuss model schematically; the figure shows two hypo-
thetical minerals A and B in gray and white. Under the 
same vertical pressure, the Voigt model simulates parallel 
connection of the two minerals, while the Reuss model 
simulates serial connection of the two minerals. When 
the minerals A and B were mixed as in the Voigt model, 
the equivalent elasticity of the mixed mineral calculated 
by the Voigt formula is the upper limit of the modulus. 
Correspondingly, when the minerals A and B are mixed 
in series as in the Reuss model, the equivalent result is 
usually the lower limit. Therefore, this study attempts to 
use the brittleness index as a “modulus.” By assuming that 
the coupling geometry of each mineral component is in 
either series or parallel as shown in Fig. 3, considering that 
mineral coupling details are missing and the input param-
eters are limited, the construction of brittleness upper and 
lower limits allows the prediction of the reasonable range 
of rock brittleness.

The VRH brittleness formula is been shown below:

(10)BI_V =

N
∑

i=1

fi ∗ PBIi

Table 1   Elastic properties of minerals (Mavko et al. 2009)

Density, kg/m3 Bulk modulus, 
GPa

Shear 
modulus, 
GPa

Quartz 2650 37 44
Calcite 2710 77 32
Dolomite 2870 95 45
Pyrite 4810 147 133
Kerogen 1300 2.9 2.7
Clay 2500 25 9
Oil 700 0.57 0
Gas 111 0.04 0
Water 1040 2.25 0

Table 2   Pure brittleness index

YM, GPa PR, unitless PBI, BI1 PBI, BI2

Quartz 95.68 0.078 1 1
Calcite 84.44 0.317 0.220 0.268
Dolomite 116.54 0.295 0.327 0.415
Pyrite 305.32 0.154 1.640 1.318
Kerogen 6.26 0.145 0.036 0.575
Clay 24.14 0.339 0.058 0.046

Pressure Pressure

Reuss modelVoigt model

Fig. 3   Illustration of a Voigt and b Reuss model (Mavko et al. 2009)
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(11)1

BI_R
=

N
∑

i=1

fi

PBIi

(12)BI_VRH =
BI_R + BI_V

2

In the formula, i refers to the different mineral compo-
sition, fi is the volume content of the mineral, PBIi is the 
relative brittleness index of the mineral, BI_V and BI_R 
are the upper and lower limits of the brittleness, respec-
tively. BI_VRH is the Hill average of the brittleness.

The PBIi value is shown in Fig. 4, and we calculate 
the relative brittleness indices of six common minerals 
in shale reservoirs. Firstly, the elastic modulus and shear 
modulus of each mineral have been calculated using the 
velocity and density of each mineral as shown in Table 1. 
Then we use formula 2 and formula 3 to calculate the 
corresponding pure mineral brittleness index. Finally, the 
brittleness of the quartz is assumed to be one, and the brit-
tleness of other minerals is normalized to this to obtain 
the final relative brittleness index (as shown in Table 2).

It can be seen from Fig. 4 that BI_2 (Blue line, see 
Eq. 3) is more sensitive to mineral composition than BI_1 
(Red line, see Eq. 2). Therefore, this paper uses BI_2 to 
calculate the brittleness factor. The corresponding brittle-
ness factors after normalization are brought into formu-
las 10–12 to obtain the corresponding brittleness indexes. 
It can be seen from formulas 10–12 that the BI_V has a 
similar form to the upper limit of the Voigt model and 

Relative brittleness index
(Richman, 2008)
Relative brittleness index
(Guo, 2012a)
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Fig. 4   Pure brittleness index of different minerals
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Fig. 5   Well logging data from southwest China
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describes the brittle exponential representation of each 
component in the case of equal strain. Therefore, this 
paper tries to follow the Voigt–Reuss–Hill concept, assum-
ing that the brittleness index of BI_V is upper limit of 
brittleness, under the same stress condition, the brittle-
ness index of BI_R is lower limit of the brittleness and 
the brittleness index of BI_VRH is the average value of 
these two limits.

2.3 � Case study

In order to verify the applicability of our equation, we apply 
it to real data from China to predict brittleness. We also com-
pare the results of our equation with those of conventional 
equations to assess the superiority of our method.

Figure 5 shows well logs from a well in Sichuan province, 
China. The target layer, in the blue box, is located in the 
Longmaxi and Wufeng Formations, whose depth is between 
2045 and 2065 m. The logs in Fig. 5, from left to right are 
GR, Porosity, Vp, Vs, TOC, Density, Vp/Vs and Poisson’s 
ratio. In the left column, the red curve is GR and the blue 
is GR without uranium. The kerogen’s radioactivity comes 
mainly from uranium. The gap between the red and the blue 

curves can be used to identify shale reservoirs. The bigger 
the gap is, the more organic content there will be. In our 
case, other well logs also show the obvious characteristics of 
shale reservoirs. Since the shale layer contains more clay and 
kerogen, and the elastic modulus (bulk modulus and shear 
modulus) of clay and kerogen is relatively low, the Vp, Vs 
and density values are often lower than in the surrounding 
rock. Figure 6 shows the mineral composition of the target. 
From Fig. 6, we know quartz and calcite content is higher in 
the target, which indicates the target has a high brittleness; 
it is therefore classified as a high-quality reservoir interval.

We calculated brittleness indexes based on brittleness 
Eqs. 1–12. The results are shown in Fig. 7. In Fig. 7, col-
umns 3–5 are log interpretation results, and columns 6–10 
are distributions of brittleness indexes calculated from dif-
ferent equations. BI_2 and BI_3 in column 6 are brittle-
ness indexes based on Young’s modulus and Poisson’s ratio. 
Though these two curves show differences in the Wufeng 
Formation, the overall trend is consistent; this confirms that 
these two equations are applicable. BI_4 and BI_5 in col-
umn 7 are brittleness indexes based on mineral components. 
We can see that these two curves are less correlated, and 
this indicates that the equation based on mineral compo-
nents is less accurate than the equation based on elasticity 
parameters.

Column 8 shows the comparison between brittleness 
indexes BI_VRH and BI_3. The red curve is brittleness 
index BI_VRH; the black curves show the upper and lower 
limits of brittleness index BI_V and BI_R.

Column 9 shows the comparison between brittleness 
indexes BI_VRH and BI_4. It is worth noting the trend of 
brittleness indexes based on mineral percentage is consistent 
with the trend of the upper limits BI_V curve.

BI_6, BI_7 and BI_8 shown in column 10 are calculated 
based on Lamé parameters λ and μ. From the figure, we can 
see that these three curves have similar trends.

Brittleness indexes shown in column 8 and 9 are calcu-
lated based on our VRH equation. BI_VRH and BI_3 show 
a better match, both these curves lie between the upper and 
lower limits of brittleness index. This confirms the appli-
cability of brittleness index BI_VRH. Across the majority 
of the target depth interval denoted by the blue box, the 
accuracy of our new brittleness index BI_VRH (red curve) 
is similar to brittleness index curve BI_3 based on elastic-
ity parameters (blue curve). When calculating BI_VRH, 
required input parameters are mineral percentage and brit-
tleness index minerals. Therefore, using our new VRH brit-
tleness equation, we can obtain an accurate brittleness index 
without requiring elastic parameter data.

It is worth mentioning that brittleness indexes based 
on mineral percentages are consistent with those related 
to upper limits BI_V. This is because brittleness indexes 
based on mineral percentages ignore fluids in pores. Pore 
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fluid influences brittleness by lowering the elastic tensor 
of the rock. This means that brittleness indexes based on 
mineral percentages are higher than real brittleness indexes, 
consistent with upper limits BI_V.

It can be found that at a depth of 2055 m, our results 
are not accurate. According to log interpretation results, at 
this depth, rock porosity is high and pore fluid effects are 
complex. It is also known, based on other test reports, that 
anisotropy at this depth is high. These may be the reasons for 
the increase in error. Brittleness index BI_VRH considers 
mineral fusion, but ignores rock porosity and fluid effects, 
indicating that our new equation is most suitable for appli-
cation in intervals with low porosity. When porosity is high 
and fluid composition and pore structure is complex, the 
applicability of our equation needs further study.

3 � Anisotropic characteristics of shale 
brittleness

Shale usually shows high anisotropy. The isotropic brit-
tleness index is insufficient to describe the anisotropic 
characteristics of shale formations. Young’s modulus and 
Poisson’s ratio are two typical parameters, which are sen-
sitive to brittleness. In order to calculate the anisotropic 
YM and PR, a 6*6 elastic constant matrix is needed for 
calculation based on a rock physics model. Therefore, 
in this section, we initially construct an anisotropic rock 
physics model. Following this, we build a rock physics 
template in order to discover the parameters sensitive to 
brittleness. Finally, we derive the relationship between 
the physical properties, (kerogen content, lamination, 
pore structure and layer dip) and anisotropic brittleness.
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Sayers (2013) performed an extensive analysis of pub-
lished shale data. He found that the vertical YM is typi-
cally lower than the horizontal YM, and vertical PR can 
be either higher or lower than horizontal PR. Based on 
our shale rock physics model analysis, our result indicates 
this observed phenomenon may due to the physical prop-
erties of shale. In the following section, this phenomenon 
was explained using our anisotropic brittleness analysis.

3.1 � Construction of an anisotropic shale rock 
physics model

In order to discover the anisotropic behavior of shale brit-
tleness, firstly, we need to construct an anisotropic model. 
The model we use is based on our previous work (Qian et al. 
2014, 2016). The main steps can be summarized as follows:

(1)	 Kerogen- and clay-related pores are added into pure 
clay successively to build the clay–kerogen block using 
SCA + DEM (SCA is short for self-consistent approxi-
mation and DEM is short for differential effective 
medium. For more details of isotropic SCA/DEM and 

anisotropic SCA/DEM please see the paper by Hornby 
et al. 1994)

(2)	 Many identical blocks are rotated to different angles; 
the range of angles is normally distributed. Bond trans-
form is used to calculate the elastic stiffness of all the 
rotated blocks, which are then combined using a VRH 
average to form the clay–kerogen background with pre-
ferred orientation. The angles of blocks are decided by 
ODF. (ODF is short for orientation density function.)

(3)	 The elastic stiffness of other minerals present in rock 
is modeled using the VRH average. Then, brittle min-
eral-related porosity is added using the isotropic SCA 
method.

(4)	 Considering the preferentially orientated clay–kerogen 
mixture as background, we use anisotropic DEM to add 
the isotropic brittle mixture into the background, form-
ing the final effective mixture

Our previous work has shown that our organic-rich 
model is suitable of modeling the organic-rich shale prop-
erly. However, in real oil fields, a tough problem we need 
to face is that the mineralogy of the target well may vary 
significantly from shallow zone to deep zone, which means 
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the organic-rich shale model may not be suitable for all the 
target zones. The rock physics workflow is decided based 
on the characteristics of the target rock type. Moreover, the 
effective theories that we used in the workflow need to sat-
isfy several assumptions. Hence, our basic idea is that we 
can build a variable rock physics workflow that can choose 
the most reasonable work path according to the type of rock. 
Different work paths perform different effective theories, 
which give the best simulation of different types of rock.

In order to enhance the generalization ability of our 
model, we develop our organic-rich shale model into a gen-
eral edition (shown in Fig. 8). The core feature of our new 
workflow is that our model can select a reasonable path 

according to the mineralogy of the formation. Two pink 
diamonds in Fig. 8 are two crossroads.

We build three paths here: (a) As the volume fraction 
of clay content is below 50%, the workflow chooses path 
one. In this scenario, the brittle minerals are the majority 
material of rock. Therefore, we perform anisotropic DEM 
to simulate an effective mixture with brittle mineral back-
ground and clay inclusion; (b) as volume fraction of clay 
content is above 50% and that of kerogen content below 
3%, this scenario is some kind of mudstone blocking layer. 
The clay is treated as background material and the brit-
tle minerals are treated as inclusions by using anisotropic 
DEM; (c) as volume fractions of clay and kerogen are both 
relatively high, the workflow chooses path three, which 

Vp measured
Vp predicted

Vs measured
Vs predicted

1750

1700

1650

1600

1550

1500

Vp Vs

2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.0 2.5

(a) (b)

Vp measured
Vp predicted

Vs measured
Vs predicted

1750

1700

1650

1600

1550

1500

Vp Vs

2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.0 2.5

D
ep

th
, m

D
ep

th
, m

Fig. 9   a Vp and Vs prediction based on the previously constructed model (Qian et al. 2016), b Vp and Vs prediction based on our new rock 
physics workflow



80	 Petroleum Science (2020) 17:70–85

1 3

indicates the scenario of organic-rich shale and this type of 
path shows a similar workflow to our previous work (Qian 
et al. 2014, 2016).

In order to check the feasibility of our workflow, we 
perform our modified workflow to our target well and pre-
dict its elastic wave velocity, by performing the inversion 
procedure in our previous paper (Qian et al. 2016). Our 
predicted P and S wave velocities are shown in Fig. 9. Fig-
ure 9a is the velocity predictions based on our previously 
constructed model which is only suitable for organic-rich 
shale. Meanwhile, Fig. 9b shows the predictions based on 
our new modified workflow. Blue and red curves indicate 
measured and predicted velocities.

We divide our target zones into two main types and use 
pink and green arrows to notice them. The zones high-
lighted by a pink arrow are a typical kerogen-rich forma-
tion, which has relatively high porosity, high TOC and 
high velocity. Moreover, the green arrows indicate the 
zones with high brittle mineral content, which have rela-
tively low porosity, low TOC and low velocity.

It is notable that both models are suitable for organic-
rich formation (pink arrow), while for brittle mineral-rich 
formation (green arrow), our new workflow shows better 
predictions, since we consider different workflow paths for 
different type of rock. Hence, our generalized shale rock 
physics workflow shows good feasibility and applicability, 
especially for formations with significant lithology change.

3.2 � Construction of the rock physics template

In this section, rock physics templates are built based on our 
model to illustrate the influence of lithology and porosity on 
shale brittleness.

Figure 10 shows the crossplots of λρ–μρ, Young’s modu-
lus (YM) versus Poisson ratio (PR) and Vp/Vs versus Ip 
(P wave impedance). The mesh in the figure is controlled 
by two parameters: clay content and porosity. The dashed 
lines indicate the effect of mineralogy, while the solid lines 
represent the effect of porosity. The dashed lines show 
that the clay content is gradually substituted by quartz, 
and other minerals remain unchanged. The clay content 
increases from 10% to 40% with an interval of 10%, and 
the quartz decreases from 40% to 10%. Meanwhile, the 
solid lines show that the porosity varies from 0.08 to 0.02 
with step equals to 0.02. Figure 10a indicates that λρ is 
more sensitive to brittle mineral content than μρ especially 
for the low porosity situation. Figure 10b shows that high 
quartz content and low porosity correspond to high YM 
and low PR, which indicates that brittleness is affected not 
only by mineralogy but also by porosity. YM appears to be 
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less sensitive to the variation in clay content as porosity 
increases. Figure 10c shows that Vp/Vs decreases as quartz 
content increases.

As described in Sect. 3.1, our rock physics model first 
builds a clay–kerogen block and then rotates the block to 
model the inclination observed in the formation. Figure 11a 
shows the influence of the alignment angle of the clay–kero-
gen block on the anisotropic parameters. The angle varies 
from 0 to 90°. Figure 11a indicates that the Thomsen ani-
sotropic parameters ε and γ decrease as angle increases, 
while δ reaches its peak at around 40°. ε and γ are always 
above zero, while δ can be either positive or negative, which 
agrees with Sayers’s study. In addition, ε and γ have a linear 
relationship while δ seems to be independent. Figure 11b 
indicates the relationship between inclination angle and 
YM and PR. High YM and low PR usually represent high 
brittleness. The peak value of brittleness appears when the 
orientation angle around 45°.

3.3 � Effect of pore geometry and kerogen

Our previous work has proven that pore geometry and kero-
gen are two significant factors that influence elastic proper-
ties. Based on our model, we link the physical properties of 
shale, i.e., pore geometry (pore aspect ratio) and kerogen 
content, to the anisotropic sensitive brittleness parameters 
(YM and PR).

Figure 12 shows the predicted anisotropic YM and PR 
based on our model resulting from varying pore aspect 
ratios (from 0.1 to 1) and the volume fraction of kerogen 
(from 0 to 1). The elastic properties we use for kerogen and 
“shale” (the mixture of the other minerals) are quoted from 
Sayers (2013) as below. For kerogen C11 = C33 = 9.8GPa, 
C44 = C66 = 3.2GPa and C13 = 3.4GPa. Moreover, for 
shale C11 = 85.6GPa, C33 = 65.5GPa, C44 = 24.6GPa, 
C66 = 29.7GPa and C13 = 21.1GPa.

Figure 12a, b indicates the ratio between vertical and 
horizontal YM and PR; Fig. 12a shows the anisotropic YM: 
Eani (the ratio of vertical YM to horizontal YM) decreases as 
pore aspect ratio decreases, since low pore aspect ratio leads 
to high shale anisotropy. As volume fraction of kerogen 
increases to around 50%, Eani becomes more sensitive, which 
may be due to the “interaction” between the shale phase and 
kerogen phase reaching a maximum as both phases have 
similar volume fractions. Figure 12c–e indicates the cal-
culated brittleness based on Rickman’s equation (Rickman 
et al. 2008). Modeling results show BI_horizontal (horizon-
tal brittleness) is more sensitive to a low pore aspect ratio, 
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while BI_vertical, (vertical brittleness) is more sensitive to 
a high pore aspect ratio. The BI_vertical/BI_horizontal ratio 
shows similar characteristics to the YM and PR ratio.

3.4 � Effect of lamination

In our model, we use bond transforms and orientation den-
sity functions to represent the lamination of shale. Here, 
we vary the extent of lamination and analyze the aniso-
tropic YM and PR. As shown in Fig. 13, as the lamina-
tion index increases, the extent of lamination decreases, the 
shale becomes more randomly distributed. Hence, the Eani 
value approaches one, which indicates a decrease in shale 
anisotropy.

It is notable that, while varying the lamination index, 
the Eani value remains below one, while the Vani value can 
be greater than or less than one, which coincides with the 
observed phenomenon from Sayers (2013). Hence, we 
believe the lamination of shale can be used to explain the 
Vani phenomenon.

3.5 � Effect of formation dip

As mentioned above, our model uses orientation density 
functions (ODF) to represent the lamination of the shale. 
The ODFs are been controlled by two main parameters. One 
is “expectation,” and the other is “variance.” “Expectation” 
controls the angle of the highest density of the clay–kerogen 
block, which represents the dip of formation. “Variance” 

controls the gap between the highest and the lowest densi-
ties, which can be used to model the lamination of shale. In 
the previous section, we set “expectation” equal to zero and 
vary the value of “variance” to model the effect of lamina-
tion. In this section, we vary “expectation” and set “vari-
ance” as a constant to model the dip angle of shale layers.

Figure 14 shows the calculated brittleness obtained by 
varying the pore aspect ratio and the dip angle of shale lay-
ers. For a high pore aspect ratio, the anisotropy of shale 
is weak, and BI_vertical/BI_horizontal varies around 1. As 
pore aspect ratio decreases, anisotropy increases. The val-
ues of BI_horizontal and BI_vertical trade places with each 
other, since the dip angle of the shale formation varies from 
0 to 90 which indicates the transformation of a VTI forma-
tion into a HTI formation.

Comparing the modeling results with the diagram of a 
real well trajectory (Fig. 1), different dip angles indicate 
different phases of the well trajectory. Considering the ani-
sotropic information of the shale layers can help drilling 
engineers locate the target area more accurately.

4 � Conclusions

In this paper, we attempt to link two brittleness equations 
(the mineralogy-based and elastic parameter-based meth-
ods) together and introduce the concept of “pure brittleness 
index,” the mineral components were treated equally consid-
ering the common influence of each mineral component on 
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the brittleness of rocks. Subsequently, based on the idea of 
the Voigt–Reuss–Hill average, a new brittleness equation has 
been introduced. The PBI has been reconstructed to predict 
the upper limit, lower limit and average of brittleness. The 
new equation has been applied to real logging data from 
southwest China. The predicted results show that the new 
equation can generate good predictions, comparable to those 
derived from the elastic parameter method, with only limited 
input information.

However, the accuracy of our equation is lower than 
the predicted results calculated from the elastic param-
eter method at some depths, which is because there is no 
input information about pore fluid in areas of relatively 
high porosity. It is clear that the applicability of the new 

brittleness equation in areas of relatively high porosity needs 
further research.

In terms of anisotropic analysis, our studies first introduce 
a new rock physics model for shale, based on our anisotropic 
shale model. The relationship between physical properties 
(like pore geometry, TOC, shale lamination and dip angle 
of shale formation) and elastic parameters (like anisotropic 
YM and PR) is then established. Our modeling results coin-
cide with the real data points derived from field examples 
of shale. The prediction shows the vertical/horizontal YM 
always remains below one while the vertical/horizontal PR 
can be greater or less than one. We find different extents 
of shale lamination may be the explanation for the random 
distribution of Vani. Additionally, the brittleness of shale can 
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vary significantly while drilling due to the strong anisotropy 
of the shale formations.
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