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Abstract
Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies. Traditionally, it is done by 
kriging-based methods. More rigorous modeling of the permeability results in more reliable outputs of the reservoir models. 
Recently, a new category of geostatistical methods has been used for this purpose, namely multiple point statistics (MPS). By 
this new category of permeability modeling methods, one is able to predict the heterogeneity of the reservoir permeability 
as a continuous variable. These methods consider the direction of property variation in addition to the distances of known 
locations of the property. In this study, the reservoir performance of a modified version of the SPE 10 solution project as 
a pioneer case is used for investigating the efficiency of these methods and paralleling them with the kriging-based one. 
In this way, the permeability texture concept is introduced by applying some MPS methods. This study is accomplished in 
the conditions of real reservoir dimensions and velocities for the whole reservoir life. A continuous training image is used 
as the input of calculation for the permeability modeling. The results show that the detailed permeability of the reservoir 
as a continuous variable makes the reservoir simulation show the same fluid front movement and flooding behavior of the 
reservoir similar to the reference case with the same permeability heterogeneity. Some MPS methods enable the reservoir 
simulation to reproduce the fluid flow complexities such as bypassing and oil trapping during water flooding similar to the 
reference case. Accordingly, total oil production is predicted with higher accuracy and lower uncertainty. All studied cases 
are identical except for the permeability texture. Even histograms and variograms of permeabilities for the studied reservoir 
are quite similar, but the performance of the reservoir shows that kriging-based method results have slightly less accuracy 
than some MPS methods. Meanwhile, it results in lower uncertainty in outputs for this water flooding case performance.
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Abbreviations
SPE10 model  
(SPE10 project)	� A famous benchmark in 

reservoir simulation
FOPR	� Field oil production rate, 

STB/day

FWPR	� Field water production rate, 
STB/day

FOPT	� Field oil production total 
(total amount of oil that is 
produced), STB

P10, P50  
and P90	� 10th, 50th and 90th percen-

tiles of a dataset

1  Introduction

Various problems emerge in the process of reservoir mod-
eling and simulation basically due to complex geological 
heterogeneity. Accurate modeling of heterogeneous nature of 
reservoir permeability, porosity, etc. will cause better predic-
tion of hydrocarbon production from oil/gas fields (Ringrose 
and Bentley 2016; Kargozarfard et al. 2019). New insights 
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into many geoscience problems, and especially those in the 
petroleum industry, are brought by accounting for the spa-
tial relationships of the reservoir property data (Rezaee et al. 
2013; Koneshloo et al. 2018; Yang et al. 2016). This is rou-
tinely done via kriging-based methods including the sequen-
tial Gaussian simulation. (Dubrule 1989; Yong et al. 2010; 
Yang et al. 2016). The major disadvantage of kriging-based 
methods is the excessive smoothness of the resultant prop-
erty for the reservoir (Sahimi 2011). Another important aspect 
to be considered is the scarcity of hard data of the reservoir 
that postulates the application of multiple point statistics 
(MPS) alongside kriging-based methods (Caers 2001; Mari-
ethoz 2018). “Bull eye” is the structure in which the property 
increases or decreases radially around the hard data point 
location. It is occasionally produced in property modeling 
around the hard data points and is categorized as an artifact 
(Ayzel et al. 2017). “Artifacts” are all unrealistic structures 
or patterns that may be produced because of the failure of 
image processing methods. The best method is the one which 
produces least possible artifacts within its calculations.

Recently, new methods called multiple point statistics 
(MPS) have been applied for this purpose as a cutting-edge 
category of methods for reservoir property modeling. MPS 
is a category of texture synthesis algorithms and is borrowed 
from image processing techniques (Mariethoz and Lefebvre 
2014). In other words, MPS is actually the application of 
texture synthesis algorithms in earth sciences. We can also 
call them adapted versions of computer graphics methods for 
geoscience. By this usage, computer graphics are not only 
concerned with the visual appearances. This interesting usage 
of them is an open research area in reservoir engineering. In 
the MPS calculation, modeling the spatial patterns of natu-
ral properties, for example reservoir permeability, is based 
on training images (TIs), which are the explicit examples of 
the heterogeneity (Mariethoz and Lefebvre 2014). Generally 
speaking, training images are an ensemble of all spatial vari-
ations that must be regenerated by MPS methods (Mariethoz 
and Caers 2014). MPS methods statistically reproduce the 
values occurred in the TI with their spatial arrangement. In 
other words, the high-order statistics inferred from a TI, which 
is a spatial and conceptual representation of the structures 
expected in the geological formation, is used for the property 
modeling (Gardet et al. 2016). An MPS enables the generation 
of complex, interconnected or continuous geological struc-
tures within the stochastic framework (Le Coz et al. 2016).

1.1 � MPS methods

The kriging-based methods calculate the reservoir proper-
ties by minimizing the variance of residuals while the MPS 
methods calculate the properties based on the notion of 
expectation (Mariethoz and Caers 2014). In an overall point 
of view, all MPS methods conduct their calculations based 

on expectation of the similar patterns and variation between 
TI and the reservoir. The essential idea of MPS is to find 
the most similar pattern in the TI and place it in the desired 
location. The most similar pattern(s) is/are found based on 
the calculation of similarity of the previously determined 
properties between TI and the simulation grid, the reservoir 
model in this case. The spatial arrangement of previously 
determined property creates a concept named a “data event.” 
In other words, by statistical calculation and finding the best 
match between a TI data event and the reservoir data event, 
the MPS method fills the reservoir by copying the best match 
data event into the reservoir at the desired location. In krig-
ing-based methods, this filling is done only by measuring 
the distances of the desired location from known locations. 
The involvement of the data event enables the MPS method 
to create similar patterns to the TI. However, this concept 
and consequent directional spatial variation in property are 
ignored in kriging-based methods and only the distance from 
the known points determines the resulting values of desirable 
property. Thus, MPS considers the directions in spatial varia-
tion during the property modeling while kriging-based meth-
ods ignore it. Therefore, various types of property spatial 
variation could not be modeled by kriging-based methods.

Guardiano and Srivastava (1993) introduced multiple 
point geostatistical simulation by considering the borrowing 
concept from TI spatial variation (Guardiano and Srivastava 
1993). Although this strategy was appealing, it was ineffi-
cient in computational cost aspects of calculations since the 
algorithm needs to scan the entire TI for each cell, the syno-
nym of pixel in computer graphics, in the reservoir. Stre-
belle (2002) developed the first efficient MPS algorithm by 
using tree structures for searching through TI and introduced 
it as SNESIM (Strebelle 2002). This algorithm first stores 
all patterns of TI in the storage step. Then, the algorithm 
fills the reservoir based on the stored patterns and their fre-
quencies. The most acute difficulty for this MPS method 
is in simulating the continuous property. Afterward, many 
other modifications were introduced by other researchers 
(Hoffman and Caers 2007; Caers et al. 2003; Huysmans and 
Dassargues 2011). Mariethoz et al. (2010) developed direct 
sampling (DS) method for eliminating the storage step of 
previous MPS methods (Mariethoz et al. 2010). A number 
of modifications have been applied for accelerating and aug-
menting this method (Rezaee et al. 2013; Huang et al. 2013). 
Among all modifications, advanced-DS changes the size of 
a data event during property calculation and produces more 
realistic patterns of property variation (Meerschman et al. 
2013). Rezaee et al. (2013) modified the algorithm in order 
to assign a bunch of values instead of a single value for a 
single cell (Rezaee et al. 2013). This method called Bunch-
DS achieved significant improvement in the cpu time of cal-
culation. Tahmasebi et al. (2012a) engaged the correlation 
operator into MPS calculations and introduced a method 
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named cross-correlation simulation, CCSIM (Tahmasebi 
et al. 2012a). CCSIM played a fundamental role for several 
enhancements of computation cost and time (Tahmasebi and 
Sahimi 2016b; Tahmasebi et al. 2012b, 2014). The available 
one is MSCCSIM which calculates the patterns of TI in a 
“multi-scale search” manner while using the convolution 
operator with applicable runtime (Tahmasebi et al. 2014). 
The image quilting (IQ) technique was first introduced by 
Efros and Freeman (Efros and Freeman 2001). Mahmud 
et al. (2014) implemented the IQ algorithm in 3D cases for 
property modeling applications (Mahmud et al. 2014). IQ 
results in appropriate modeled properties in quite a short 
cpu time. The Graph-cut method developed by Kwatra et al. 
supplies another improvement for regenerating more realistic 
outputs (Kwatra et al. 2003). The basic idea of Graph-cut is 
to consider the images as a graph and then solve a “max-
flow/min-cut” problem for synthesizing the textures within 
the TI. The advantage of this method is to store the quality of 
cutting at each step which makes the method more powerful 
in producing seamless results. More details are addressed 
in the literature (Kwatra et al. 2003). Li et al. conveyed the 
message of the Graph-cut concept into geological settings 
(Li et al. 2016).

The values in the simulation grid, the reservoir in this 
case, are the selected values of TI. Selected values are cho-
sen based on the consideration of neighboring values in 
both TI and the simulation grid. Actually, the most similar 
pattern is selected in the TI for imbedding in the simulation 
grid. The most similar pattern is found by using a template 
scanning over the TI. The template is a rigid set of values 
and locations that can move on the TI and take various spa-
tial distributions of the property values based on the shape 
of the template. The similarity of the TI values and values 
in the simulation grid is defined by the distance concept, 
which is obtained by the difference of values in the TI and 
those of simulation grids by an explicit formula. For more 
details, see (Mariethoz and Caers 2014). After calculating 
the distance value, the MPS method chooses that part of 
the TI with the lowest distance and pastes it (or maybe a 
masked version of it) to the simulation grid. All mentioned 
MPS methods cause the texture of permeability to become 
better and better, but still they possess a tile-based nature for 
the property calculations. Tile-based nature is started with 
an empty reservoir and populating it piece by piece until 
all the cells of the reservoir attain the property. Figure 1 
shows the basic concept of the MPS approach for calcu-
lating the reservoir property by finding the most similar 
pattern in the TI in each iteration of the calculation. The 
next generation of MPS methods is the ones borrowing the 
texture optimization technique from Kwatra et al. (2005). 
Pourfard et al. (2016) developed this generation of methods 
for MPS application with parallelism and ended in introduc-
ing PCTOSIM (Pourfard et al. 2016). In this new generation 

of MPS methods, the method starts with random values of 
property, in contrast to the empty reservoir at the beginning 
of previous generation of MPS. The algorithm makes these 
random values step by step similar to the existing patterns 
and values of TI. Figure 2 illustrates the texture optimiza-
tion process beginning from random values and ending in 
the textures similar to TI.

1.2 � MPS applications

MPS is used in different disciplines ranging from soil sci-
ence (Meerschman et al. 2014), prediction of the occurrence 
of rainfall (Oriani et al. 2014), water resources modeling, 
i.e., remote sensing, (Mariethoz et al. 2012), hydrogeology 
(Huysmans and Dassargues 2012), medical imaging (Pham 
2012) to the fluid flow through underground formations 
(Okabe and Blunt 2004; Huysmans and Dassargues 2009; 
Xu et al. 2012; Tamayo-Mas et al. 2016; Lee et al. 2019; 
Mosser et al. 2018).

MPS methods could also be implemented for inversion 
problems (Lee et al. 2019). Caers and Hoffman introduced 
the probability perturbation method (PPM) in this regard 
(Caers and Hoffman 2006). This method is devoted to com-
bine the soft and hard data for the reservoir characterization. 
This concept was used for further modifications (Khani et al. 
2017; Oliveira et al. 2017; Castro et al. 2009; Li and Caers 
2011). Hamdi et al. used MPS in facies modeling to match 
the well test data (Hamdi et al. 2014).

1.3 � Permeability prediction by MPS methods

A lot of research is accomplished by using MPS as the 
categorical property modeler (Caers and Zhang 2004; 
Gardet et al. 2016; Comunian et al. 2012). Although early 
MPS methods are limited to the categorical parameters 
like SNESIM (Strebelle 2002) and FILTERSIM (Zhang 
et al. 2006) at early stages of development, nowadays, 
more rigorous methods are available to use for both cat-
egorical (like facies) and also continuous variables (like 
permeability) of the reservoir. In addition, many papers 
are published on pore-scale modeling via MPS methods 
(Hajizadeh et al. 2011; Okabe and Blunt 2007; Naraghi 
et al. 2017; Ji et al. 2018).

Park et al. investigated challenges for applying TIs in 
MPS. They showed that the TI must be consistent with the 
production data (Park et al. 2013). They discussed the quali-
tative fashion of geoscientists who ignore great detail or any-
thing quantitative in production history in interpreting the 
reservoir facies heterogeneity. Many considerations should 
be applied while selecting a TI for reservoir modeling.

In this study, we investigate the effect of horizontal rock 
heterogeneity, in other words, rock texture, to scrutinize 
the effect of its texture on the performance of hydrocarbon 
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production. To this end, a modified version of SPE case 
10 (Christie and Blunt 2001) is used for the simulation 
purposes. Having this modified model proposed for fluid 
flow between production and injection wells, we inspect 
the front of the injected fluid through the reservoir dur-
ing oil production. In fact, only reservoir dimension and 
well rates are modified to inspect the flood front move-
ment regarding rigorous modeling of reservoir perme-
ability. Actually, MPS methods enable us to see what 
exactly happens regarding the horizontal heterogeneity 
of permeability. However, this application of MPS has 

not been investigated while assuming all real reservoir 
dimensions and reservoir fluid velocities. Previous surveys 
have mainly focused on the pore-scale models or introduc-
tion of a MPS method and have not engaged permeability 
modeling as a continuous variable at a real reservoir scale 
with real injection and production conditions which means 
they have applied facies modeling instead of permeability 
modeling. Hence, a main challenge is to investigate the 
effect of rock texture on the reservoir performance in real 
cases and the efficiency of the provided MPS methods for 
this purpose.

pat2?

patk?

pat1 pat1

pat2

patk

(a) (b)

(c) (d)

(e)

Fig. 1   General approach of MPS methods is depicted thorough the CCSIM method for finding the most similar pattern of the training image 
(TI). Section (e) of the figure is the training image, or TI. The first pattern is selected randomly (Step a), and consequent patterns are selected 
one after another based on previous one(s) and their overlap region with previously pasted pattern, step b–d (Tahmasebi et al. 2014)

Exemplar

Noise Level 1 Level 2 Level 3

Fig. 2   General workflow of a new generation of MPS methods via texture optimization. Having a TI (in computer graphic this equals to exem-
plar) and randomly distributed values, named noise in this figure, the method tries to optimize the random variable to be similar to the existing 
texture of the training image (TI) or exemplar. Started with noise and ended in level 3 (Kopf et al. 2007)
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2 � Methodology

2.1 � Reservoir model

To investigate the effect of rock permeability texture, the 
modified version of the SPE 10 comparative solution project 
is employed by only considering the horizontal heterogene-
ity of permeability regardless its depth variation. This elimi-
nates the impact of gravity on fluid flow through reservoir. 
This modification contains identical specifications to the 
original SPE 10 comparative solution project (Christie and 
Blunt 2001) including relative permeability, rock proper-
ties (except permeability), well constraints for production, 
simulation block size in any direction, etc. Modifications are 
applied only to the number of simulation cells in each direc-
tion and well injection fluid and injection/production rate. In 
this study, the number of grids is changed from 100 × 1 × 20 
to 210 × 210 × 1 in the x-, y- and z-directions, respectively, 
and also the injection rate is changed from 34.61 MSCF/day 
gas injection to 50 STB/day water injection. Modification in 
the number of reservoir grids leads to 5250 ft (210 × 25 ft) 
horizontal distance in both x- and y-directions of the res-
ervoir between the corners of the reservoir. Two wells are 
placed at the opposite corners of this square reservoir, one 
for water injection and one for oil production. Figure 3 
shows the well configuration and shape of the studied res-
ervoir. By this new reservoir dimension, the water injection 
front through the reservoir could be easily observed during 
reservoir production regarding the horizontal heterogeneity 
of permeability.

In this study, a training image and predetermined (refer-
ence) permeability for the reservoir are selected to investi-
gate the effect of reservoir permeability texture on its pro-
duction performance. Only 0.015% of the total number of 
permeability values (44100) are assumed to be known for 
this reservoir, i.e., values at seven places are known. This 
extremely low percentage of known values (“hard data” in 
texture synthesis terminology) is due to sparsity of wells in 
the reservoir. The places of these known permeability values 
are selected randomly through this reservoir. Figure 4 shows 
the training image (TI) for this study, reference permeabil-
ity and places having known values of permeability for the 
reservoir.

2.2 � Permeability texture synthesis

The aim of this study is to investigate the effect of horizontal 
heterogeneity of permeability which represents the effect 
of permeability texture on the reservoir performance. To 
do this, several available methods of permeability modeling 
including a kriging-based (SGSIM method) and six MPS 
methods are employed to construct the permeability of the 

reservoir. The six MPS methods are Bunch-DS (Rezaee et al. 
2013), image quilting (Mahmud et al. 2014), advanced-DS 
(Mariethoz et al. 2010), MSCCSIM (Tahmasebi et al. 2014), 
PCTOSIM (Pourfard et al. 2016) and Graph-cut (Li et al. 
2016).

These seven methods are applied to create the reservoir 
permeability for 44,093 places with seven known perme-
abilities of reservoir as hard data. The methods borrow all 
patterns from TI (Fig. 4 a training image (TI) used for this 
study. b Predetermined, in other words, “reference,” reser-
voir permeability. c Places of known values of permeabil-
ity), while the SGSIM method uses the information of this 
training image for variogram model calculations. In other 
words, the variogram model for permeability modeling is 
calculated based on this TI. A Gaussian variogram with a 
range of 13 simulation cells in each grid direction is matched 
based on the experimental variogram model. By using this 
representative variogram of the TI, SGSIM will be able to 
create the realization. Anisotropic variograms do not make 
sense because the TI has resulted in similar ranges for dif-
ferent directions. Anisotropic variograms may only elon-
gate the shapes in the cases with sparse hard data which is 
not acceptable having such non-trending TI in this study. 
The advantage of MPS is to consider large- and small-scale 
variations in permeability simultaneously which cannot be 
emulated by using an anisotropic variogram or even a trun-
cated Gaussian simulation. The truncated Gaussian simula-
tion uses lithotypes to deliver a facies map of the reservoir 
instead of a permeability map by truncating a Gaussian reali-
zation into different lithotypes (Hu et al. 2001). Lithotypes 

The place of
injection well

The place of
production well

Fig. 3   Position of production and injection wells for the studied res-
ervoir model
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are created based on the opinion of the modeler, and there 
exist no eligible criteria behind the boundary selection of 
lithofacies. In the advanced usage of truncated methods, the 
pluri-Gaussian method is implemented for this purpose. The 
pluri-Gaussian is able to recreate complex arrangements of 
a number of lithotypes (Oliver et al. 2008). The two last 
methods are not applicable for creating a realization of per-
meability since they end up in facies as a categorical out-
put and not permeability as a continuous one. The aim of 
the present study is to investigate the fluid flow through a 
continuous spectrum of permeability within the reservoir. 
Therefore, if permeability values are assigned on the basis 
of the modeled facies, it will be a self-contradictory calcula-
tion. This (self-contradiction) will arise from missing a part 
of the TI information by boundary selection of lithotypes 
as a preprocessing for pluri-Gaussian and then reassigning 
the permeability, perhaps by random values in the specific 
range of permeability values, to post-process it. The results 
of permeability modeling for all seven methods in terms of 
one realization are illustrated in Fig. 5.

To evaluate permeability modeling methods, all these 
methods are used to generate an ensemble of realizations 
which consist of twenty-five 210 × 210 images (as the res-
ervoir) from a 70 × 70 training image (as an outcrop of the 
reservoir or derived from seismic calculation). A synthe-
sized texture image with bigger size than that of TI has not 
been studied before considering all real reservoir conditions. 
All seven methods employed in this study model the perme-
ability as a continuous variable and are not similar to the 
previous studies where facies were modeled as categorical 
variables, e.g., study of Ren et al. (2019). Difficulties in real 
reservoir simulation still remain. This study avoids these 
issues by focusing on characterization of the permeability 

from a fluid flow point of view. Figure 6 shows the flowchart 
of this paper.

Tan et al. provided a measure for finding the similarity of 
textures (Tan et al. 2014). This comparison method calculates 
distances of cluster-based histograms of patterns by a statis-
tical measure of distance termed the Jensen–Shannon diver-
gence. More details are available in the literature (Tan et al. 
2014). After calculating the distances, multidimensional scal-
ing (MDS) is subsequently applicable for visualizing purposes 
(Honarkhah and Caers 2010). Using the Tan et al. method 
and MDS calculation, one could plot the similarity of the cen-
tral part of the obtained realizations compared to the TI. This 
method of visualization for showing the similarity of patterns 
needs images in the same size for training and also realization. 
Thus, the center part of each realization is selected. The central 
part of each reservoir, which starts with cell number 71 and 
ends in cell number 140 in both x- and y-directions, is selected 
to find the similarities with the training image.

In this part, first the output of six MPS methods and the 
SGSIM method for modeling the permeability of the reservoir 
is analyzed, and second, the effect of permeability texture is 
discussed by running the reservoir simulation for all seven 
permeability modeling methods and predetermined perme-
ability of the reservoir.

3 � Permeability modeling results

Patterns of the TI are obvious for all methods for perme-
ability modeling except the SGSIM method as shown in 
Fig. 5. The SGSIM method leads to circular regions of low 
(or high) permeability in some areas with smooth varia-
tion in permeability, but other methods create the patterns 
of the TI in the reservoir. This smoothness is reported 
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Fig. 4   a Training image (TI) used for this study. b Predetermined, in other words, “reference,” reservoir permeability. c Places of known values 
of permeability
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in various studies of MPS method developments (Tah-
masebi et al. 2012a; Mahmud et al. 2014; Mariethoz and 
Caers 2014). Patterns similar to that of TI are observed in 
Fig. 5b-g, which belongs to MPS methods, while Fig. 5a, 
which belongs to the kriging-based method, lacks TI pat-
terns and has been constructed with the routine method 
used in the oil and gas industry. This pattern preservation 
is studied for simulation purposes in the next part of this 
study and will be plotted alongside the routine kriging-
based SGSIM method. Unlike the other five MPS meth-
ods, the PCTOSIM method results in blurred permeabil-
ity because of its optimization paradigm (Pourfard et al. 
2016). In the constructed permeabilities of the other five 
methods, some artifacts including a noisy value in smooth 
areas or visible shapes of patchiness are also observed. For 

more information about patchiness, refer to the literature 
(Tahmasebi and Sahimi 2016a).

The synthetic reservoir and TI both have a bimodal histo-
gram of permeability. Figure 7 shows the histogram of one 
set (out of 25) of the methods for predicting the reservoir 
permeability. Examining the histograms of the figure reveals 
the similarity of synthesized images to each other, while the 
PCTOSIM method shows a quite smooth histogram com-
pared to the other ones. This is due to the different nature of 
this method to the other five MPS methods. The PCTOSIM 
method calculates permeability values by optimizing an ini-
tially random texture which should be in accordance with TI 
patterns, but other MPS methods fill the initial empty reser-
voir with values and patterns stored in the TI. In this aspect, 
five MPS methods conduct the permeability modeling like 
SGSIM by starting with an empty reservoir and ending in 
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Fig. 5   Result of permeability modeling in one set of 25 realizations by different methods for the reservoir. a SGSIM method. b Bunch-DS 
method. c Image quilting method. d Advanced-DS method. e MSCCSIM method. f PCTOSIM method. g Graph-cut method. Comparison is not 
the objective of this study
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completed filled reservoir with permeability values drawn 
from the TI, whereas PCTOSIM starts with random values 
of reservoir permeability at the beginning and ends with 
patterns existing in the TI. Thus, sharp modes are not seen 
in the PCTOSIM histogram. MPS methods should be able 
to synthesize large, i.e., “dense” in texture synthesis termi-
nology, grids of various reservoirs for reservoir simulation 
purposes. This study shows that MPS methods are suitable 
for situations where grid numbers are higher than TI for 
the permeability modeling. Note that in almost all previous 
studies, the grid numbers of TI and synthesized image were 
the same (Mahmud et al. 2014; Tahmasebi et al. 2014). By 
visual judgment of all histograms in Fig. 7, it could be said 
that all predicted synthesized images of MPS methods have 
similar histograms compared to TI and the predetermined 
permeability values except the SGSIM method and the more 
smoothed one for the PCTOSIM method. Thus, all methods 
could be employed for further simulation purposes. Figure 8 
shows the variogram of all methods in addition to that of 
the TI and the reference case. According to this figure, the 
general shape of the variograms is similar for all synthesized 
models and the reference case. Correlation length of the 
training image and the reference case, around 16 simulation 

cells, is comparable to all MPS-related permeability fields 
as well as the SGSIM value. It could be concluded that no 
difference is observed from a variogram point of view.

4 � Reservoir simulation results

Synthesized permeability of six MPS methods along with 
the SGSIM method results allows us to examine the reser-
voir performance regarding different permeability modeling 
(in other words, synthesis) approaches. Having the output 
of six MPS and SGSIM methods, the reservoir simula-
tor calculates the water flooding front of this reservoir for 
46,200 days. This covers the whole life of reservoir.

Permeability modeling was conducted several times in 
the reservoir studies for considering the uncertainty of reser-
voir prediction. In this study, we scrutinize the permeability 
modeling with a novel implementation of MPS in order to 
parallel the traditional kriging-based method output with 
MPS method output. Careful observation of the fluid flow 
is obtained during the reservoir simulation by understanding 
its dependence on horizontal heterogeneity of permeability. 
By using MPS methods, more accurate variation in perme-
ability is modeled for the simulation purposes. This is shown 
in Fig. 5 by visualizing the patterns of TI and synthesized 
permeabilities.

Simulation results (top views) of oil production at vari-
ous times in terms of water saturation are shown in Fig. 9 
for one set of 25 realizations calculated for each method. 
As depicted in Fig. 9, differences in water front movement 
between SGSIM and MPS methods are obvious. Based on 
this figure, fluid flow through porous media is very similar 
to the reference case of permeability (predetermined perme-
ability) and MPS methods, especially the Graph-cut method. 
The edge of the flood front is the same for the reference and 
MPS methods but differs from that of SGSIM and PCTO-
SIM methods. Employed MPS methods are able to do this 
because they preserve the patterns of TI to some extent. 
However, the kriging-based method, which only considers 
distances for permeability calculation regardless of direc-
tion, is unable to fabricate the variation patterns of perme-
ability. PCTOSIM is not able to mimic the edge of front 
because of the blurred effect in its output. Note that all input 
parameters of this reservoir simulation are identical for the 
reference case and all seven methods of permeability mod-
eling. Basically, only the texture of permeability (high order 
of spatial variation in permeability) differs from case to case.

It is seen in Fig. 9 that trapping and bypassing patterns 
of oil during water flooding are not similar to the reference 
case for the SGSIM method. However, other MPS methods 
except PCTOSIM show the same volumetric amount and 
behavior of trapping as the reference case during the res-
ervoir performance in visual judgment. Trapping depends 
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image MPS calculation by
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Image quilting
Advanced-DS

MSCCSIM
PCTOSIM
Graph-cut
methods

Variogram
calculation

Modeled
permeability

The
reference

permeability

Running the reservoir simulation with real case specifications

Plotting the results

SGSIM method

Start with the
reference case

Fig. 6   Flowchart of this paper. The objective of this study is not to 
compare these methods for acceptance or rejection of each of them. 
For comparing these methods, interested readers should contact the 
developer of each method. The objective is to reveal new usage of 
them for continuous parameters (in this case, permeability) by intro-
duction of the permeability texture concept in real reservoir simula-
tion cases. MPS methods are famous for facies modeling which is not 
relevant to this study. In fact, this study proposes the usage of multi-
ple point statistics alongside the kriging-based methods in a comple-
mentary manner for modeling the permeability
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not only on the horizontal heterogeneity of permeability 
but also on the velocity of displacing and displaced fluids 
and their mobility which is identical for all eight cases of 
simulation. Thus, the only reason for trapping is the hetero-
geneity of permeability, i.e., permeability texture, through 
the reservoir.

Figure 9 shows rather similar flood front advancements 
for all saturations including low, average and high water sat-
urations, especially for the Graph-cut method. High water 
saturations, which occurred around the water injection well, 
were shown by red and dark red colors. SGSIM does not 
show the same transition from high to low values of water 
saturation from the injection well toward the edges of the 
front. It was an arc shape transition for SGSIM. Usually, 
saturations at quite high or very low values of water satura-
tions do not cause any trouble for history matching purposes. 
On the contrary, blocks with saturations in the middle (not 
too much oil or water in the simulation cell) usually cause 

problematic history matching calculations. History matching 
and model calibration are, in essence, identical calculations 
applied, respectively, in reservoir engineering and hydrol-
ogy disciplines to match the output of models with real data 
from earth layers. This figure shows that in middle satura-
tions, permeability texture causes the front to pass through 
the reservoir which is identical to the reference case having 
the same permeability texture. In other words, the valuable 
information of permeability texture definitely emulates the 
flood front in real cases.

By observing water saturations at the middle and end of 
simulation carefully, it can be realized that dot-like zones 
of oil trapping are identical for the reference case and MPS 
methods except PCTOSIM. This dot-like trapping is because 
of permeability texture of the reservoir which could only be 
reproduced by the MPS methods. PCTOSIM creates blurred 
permeability which will not lead to the correct simulation 
of oil trapping in an objective point of view in terms of the 

SGSIM Bunch-DS Image quilting
4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

4000

3000

2000

1000

0
0 100 200 300 400 500 600

Advanced-DS
4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

MSCCSIM
4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

PCTOSIM
4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

Training image (TI)

0 100 200 300 400 500 600 700 800

600

400

200

0

The reference case
(predetermined reservoir)

4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

Graph-cut
4000

3000

2000

1000

0
0 100 200 300 400 500 600 700 800

Fig. 7   Histogram of all methods for modeling the reservoir permeability in one set of 25 realizations, training image and predetermined reservoir 
permeability. SGSIM method and all MPS methods have 44,100 values (210 × 210 image size is the size of studied reservoir) for this histogram. 
The training image (TI) histogram has different numbers of bars because this image has 4900 values (70 × 70 image size of TI). The training 
image has the same trend of histogram compared to all synthesized permeabilities and the reference case. Comparison is not the objective of this 
study
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reservoir performance. Having artifacts of MPS methods 
like the ones seen in the resulted permeability of five MPS 
methods except PCTOSIM is rather acceptable for this case 
from this objective point of view.

Figure 10 shows oil production for 25 realizations along-
side their P10 and P90 values as well as the reference curve. 
P10 and P90 are percentiles of 25 realizations in each time 
of simulation for ten and ninety percent of data. It shows 
that the reference case lies most of the time between P10 and 
P90 values of the ensemble of realizations which suggests 
the correctness of these methods by avoiding deviation from 
the reference curve trend. Meanwhile, SGSIM, advanced-DS 
and PCTOSIM reveal less uncertainty in their results by hav-
ing rather similar values of P10 and P90. Figure 11 shows 
the aforementioned explanation for the field water produc-
tion rate (FWPR). The reference curve for water production 
lies again between P10 and P90 curves. However, the diver-
sity of realization results depends on the selected method. 

Figure 12 shows the difference between P10 and P90. The 
beginning of water production (water breakthrough) causes 
a sharp rise in this difference. This difference could be 
regarded as an indication of uncertainty. More uncertainty 
is expected as this difference rises. It is noted that a sharp 
decrease occurs after start of water production, especially for 
the PCTOSIM method (blue arrow) and the advanced-DS 

method (black arrow). This behavior of rapid reduction in 
uncertainty has great importance in reservoir engineering 
problems which is not possible with the SGSIM method. A 
decreasing trend in difference between P90 and P10 shows 
the validity of this study since, as the time passed, less oil 
remains in the reservoir to be produced and consequently 
less uncertainty would occur.

Figure 13 presents the same values for the water produc-
tion rate. PCTOSIM shows the most certain behavior since it 
has the sharpest decrease, i.e., least uncertainty (blue arrow). 
advanced-DS also shows promising results in this perspec-
tive (black arrow). It should be noted that the horizontal 
axis for this figure covers the whole life of the reservoir. In 
other words, this representation reveals the enduring effect 
of permeability texture on reservoir performance and related 
uncertainties.

Uncertainty expected in terms of the total oil produc-
tion is shown in Fig. 14 for this reservoir. PCTOSIM has 
less uncertainty than SGSIM for all times of simulation. 
Although other MPS methods preserve the permeability tex-
ture, their prediction of total oil production is not certain. 
While SGSIM does not preserve the permeability texture, it 
supplies acceptable results. Advanced-DS is the next certain 
one showing a fairly comparable uncertainty.
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Figure 15 shows the P50 values of ensembles with the 
reference curve. This figure shows quite a good match of 
P50 with the reference curve, especially for SGSIM, image 
quilting, advanced-DS and PCTOSIM methods. Figure 16 
shows the same curves for the water production rate. These 
two figures suggest the accuracy of results regarding the 
reference case. P50 is defined such that half of realizations 
are higher while the other half are lower than it for any time 
step of simulation. Therefore, P50 can act as the measure of 
accuracy and reliability of the resulted ensemble of realiza-
tions. According to these two figures, accurate and reliable 
match is obtained by both SGSIM and MPS methods at the 
first glance for the whole life of the reservoir.

Figure 17 shows the absolute error. In this semilog figure, 
the vertical axis is the difference between the two curves of 
Fig. 15 which is proportional to the inverse of accuracy. All 
methods show the same trend in their accuracies. There is a 
decrease in accuracy for all methods which happens because 
of water breakthrough at around 20,000 days of simulation.

Figure 18 illustrates the aforementioned errors for the 
total oil production of the reservoir. Advanced-DS and 
Graph-cut are the most accurate methods among others 
with an error of 7000 and 6000 STB at most at approxi-
mately 37,500 and 22,500  days, respectively. Next is 
MSCCSIM which is stable between 10,000 and 15,000 
STB error and then increases. Advanced-DS, MSCCSIM, 
image quilting and PCTOSIM are all more accurate than 
the SGSIM method since their curves are under SGSIM. 
Finally, Bunch-DS is less accurate than SGSIM.

To visualize the similarities of central part of perme-
ability modeling outputs with patterns of the training 
image, the Jensen–Shannon divergence calculations and 
multidimensional scaling are carried out for this purpose. 
Consequently, distances between the point of the training 
image and realization points show the similarities of out-
put for each method regarding the patterns inside the train-
ing image. Closer nodes to the training image node are 
more similar to patterns of the TI than others. Figure 19 
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Fig. 10   Field oil production rate (FOPR) for all tested methods. For all models, the oil rate starts with approximately 50 STB/day, and afterward, 
it declines. The realization values are drawn in background. The light blue line is the P90 values, and the red line is the P10 values for each 
ensemble of realizations. The reference value is shown by black dots with yellow shading. Comparison is not the objective of this study. Noted 
that the horizontal axis for this figure covers the whole life of the reservoir
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shows the result of this kind of visualization by consider-
ing image quilting and MSCCSIM methods. A different 
scattering in visualization is observed which means these 
two methods deliver different levels of similarity to the 
training image in their results.

Figure 20 shows the same visualization for advanced-
DS and Bunch-DS methods as the family of direct sam-
pling methods. Both methods show the same trend in their 
scattering around the training image representative node. 
In both Figs. 19 and 20, nodes with different distances to 
the training image node have different degrees of similar-
ity to the training image. In addition, the arrangement of 
realizations in different directions regarding the training 
image point (central point in these figures) reveals the abil-
ity of MPS methods to generate reliable permeability val-
ues which are quite useful for the subsequent uncertainty 
quantification calculations of the reservoir.

Figure 21 shows this way of visualization for SGSIM, 
PCTOSIM and graph-cut methods. More similar nodes are 
shown in this figure for PCTOSIM and graph-cut methods 
compared to SGSIM method. This is also recognizable 
from Fig. 5 as one set of 25 realizations. The ability of 
ensembles of these two methods in predicting accurate 
total oil production in long-term reservoir simulations 
(shown as the two best ones in Fig. 18) is due to more real-
istic results which is also visualized by Tan et al. method 
for the central part of the realizations.
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Fig. 15   Evaluation of P50 and the reference curve for all methods. The red curve is the reference reservoir oil production rate, and the blue one 
is P50 of the ensemble of realizations for each method
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Fig. 16   Evaluation of P50 and the reference curve for all methods. The red curve is the reference reservoir water production rate, and the blue 
curve is P50 of the ensemble of realizations for each method
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5 � Conclusions

This study provides an implementation of the permeabil-
ity texture effect on the reservoir performance using a 
modified version of the SPE 10 solution project. All res-
ervoir specifications are identical to the original SPE 10 
except the injected fluid, injection rate and the reservoir 
dimensions. Reservoir dimensions are set such that the 
effect of horizontal permeability heterogeneity is clearly 
seen.

Below are important findings of this study:

•	 Visual judgment of synthesized permeability reveals 
fair efficiency of mentioned MPS methods for this res-
ervoir as a pioneer case.

•	 From a “histogram matching” point of view, all meth-
ods predicted permeability for the studied reser-
voir with an acceptable general shape of histograms 
except SGSIM. Meanwhile, PCTOSIM shows a more 
smoothed histogram than the others.

•	 All MPS methods and SGSIM have similar output vari-
ograms with close correlation length compared to the 
reference and training image. This doesn’t make the 
variogram an informative mean for evaluation of meth-
ods.

•	 By an objective single realization point of view of 
this reservoir, MPS methods resulted in a very good 
match for simulating the trapping phenomena and flood 
front movement for the reservoir (especially graph-cut 
method) compared to the reference case except PCTO-
SIM because of blurred outputs.

•	 The amount and volume of trapping in a reservoir are 
solely due to the reservoir permeability texture under the 
same conditions of injection/production and fluid veloci-
ties. The aforementioned conclusion is not possible by 
kriging-based methods and PCTOSIM method.

•	 The difference between P90 and P10 as a measure of 
uncertainty shows lower uncertainty for some MPS meth-
ods than for the SGSIM method for water and oil produc-
tion rates.

•	 In terms of the total oil production, PCTOSIM and 
SGSIM have the least uncertainty among others.
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resulted from multidimensional scaling. This is a representation of 
central part of the realizations, by considering the training image as 
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•	 The difference between P50 and the reference reveals 
the accuracy of all methods for the total oil production. 
The value shows that advanced-DS and graph-cut are 
the most accurate methods and MSCCSIM, PCTOSIM 
and image quilting are more accurate than the SGSIM 
method.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
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Creative Commons license, and indicate if changes were made.
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