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Abstract
A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy pro-
cess (AHP) and technique for order preference by similarity to an ideal solution (TOPSIS) is established to identify potential 
hazards in time. First, a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk 
evaluation on the basis of five important factors: corrosion, external interference, material/construction, natural disasters, and 
function and operation. Next, the index weight for oil and gas pipeline risk evaluation is computed by applying the improved 
AHP based on the five-scale method. Then, the TOPSIS of a multi-attribute decision-making theory is studied. The method 
for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render 
TOPSIS applicable for the comprehensive risk evaluation of pipelines. The closeness coefficient of oil and gas pipelines is 
calculated by applying the improved TOPSIS. Finally, the weight and the closeness coefficient are combined to determine 
the risk level of pipelines. Empirical research using a long-distance pipeline as an example is conducted, and adjustment fac-
tors are used to verify the model. Results show that the risk evaluation model of oil and gas pipelines based on the improved 
AHP–TOPSIS is valuable and feasible. The model comprehensively considers the risk factors of oil and gas pipelines and 
provides comprehensive, rational, and scientific evaluation results. It represents a new decision-making method for systems 
engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines. 
The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.
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1  Introduction

Oil and gas pipelines are key parts of oil and gas distribution 
and form the backbone of the national network that con-
nects the east to the west and the north to the south (Brito 
and Almeida 2009). The problem of safe pipeline operation 
has become increasingly prominent with the rapid develop-
ment of oil and gas pipelines (Jamshidi et al. 2013). Integrity 
management technology must be adopted to improve the 
safe operation of oil and gas pipelines. Oil and gas pipe-
line risk evaluation is the key to integrity management. Its 
main purpose is to analyze the risk of pipelines scientifically 

for division into different levels as the basis of scientific 
decision-making for pipeline inspection and maintenance. 
Therefore, studying oil and gas pipeline risk evaluation and 
establishing effective risk evaluation models are important to 
ensure the implementation of pipeline integrity management.

Scholars have conducted more than 30 years of research 
on oil and gas pipeline risk evaluation and have transformed 
pipeline risk evaluation from qualitative to quantitative. In 
the 1970s, the Kent method (Muhlbauer 2014; Han and 
Weng 2011), failure modes and effects analysis, and fault 
tree analysis (FTA) (Dong and Yu 2005; Bersani et al. 2010) 
were introduced for the qualitative or semiquantitative risk 
evaluation of oil and gas pipelines. Then, pipeline compa-
nies in several developed countries in Europe began to for-
mulate standards for pipeline risk evaluation, established an 
information database of risk evaluation, developed practi-
cal evaluation software, and gradually constructed various 
adaptability evaluation models. Therefore, the accuracy and 
intelligence of risk evaluation technology have improved. 
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Recent studies have introduced mathematical methods, such 
as the probabilistic model, Bayesian network, and fuzzy 
synthesis model, for quantitative risk analysis (QRA) to 
transcend traditional evaluation methods. For example, Ma 
et al. (2013) used GIS to quantitatively evaluate the risk 
of an urban natural gas pipeline network. Their proposed 
QRA includes the comprehensive evaluation of pipeline net-
work failure probability, the quantitative analysis of acci-
dent consequences, and the evaluations of individual and 
social risks. El-Abbasy et al. (2014) predicted the condition 
of offshore oil and gas pipelines by using artificial neural 
network models. Their models presented an average percent 
validity of more than 97% when applied to the validation 
dataset. Seo et al. (2015) proposed a standardized proce-
dure for risk evaluation based on failure probability. The 
procedure is based on the consequence of the failure estima-
tion of a time-variant corrosion model and burst strength for 
corroded subsea pipelines. Moreover, it integrates design, 
inspection, and maintenance plans for the pipeline system. 
Lu et al. (2015) considered the flammability of natural gas 
and the difficulty of leakage detection. They combined a risk 
matrix with a bow-tie model and proposed a comprehensive 
risk evaluation method to evaluate the risk of natural gas 
pipelines. Guo et al. (2016a, b) considered the flammabil-
ity of natural gas and put forward a risk evaluation method 
based on cloud inference. The proposed model includes 
multiple factors, such as third-party damage, corrosion, 
design flaws, and biological erosion. The cloud inference 
method can solve the fuzziness and randomness problem 
of mutual conversion between qualitative conceptualization 
and quantitative description in the risk evaluation of natural 
gas pipelines. In the same year, Guo et al. proposed a com-
prehensive risk evaluation model for long-distance oil and 
gas pipelines based on a fuzzy Petri net (FPN). They used 
an example to prove that the risk evaluation method based 
on the FPN model is suitable for long-distance oil and gas 
pipelines. Wu et al. (2017) employed a Bayesian network to 
analyze natural gas pipeline network accidents probabilisti-
cally. Their results indicate that the proposed framework can 
provide realistic consequence analysis because it considers 
conditional dependency in the evolution of accidents in natu-
ral gas pipeline networks. Wang et al. (2017) proposed an 
advanced two-step method to analyze the failure probability 
of buried urban gas pipelines. First, the model of logical 
faults is developed in accordance with the operational, mate-
rial, and environmental parameters that can affect failure. 
Second, the logical model is transformed into a Bayesian 
network model. This novel approach can reveal the relation-
ship between failure factors and update failure probability 

on the basis of changes in operational and environmental 
conditions.

Workers at home and abroad have promoted the devel-
opment of oil and gas pipeline risk evaluation technology 
and ensured the safe operation of oil and gas pipelines. 
However, in general, comprehensive oil and gas pipeline 
risk evaluation remains in the exploratory stage. Explor-
ing and studying the multiple factors involved in oil and 
gas pipeline accidents and establishing a comprehensive 
oil and gas pipeline risk evaluation model are necessary. 
Developing effective comprehensive risk evaluation mod-
els is crucial to ensure the implementation of pipeline 
integrity management. The basic principle underlying 
comprehensive evaluation is the combination of multiple 
individual indexes into a comprehensive index. However, 
the correlation of evaluation indexes and the subjectivity 
of the weight index are difficult to avoid in the comprehen-
sive evaluation of multiple indexes. In view of this diffi-
culty, we combined an improved analytic hierarchy process 
(AHP) with an improved technique for order preference by 
similarity to an ideal solution (TOPSIS) to build a com-
prehensive risk evaluation model for oil and gas pipelines. 
TOPSIS is a comprehensive analysis method with multi-
ple attributes. Numerous risk factors, such as corrosion, 
external interference, and design, can be considered, and 
pipeline construction and testing data and other data accu-
mulated by pipeline companies can be directly used in 
risk evaluation. The index weight for pipeline risk evalu-
ation is computed on the basis of the improved AHP. This 
approach weakens the subjective impact of the multi-index 
comprehensive evaluation system and renders weight allo-
cation reasonable.

The AHP–TOPSIS model has been widely used in eco-
nomics, management, and other fields with good results. Lin 
et al. (2008) used AHP and TOPSIS in a customer-driven 
product design process that helps designers systematically 
consider relevant design information and effectively identify 
key design objectives and optimal conceptual alternatives. 
Patil and Kant (2014) used the AHP–TOPSIS model to rank 
the solutions of knowledge management (KM) adoption in a 
supply chain (SC) to provide a systematic decision support 
tool with increased accuracy and effectiveness. The tool was 
applied in the gradual implementation of KM solutions in 
a SC to increase success rate. Karahalios (2017) used the 
AHP–TOPSIS model to help guide ship operators select bal-
last water treatment systems and conducted a case study to 
demonstrate the application potential of the model.

Hence, we can conduct oil and gas pipeline risk evalua-
tion by using the improved AHP–TOPSIS model. First, the 
barrier model and fault tree analysis are used to establish 
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the index system for pipeline risk evaluation based on the 
five important factors of corrosion, external interference, 
material/construction, natural disasters, and function and 
operation. Next, the index weight for pipeline risk evaluation 
is computed by the improved AHP based on the five-scale 
method. Then, the closeness coefficient matrix is calculated 
by the improved TOPSIS. Finally, the weight and the close-
ness coefficient are combined to determine the risk level of 
oil and gas pipelines.

The improved AHP–TOPSIS model for oil and gas pipe-
line comprehensive risk evaluation can eliminate the overlap 
and subjectivity of information for risk evaluation indexes. 
At the same time, it can sort and classify pipelines in accord-
ance with risk and provide decision-making support to pipe-
line enterprises for the safe management of pipelines.

2 � Methodology

2.1 � An improved AHP

AHP is a qualitative or quantitative decision-making analysis 
method. It is based on the decomposition of decision-mak-
ing-related elements into objective, criterion, and attribute 
levels. It is a hierarchical weight decision analysis method 
that was proposed by the American operational researcher 
Saaty in 1971. Various methods have been derived from 
AHP after years of development. These methods include 
improved AHP, fuzzy AHP, and gray AHP and have their 
own implementation scope in accordance with the actual sit-
uation of the study. We find that improved AHP is appropri-
ate for calculating the index weight for oil and gas pipeline 
risk evaluation by consulting a large amount of the existing 
literature (Xie et al. 2012; Aminbakhsh et al. 2013; Chen 
et al. 2014; Acharya et al. 2017). Its advantage hinges on 
the ability of the quasi-uniform consistency matrix that has 
been transformed by the comparison matrix to satisfy the 
consistency condition. This ability eliminates the need to 
perform consistency check and greatly reduces the num-
ber of iterations. Improved AHP has been widely applied 
in numerous fields, such as metallurgy, transportation, and 
other industries, with good results.

In general, AHP uses the nine-scale method or the three-
scale method to construct the comparison matrix for distin-
guishing the importance of indexes. However, the vagueness 
of the judgment boundary when using the nine-scale method 
in practical applications complicates making a strict distinc-
tion between the relative importance of two factors. The 
judgment boundary is excessively simple, however, when 
using the three-scale method. Thus, the relative importance 

of the distinction between the two factors is low. Therefore, 
the nine-scale method and the three-scale method have cer-
tain limitations in practical applications.

The following hypotheses are consistent with people’s 
psychological habits: Two “slightly important” complexes 
are equal to an “obviously important” complex; two “obvi-
ously important” complexes are equal to a “strongly impor-
tant” complex; and two “strongly important” complexes 
are equal to an “extremely important” complex. Therefore, 
people divide importance into five levels when they compare 
the relative importance of two factors: equally important, 
slightly important, obviously important, strongly impor-
tant, and extremely important. An improved AHP based on 
the five-scale method is proposed. This method avoids the 
problem of the fuzzy boundary of the nine-scale method 
in comparison matrix construction and overcomes the sim-
plicity of the three-scale method. The five-scale method has 
reasonable logic and a simple form. These characteristics 
facilitate the comparison of the relative importance of the 
two factors by experts.

The steps for the use of improved AHP based on the five-
scale method are as follows (Okada et al. 2008; Sun et al. 
2017).

Step 1 Establish a hierarchical structure that is divided 
into objective, criteria, and attribute levels.

Step 2 Establish the comparison matrix An×n and assign 
each element aij in accordance with the five-scale method. 
The principle of assignment by the five-scale method is 
shown in Table 1.

Step 3 Compute the importance ranking index ri as 
follows:

where ri is the importance ranking index, and aij is the ele-
ment of the comparison matrix An×n.

Step 4 Compute the judgment matrix Bn×n, and each 
matrix element is bij as follows:

(1)ri =

n∑
j=1

aij (i = 1, 2,… , n)

Table 1   Principle of assignment by the five-scale method

Intensity of 
importance

Definition

1 The factor i is equally as important as factor j
2 The factor i is slightly important compared to factor j
3 The factor i is obviously important compared to factor j
4 The factor i is strongly important compared to factor j
5 The factor i is extremely important compared to factor j
Reciprocal The factor i is compared with factor j as aij. Then, com-

parison between factor j and i is aji = 1/aij
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where bij is the element of the judgment matrix Bn×n, ri is 
the importance ranking index of index i, rj is the importance 
ranking index of index j, rmax is the maximum value of the 
importance ranking index, and rmin is the minimum value 
of the importance ranking index. km is defined as follows:

Step 5 Compute the optimal transfer matrix Cn×n, and 
each matrix element is cij, as follows:

where cij is the element of the optimal transfer matrix Cn×n, 
and bij is the element of the judgment matrix Bn×n.

Step 6 Compute the quasi-optimal consistent matrix 
Dn×n, and each matrix element is dij as follows:

where dij is the element of the quasi-optimal consistent 
matrix, and cij is the element of the optimal transfer matrix 
Cn×n.

Step 7 Compute the eigenvector of the maximum eigen-
value for matrix Dn×n. Then, the weight ωi of each factor can 
be obtained after normalization. The weight vector that is 
composed of the weight of each factor is as follows:

where w is the weight vector.

(2)

bij =

⎧
⎪⎨⎪⎩

ri−rj

rmax−rmin
× (km − 1) + 1 ri ≥ rj� � ri−rj �

rmax−rmin
× (km − 1) + 1

�−1
ri < rj

(i, j = 1, 2,… , n)

(3)km =
max

{
ri
}

min
{
ri
} (i = 1, 2,… , n)

(4)cij =
1

n

n∑
k=1

(
lg

bik

bjk

)
(i, j = 1, 2,… , n)

(5)dij = 10cij (i, j = 1, 2,… , n)

(6)� =
(
�1,�2,… ,�n

)T

2.2 � TOPSIS and its improvement

2.2.1 � Principle of TOPSIS

TOPSIS was first proposed by Hwang and Yoon. It is an 
approaching ideal point solution and is commonly used 
to solve multivariate optimization problems in multi-
ple attribute decision-making. We can obtain the adja-
cent degree between each solution. This approach is the 
standard for evaluating the solution by determining the 
Euclidean distance between each solution and the positive/
negative ideal solution. TOPSIS has been widely used in 
economics, medicine, agriculture, energy, and other indus-
tries with good results (Hatami-Marbini and Kangi 2017; 
Patil and Kant 2014).

Assuming that i (i = 1, 2, …, m) decision-making units 
(DMUi) and j (j = 1, 2, …, n) evaluation indexes exist, the 
weight of the j evaluation index is ωj, and the value of j 
evaluation index for the i decision unit is defined as pij. In 
accordance with this assumption, we introduce the mod-
eling of TOPSIS as follows (Karahalios 2017; Wang and 
Chang 2007; Wang et al. 2009):

Step 1 Construct the initial evaluation matrix Pm×n, and 
each matrix element is pij.

Step 2 Compute the normalized decision matrix Nm×n, 
and each matrix element is nij as follows:

where nij is the normalized value of pij, and pij is the value 
of the j evaluation index for the i decision unit.

Step 3 The weighted normalized decision matrix Vm×n 
is computed as follows:

where Vm×n is the weighted normalized decision matrix, 
Nm×n is the normalized decision matrix, and Wn×n is a weight 
matrix composed of ωj.

Step 4 Compute the positive ideal solution V+ and the 
negative ideal solution V− as follows:

(7)

nij = pij

/ √√√√ m∑
i=1

p2
ij

(i = 1 , 2,… ,m; j = 1, 2,… , n)

(8)Vm×n = Nm×nWn×n

(9)
V+ =

{
�
+

1
, �+

2
,… , �+

n

}
=
{(

max�ij|j ∈ I
)
,
(
min�ij| j ∈ I∗

)}
(i = 1, 2,… ,m; j = 1, 2,… , n)

V− =
{
�
−

1
, �−

2
,… , �−

n

}
=
{(

min�ij| j ∈ I
)
,
(
max�ij| j ∈ I∗

)}
(i = 1, 2,… ,m; j = 1, 2,… , n)
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where V+ is a positive ideal solution, and V− is a negative 
ideal solution. I is a benefit index, and I* is a cost index. 
Large benefit indexes are indicative of superior targets. 
Small cost indexes are indicative of superior targets.

Step 5 Compute the distance of the target value from 
the positive/negative ideal solution as follows:

where d+
i
 is the distance between the target value and the 

positive ideal solution, d−
i
 is the distance between the target 

value and the negative ideal solution, vij is the weighted nor-
malization value of pij, v+j  is the positive ideal solution, and 
v−
j
 is the negative ideal solution.
Step 6 Compute the closeness coefficient of the DMUi 

as follows:

where r∗
i
 is the closeness coefficient of each solution, d+

i
 is 

the distance between the target value and the positive ideal 
solution, and d−

i
 is the distance between the target value and 

the negative ideal solution.

2.2.2 � Improved TOPSIS

We have improved TOPSIS as follows to render its applica-
bility in the risk evaluation of oil and gas pipelines:

(1)	 The method for determining the positive/negative ideal 
solution is improved. The positive/negative ideal solu-
tion in the traditional TOPSIS is determined, as shown 
in Eq. (9). The positive ideal solution V+ of each index 
corresponds to the optimal value of each index in each 
scheme, and the negative ideal solution V− of each 
index corresponds to the worst value of each index in 
each scheme. Relative deviations exist in the evaluation 
results if this method is directly used to determine the 

(10)

d+
i
=

√√√√ n∑
j=1

(
�ij − �

+

j

)2

(i = 1, 2,… ,m; j = 1, 2,… , n)

d−
i
=

√√√√ n∑
j=1

(
�ij − �

−
j

)2

(i = 1, 2,… ,m; j = 1, 2,… , n)

(11)r∗
i
= d−

i

/ (
d+
i
+ d−

i

)
(i = 1, 2,… ,m)

positive/negative ideal solution in the risk evaluation 
of oil and gas pipelines.

	   Therefore, when TOPSIS is applied for the risk 
evaluation of oil and gas pipelines, the positive ideal 
solution of each index should correspond to the value 
of the optimal condition of the pipeline, and the nega-
tive ideal solution of each index should correspond to 
the value of the worst condition of the pipeline. For 
example, for the minimum burial depth, a parameter 
that affects external disturbance factors, the deepest 
height buried in the construction phase is the optimum 
value of the minimum burial depth, and the lowest 
depth exposed during the pipeline is the worst value of 
the minimum burial depth. Generally, the worst value 
is 0. The calculated distances from the risk of each oil 
and gas pipeline to the positive ideal solution and the 
negative ideal solution, respectively, show the extent 
of the deviation of the current condition of the pipeline 
from the optimal condition and the worst condition. 
Therefore, small distances from the positive ideal solu-
tion and large distances from the negative ideal solution 
indicate that oil and gas pipelines are at low risk.

(2)	 The normalization equation for the benefit/cost index 
is improved. The processing of index normalization in 
the traditional TOPSIS is shown in Eq. (7). The calcu-
lation is complicated, and finding the normalized value 
is difficult. Moreover, Eq. (7) shows that the normaliza-
tion of the benefit index and the cost index is not dis-
tinguished. Thus, the type of the normalized value is 
non-uniform. Therefore, when TOPSIS is applied for 
the risk evaluation of oil and gas pipelines, the ben-
efit index and cost index are processed by using dif-
ferent normalization equations, which are unified into 
the benefit index, and a standardized decision matrix 
is obtained. The improvement of the normalization of 
benefit index and cost index is shown in Eq. (12).

(12)

nij =
(
pij − pb

j

)/(
pa
j
− pb

j

)
(i = 1, 2,… ,m; j = 1, 2,… , n)

n∗
ij
=

(
pb
j
− pij

)/(
pb
j
− pa

j

)
(i = 1, 2,… ,m; j = 1, 2,… , n)

Pipeline
routine operation Corrosion External

interference
Material/

construction
Natural

disasters
Function and 

operation Pipeline
accidents

Fig. 1   Model of oil and gas pipeline failure based on barrier theory
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where nij is the normalized value of the benefit index, 
and n∗

ij
 is the normalized value of the cost index. When 

oil and gas pipelines are in the optimal condition, 
pj = pa

j
 , when oil and gas pipelines are in the worst 

condition, pj = pb
j
 , and pij is the measured value.

2.3 � Improved AHP–TOPSIS model

The improved AHP–TOPSIS model combines improved 
AHP with improved TOPSIS, a comprehensive evaluation 
method. First, we use improved AHP to compute the index 
weight. Then, we apply TOPSIS to compute the close-
ness coefficient of each DMU. Finally, we combine the 
weight and closeness coefficient to determine the evalu-
ation results.

3 � Improved AHP–TOPSIS model for the risk 
evaluation of oil and gas pipelines

3.1 � Index system for oil and gas pipeline risk 
evaluation

We construct the index system of oil and gas pipeline risk 
evaluation from the perspective of the classification of 
causes of oil and gas pipeline accidents. The division of 
the causes of pipeline accidents differs across countries or 
organizations because of differences in environment and 
management. As shown in Fig. 1, we establish the model of 
oil and gas pipeline failure on the basis of barrier theory in 
accordance with the international classification of pipeline 
accidents and the current research on oil and gas pipeline 
accidents and in terms of the five important factors that 
determine the safety conditions of the oil and gas pipelines: 

Oil and gas pipeline
accidents

T

Corrosion
P1

External corrosion R1

Internal corrosion R2

Stress corrosion R3

Hydrogen induced cracking R4

Third-party damage R5

Intentional destruction R6

Pipe defects R7

Weld defects R8

Improper design R9

Construction damage R10

Ground movement R11

Extreme climate R12

Equipment failure R13

Control system failure R14

Operation error R15

Improper maintenance R16

External interference
P2

Material/construction
P2

Natural disasters
P4

Function and operation
P5

Fig. 2   Index system of oil and gas pipeline risk evaluation
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corrosion, external interference, material/construction, nat-
ural disasters, and function and operation (Shahriar et al. 
2012; Lu et al. 2015; Huang et al. 2010).

The model of oil and gas pipeline failure based on bar-
rier theory shows that corrosion, external interference, 
material/construction, natural disasters, and function and 
operation are the main precipitating factors that lead to 
pipeline accidents. Although these risk factors chronically 
exist in the pipeline system, they do not necessarily lead 
to the occurrence of pipeline accidents. Pipeline accidents 
result when the organizational defects of multiple levels of 
an accident-causing factor combine simultaneously or suc-
cessively occur. Therefore, only the risk evaluation of oil 
and gas pipelines based on multi-risk indexes can ensure the 
accuracy and rationality of the evaluation results.

We use the failure model of oil and gas pipelines to iden-
tify the top and middle events, and FTA is used to analyze 
the loopholes in the barrier to construct the index system 
of oil and gas pipeline risk evaluation. The index system 
is illustrated in Fig. 2. The oil and gas pipeline accidents 
are the objective level, the first-level index of oil and gas 
pipeline risk evaluation is the criterion level, and the sec-
ond-level index oil and gas pipeline risk evaluation is the 
attribute level.

3.2 � Dataset of oil and gas pipeline risk evaluation

The quantitative value of the second-level index of risk eval-
uation is unreliable in the calculation of oil and gas pipeline 

risk evaluation model, and the data used for oil and gas pipe-
line risk evaluation should include the five major risk fac-
tors: corrosion, external interference, material/construction, 
natural disasters, and function and operation. As shown in 
Table 2, we finally obtain the dataset for oil and gas pipe-
line risk evaluation on the basis of a large body of data on 
construction, inspection, and other processes accumulated 
by pipeline companies.

The collected data are valid only if the following two 
conditions are met:

Condition 1 Time consistency. Some data will change 
over time. For example, the condition of external anticor-
rosive coating only represents the condition of oil and gas 
pipelines during a certain period of time. The sample data 
for use in the risk evaluation must be representative of the 
current conditions of the oil and gas pipelines. Otherwise, 
some data items should be deleted.

Condition 2 Spatial consistency. Oil and gas pipelines are 
widely distributed and have large regional differences, and 
operating parameters may change because of geographical 
changes. The collected sample data must reflect the charac-
teristics of pipelines.

3.3 � Model for the comprehensive risk evaluation 
of oil and gas pipelines

In this study, an improved AHP–TOPSIS model is applied 
to evaluate the risk conditions of oil and gas pipelines. The 
multi-segment pipeline i (i = 1, 2, …, m) constitutes the 

Table 2   Dataset for oil and gas pipeline risk evaluation

Classification Data variable

Corrosion P1 External corrosion: soil resistivity (Ω m), pipeline running time (years), metal buried objects (a), AC current den-
sity (A/m2), DC tube ground potential (mV), cathodic protection effectiveness (%), coating insulation resistivity 
(Ω m)

Internal corrosion: corrosion growth rate (mm/a), wall thickness difference (mm), remaining pipe life (years), 
regular pigging (%), pipeline coating condition (%)

Stress corrosion: operating pressure (MPa), yield strength (MPa), diameter (mm), wall thickness (mm), coating 
adhesion (%)

Hydrogen-induced cracking (HIC): environmental pH, soil salt content (%), H2S content (mg/m3), HIC test (%)
External interference P2 Third-party damage: minimum depth (m), degree of activity (%), pipeline laying crossings (a), line signs (%), 

management monitoring (%)
Intentional destruction: the accessible degree of stealing oil and gas (%), the degree of government protection (%), 

inspection frequency (times/month), public education (%)
Material/construction P3 Pipe defects: steel grade (%), manufacturing process (%)

Weld defects: weld type (%), weld crack (%)
Improper design: improper design (%), design review (%)
Construction damage: degree of construction damage (%), measures of construction safety (%)

Natural disasters P4 Ground movements: susceptibility of ground movement (%), prevention measures of ground movement (%)
Extreme climate: susceptibility of extreme climate (%), prevention measures of extreme climate (%)

Function and operation P5 Equipment failure: equipment failure probability (%), prevention measures of equipment failure (%)
Control system failure: probability of control system failure (%), prevention measures of control system failure (%)
Operation error: probability of operation error (%), precautions of operation error (%)
Improper maintenance: improper maintenance (%), precautions of improper maintenance precaution (%)
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decision-making unit of the multi-attribute decision prob-
lem. The criterion level indexes j (j = 1, 2, …, 5), i.e., cor-
rosion, external interference, material/construction, natural 
disasters, and function and operation constitute the set of the 
indexes of decision-making problems.

Step 1 Improved AHP is used to compute the index 
weight for pipeline risk evaluation, and the weight of the 
indexes of the criterion level constitutes the weight vector ω.

Step 2 Improved TOPSIS is applied to compute the close-
ness coefficient of the index of each pipeline risk evaluation, 
and the closeness coefficient of the index in the criterion level 
of each pipe segment constitutes the judgment matrix Rm×5. 
First, the initial judgment matrix of each index of the crite-
rion level is established in accordance with the actual data 
of the evaluation dataset in Table 2. The normalized decision 
matrix is obtained by using Eq. (12). Then, the closeness 
coefficient of each index of the criterion level is calculated by 
using Eqs. (9)–(11). Finally, the closeness coefficient of the 
index on the criterion level of each pipe segment constitutes 
the judgment matrix Rm×5 of pipeline risk evaluation.

Step 3 The result vector Q of oil and gas pipeline risk 
evaluation is calculated. The judgment matrix Rm×5 is com-
bined with the weight vector ω to obtain the result vector Q 
of oil and gas pipeline risk evaluation as follows:

(13)Q = Rm×5 × �

3.4 � Evaluation of oil and gas pipeline risk level

Given that the KENT method combines the failure possibili-
ties and consequences of pipelines and divides the risk of 
pipelines into five levels, we treat the quantitative interval 
(0, 1) of the evaluation object equally. The evaluation object 
divides the risk of oil and gas pipelines into five levels: 
extremely high risk, high risk, medium risk, low risk, and 
extremely low risk. The risk level of oil and gas pipelines is 
classified as shown in Table 3. The risk level of each oil and 
gas pipelines is determined in accordance with the quantita-
tive value.

4 � Casing the risk evaluation of oil and gas 
pipelines

We perform empirical research by using a long-distance 
pipeline with a length of 4.142 km as a sample. The basic 
condition of this pipeline is shown in Table 4.

In comprehensive risk evaluation, the long-distance pipe-
line is divided into four segments, namely, population den-
sity, soil conditions, coating selection, and crossover.

4.1 � Compute the weight of risk evaluation index

We use improved AHP based on the five-scale method and 
consult experts and field technicians to determine the weight 
of the risk index for the long-distance pipeline. Here, we 
take the criterion level P as an example to describe the pro-
cess of weight determination.

Step 1 We compare the relative importance of the two 
factors based on the ratio of the number of oil and gas pipe-
line accidents caused by each risk factor (the criterion level 

Table 3   Correspondence table for quantitative value and risk level of 
oil and gas pipelines

Quantita-
tive value

[0.00, 
0.20)

[0.20, 
0.40)

[0.40, 
0.60)

[0.60, 
0.80)

[0.80, 
1.00)

Risk 
level

Extremely 
high

High Medium Low Extremely 
low

Table 4   Basic condition of the pipeline

Basic parameters of the pipeline Condition description Basic parameters of the pipeline Condition description

Diameter, mm 660 Public education Good
Wall thickness, mm 8.7 Sign, % 60
Pipeline running time, years 9 Line frequency Once a week
Yield strength, MPa 360 Monitoring and early warning system Not perfect
Soil corrosion High Penetration stealing oil High incidence area
Cathodic protection effectiveness, % 80 Illegal pressure Individual locations
Stray current interference Medium Terrorist activities No
Coating insulation resistivity, Ω m 6000 Destructive precautions Perfect
Corrosion of medium Low Quality of pipe Advanced technology
Pigging Regular Weld detection rate, % 50
Probability of stress corrosion cracking Almost impossible Stop and lose frequently No
Operating pressure, MPa 4.53 Vehicle-induced load change Exists
Minimum depth, m 0.9 Probability of geological disasters Very low
Regional level Secondary Special disaster evaluation Yes
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indexes) to the total number of oil and gas pipeline accidents 
(objective level) and the basic conditions of the evaluated 
pipelines to establish a comparison matrix of criterion level 
P.

First, the contribution of the number of oil and gas pipe-
line accidents caused by each risk factor to the total number 

of oil and gas pipeline accidents is determined. We have 
collected data on 37 major pipeline leaks reported during 
2003–2016 (excluding urban gas pipelines) in China and 
compiled the number of accidents on the basis of the cri-
terion level indexes of oil and gas pipeline risk evaluation. 
We find that seven pipeline accidents were caused by cor-
rosion, 20 by external interference, three by material/con-
struction, four by natural disasters, and three by function 
and operational damage. Figure 3 shows the contribution 
of the number of oil and gas pipeline accidents caused by 
each risk factor to the total number of oil and gas pipeline 
accidents, that is, the percentage of the accident factors of 
oil and gas pipelines.

Then, we analyze the basic condition of the evaluated 
pipelines (see Table 4).

Finally, we combine the percentage of oil and gas pipeline 
accident factors and the basic conditions of the evaluated 
pipelines. Then, we use the five-scale method to compare 
the relative importance of the two factors to obtain the com-
parison matrix A5×5, as shown in Table 5.

Step 2 The important ranking index is computed in 
accordance with Eq. (1). r1 = 13.3333, r2 = 19, r3 = 6.5333, 
r4 = 2.967, r5 = 3.9500, rmax = 19, rmin = 2.9667.

Step 3 The judgment matrix B5×5 is computed in accord-
ance with Eq. (2), as shown in Table 6.

Step 4 The optimal transfer matrix C5×5 is computed in 
accordance with Eq. (4), as shown in Table 7.

Step 5 The quasi-optimal consistent matrix D5×5 is com-
puted in accordance with Eq. (5), as shown in Table 8.

Step 6 The computed maximum eigenvalue of the 
pseudo-optimal matrix D5×5 is 4.9999. The correspond-
ing eigenvectors are (0.4441, 0.8637, 0.1814, 0.0993, 
0.1181)T. After normalization, we obtain the weighted 
value of the first-level index: (0.2602, 0.5061, 0.1063, 
0.0582, 0.0692).

Similarly, in accordance with the index system of oil 
and gas pipeline risk evaluation (Fig. 2), we can obtain the 
weight of corrosion, external interference, material/construc-
tion, natural disasters, and function, and operation. Finally, 
the weight of the risk evaluation index of the long-distance 
pipeline is computed, and the results are shown in Table 9.

Corrosion External interference Materials/construction

Natural disasters Function and operation

54%

8%

8% 19%11%

Fig. 3   Percentage of oil and gas pipeline accident factors

Table 5   Comparison matrix A5×5

A5×5 P1 P2 P3 P4 P5

P1 1 1/3 3 5 4
P2 3 1 5 5 5
P3 1/3 1/5 1 3 2
P4 1/5 1/5 1/3 1 1/2
P5 1/4 1/5 1/2 2 1

Table 6   Judgment matrix B5×5

B5×5 P1 P2 P3 P4 P5

P1 1 0.3436 3.2921 4.4944 4.1629
P2 2.9101 1 5.2023 6.4045 6.0730
P3 0.3038 0.1922 1 2.2022 1.8708
P4 0.2225 0.1561 0.4541 1 0.7510
P5 0.2402 0.1647 0.5345 1.3315 1

Table 7   Optimal transfer matrix C5×5

C5×5 P1 P2 P3 P4 P5

P1 0 − 0.2889 0.3889 0.6507 0.5754
P2 0.2889 0 0.6777 0.9396 0.8643
P3 − 0.3889 − 0.6777 0 0.2619 0.1865
P4 − 0.6507 − 0.9396 0.2619 0 − 0.0754
P5 − 0.5754 − 0.8643 − 0.1865 0.0754 0

Table 8   Quasi-optimal consistent matrix D5×5

D5×5 P1 P2 P3 P4 P5

P1 1 0.5142 2.4485 4.4740 3.7618
P2 1.9449 1 4.7610 8.7016 7.3164
P3 0.4084 0.2100 1 1.8277 1.5364
P4 0.2235 0.1149 0.5471 1 0.8406
P5 0.2658 0.1367 0.6509 1.1896 1
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4.2 � TOPSIS for comprehensive index evaluation

Here, we use corrosion factor as an example in comprehen-
sive index evaluation.

Step 1 We collect the actual data of the corrosion factor 
from the five segments of the pipeline as shown in Table 10.

Step 2 We combine the data with the actual situation to 
determine the values that correspond to the optimal/worst 
conditions of this pipeline (Table 11).

Step 3 The actual data of the corrosion factor are normal-
ized in accordance with Eq. (12) to obtain the normalized 
decision matrix N4×4 of the corrosion factor, as shown in 
Table 12.

Step 4 In accordance with Eq. (8), the normalized deci-
sion matrix N4×4 of the corrosion factor is multiplied by 
the weight matrix W4×4 of the corrosion factor, where W4×4 
is shown in Table 13, to obtain the weighted normalized 
decision matrix V4×4 of the corrosion factor, as shown in 
Table 14.

Step 5 In accordance with Eqs. (10) and (11), we com-
pute the distance and the closeness coefficient of the cor-
rosion factor with the positive/negative ideal solution (the 
values of the positive/negative ideal solution for each factor, 
as shown in Table 15). Similarly, in accordance with the 
index system of oil and gas pipeline risk evaluation (Fig. 2), 
we obtain the distance and the closeness coefficient of the 
remaining four factors as shown in Table 16.

4.3 � Comprehensive risk evaluation of oil and gas 
pipelines

The weight of the criterion level indexes constitutes the vec-
tor ω = (0.2602, 0.5061, 0.1062, 0.0582, 0.0692)T in accord-
ance with the improved AHP. The criterion matrix R4×5 con-
structed by using the closeness coefficient of the criterion 

Table 9   Weight of risk evaluation index for the long-distance pipeline

First-level index First weight Second-level index Second weight Second 
total 
weight

Corrosion P1 0.2602 External corrosion R1 0.5002 0.1301
Internal corrosion R2 0.3498 0.0910
Stress corrosion R3 0.0911 0.0237
HIC R4 0.0589 0.0153

External interference P2 0.5601 Third-party damage R5 0.6283 0.3519
Intentional destruction R6 0.3717 0.2082

Material/construction P3 0.1063 Pipe defects R7 0.1610 0.0171
Weld defects R8 0.3063 0.0325
Improper design R9 0.1042 0.0111
Construction damage R10 0.4285 0.0455

Natural disasters P4 0.0582 Ground movement R11 0.8926 0.0519
Extreme climate R12 0.1074 0.0062

Function and operation P5 0.0692 Equipment failure R13 0.2857 0.0197
Control system failure R14 0.0146 0.0010
Operation error R15 0.3956 0.0273
Improper maintenance R16 0.3041 0.0210

Table 10   Dataset of the corrosion factor

Pipe section 1 2 3 4

Soil resistivity, Ω m 13 20 20 28
Pipeline running time, years 9 9 9 9
Metal buried objects, packages 3 1 1 0
AC current density, A/m2 60 40 40 20
DC tube ground potential, mV 100 80 90 60
Cathodic protection effectiveness, % 50 90 80 95
Coating insulation resistance, Ω m 4000 6000 6000 7000
Corrosion growth rate, mm/a 0.03 0.02 0.02 0.02
Wall thickness difference, mm − 0.34 − 0.18 − 0.15 − 0.09
Remaining pipe life, years 6.50 8.50 8.50 8.50
Regular pigging, % 95 95 95 95
Pipeline coating conditions, % 80 90 90 95
Stress ratio 0.35 0.35 0.35 0.35
Coating adhesion, % 65 85 85 95
Environmental pH 7.26 8.27 8.27 8.26
Soil salt content, % 0.010 0.008 0.002 0.002
H2S content, mg/m3 2.60 2.00 2.00 0.60
HIC test, % 70 50 10 5
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level of the five section pipelines is obtained through TOP-
SIS, as shown in Table 17.

The comprehensive vector Q of evaluation objects can 
be obtained in accordance with Eq. (13). The risk level of 
each pipeline segment can be obtained in accordance with 
the correspondence table for the quantitative value and risk 
level of oil and gas pipelines (Table 3). The specific risk 
evaluation results are shown in Table 18.

The evaluation results show that pipe section  1 has 
medium risk. Safety measures must be taken immediately, 

Table 11   Optimal/worst conditions corresponding value of the corrosion factor

Basic parameters of the pipeline The optimal The worst Basic parameters of the pipeline The optimal The worst

Soil resistivity, Ω m 50 0 Remaining pipe life, years 8.5 6.5
Pipeline running time, years 9 9 Regular pigging, % 100 0
Metal buried objects, packages 0 8 Pipeline coating conditions, % 100 0
AC current density, A/m2 0 100 Stress ratio 0 0.6
DC tube ground potential, mV 0 200 Coating adhesion (%) 100 0
Cathodic protection effectiveness, % 100 0 Environmental pH 8.63 5.27
Coating insulation resistance, Ω·m 10,000 0 Soil salt content,  % 0 0.052
Corrosion growth rate, mm/a 00 0.04 H2S content, mg/m3 0 10
Wall thickness difference, mm 0 − 0.5 HIC test, % 0 100

Table 12   Normalized decision matrix N4×4 of the corrosion factor

N4×4 R1 R2 R3 R4

1 0.3836 0.4640 0.5333 0.6100
2 0.5679 0.7980 0.6333 0.7598
3 0.5464 0.8100 0.6333 0.8886
4 0.6729 0.8440 0.6833 0.9354

Table 13   Weight matrix W4×4 of the corrosion factor

W4×4 R1 R2 R3 R4

R1 0.1301 0 0 0
R2 0 0.0910 0 0
R3 0 0 0.0237 0
R4 0 0 0 0.0153

Table 14   Weighted normalized decision matrix V4×4 of the corrosion 
factor

V4×4 R1 R2 R3 R4

1 0.0499 0.0422 0.0126 0.0093
2 0.0738 0.0726 0.0150 0.0116
3 0.0710 0.0737 0.0150 0.0136
4 0.0875 0.0768 0.0162 0.0143

Table 15   Positive/negative ideal solution of the criteria level indexes

Risk factors V+ V−

Corrosion P1 (0.1301, 0.0910, 0.0237, 
0.0153)

(0, 0, 0, 0)

External interference P2 (0.3519, 0.2082) (0, 0)
Material/construction P3 (0.0171, 0.0325, 0.0111, 

0.0455)
(0, 0, 0, 0)

Natural disasters P4 (0.0062, 0.0519) (0, 0)
Function and operation P5 (0.0197, 0.0010, 0.0273, 

0.0210)
(0, 0, 0, 0)

Table 16   Results of criteria level indexes

Risk factors 1 2 3 4

Corrosion P1 d+ 0.0672 0.1053 0.1044 0.1184
d− 0.0947 0.0600 0.0622 0.0456
r* 0.4150 0.6372 0.6266 0.7221

External interference P2 d+ 0.1971 0.2492 0.2655 0.2849
d− 0.2144 0.1659 0.1535 0.1403
r* 0.4790 0.6002 0.6336 0.6701

Material/construction P3 d+ 0.0380 0.0400 0.0430 0.0440
d− 0.0229 0.0217 0.0175 0.0169
r* 0.6242 0.6485 0.7112 0.7222

Natural disasters P4 d+ 0.0542 0.0542 0.0542 0.0542
d− 0.0195 0.0195 0.0195 0.0195
r* 0.7358 0.7358 0.7358 0.7358

Function and operation P5 d+ 0.2330 0.2330 0.2468 0.2468
d− 0.0419 0.0419 0.0278 0.0278
r* 0.8476 0.8476 0.8988 0.8988

Table 17   Criterion matrix R4×5 of the criteria level

R4×5 P1 P2 P3 P4 P5

1 0.4150 0.4790 0.6242 0.7733 0.7610
2 0.6372 0.6001 0.6485 0.7733 0.7610
3 0.6266 0.6335 0.7114 0.7733 0.8543
4 0.7221 0.6701 0.7222 0.7733 0.8543
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and operation control procedures must be established to 
reduce risk to within a reasonable range. Pipe sections 2, 
3, and 4 have low risks but should be checked regularly to 
prevent pipeline accidents.

4.4 � Model verification

The evaluation results of the AHP–TOPSIS model are veri-
fied through the adjustment factors method. First, the failure 
probability of the oil and gas pipelines is evaluated by using 
the adjustment factor method, and the total failure probabil-
ity of each pipeline segment is calculated. Then, the failure 
probability level is determined in accordance with the Nor-
wegian pipeline quantitative risk evaluation standard (DNV-
RP-F107), as presented in Table 19.

The evaluation results of the two methods for pipe seg-
ments 1, 3, and 4 are identical. The AHP–TOPSIS model 
calculated a medium risk level for pipe segment 1, which 
theoretically has level 3 risk. The calculation based on 
adjustment factors provided a medium failure probability 
level for pipe segment 1, which theoretically has level 3 risk. 
The risk level calculated by the AHP–TOPSIS model for 

pipe sections 3 and 4 is low. These pipe sections, however, 
theoretically have level 2 risk. The failure probability level 
calculated by the adjustment for pipe sections 3 and 4 is low. 
Nevertheless, these pipe sections theoretically have level 2 
risk. As illustrated in Fig. 4, among the four samples, the 
results of three samples are consistent.

The AHP–TOPSIS model is different from other models 
for oil and gas pipeline risk evaluation. Nevertheless, the 
consistency between the results of the proposed AHP–TOP-
SIS model for oil and gas pipeline risk evaluation and those 
of previous research methods indicates that the risk evalu-
ation of oil and gas pipelines based on the AHP–TOPSIS 
model is accurate and feasible and has certain theoretical 
value.

5 � Conclusion

The empirical analysis results obtained by using a long-
distance pipeline as an example show that the results for oil 
and gas pipeline risk evaluation provided by the improved 
AHP–TOPSIS model are consistent with the actual situation. 
This consistency is crucial for formulating the measures of 
risk management for oil and gas pipelines. The proposed 
method also provides a new system for engineering decision-
making in the risk evaluation of oil and gas pipelines.

In this study, we apply improved TOPSIS for the risk 
evaluation of oil and gas pipelines. Our approach is innova-
tive and has the following three advantages:

First, a barrier model and FTA are used to establish the 
index system of oil and gas pipeline risk evaluation by con-
sidering five important factors that determine the safety con-
dition of oil and gas pipelines: corrosion, external interfer-
ence, material/construction, natural disasters, and function 
and operation. Risk evaluation based on this index system 
avoids the use of a single index or several indexes that result 
in the low reliability of the evaluation results.

Second, the five-scale method avoids the fuzzy judg-
ment boundary of the nine-scale method and overcomes 
the simplicity of the judgment boundary of the threefold 
method in matrix construction. Therefore, the improved 
AHP based on the five-scale method is more operable in 
practical application.

Finally, improving TOPSIS improved the normalized 
equation of the benefit/cost index and the definition of posi-
tive/negative ideal solutions and made the method applica-
ble for the comprehensive evaluation of oil and gas pipeline 
risks. The analysis of the example shows that the improved 
TOPSIS is effective for oil and gas pipeline risk evaluation, 
and the results of the evaluation are comprehensive, reason-
able, and scientific.

Table 19   Failure probability level of each pipe based on adjustment 
factors

Pipe section 1 2 3 4

Total failure 
probability, 
times/(km a)

1.27 × 10−4 1.18 × 10−4 9.17 × 10−5 8.86 × 10−5

Failure probabil-
ity level

Medium Medium Low Low

0

1

2

3

4

1 2 3 4

Le
ve

l

Pipe section

AHP-TOPSIS model Adjustment factors method

Fig. 4   Comparison of calculation results between improved AHP–
TOPSIS model and adjustment factors method

Table 18   Risk evaluation results of oil and gas pipelines

Pipe section 1 2 3 4

Quantitative value 0.5144 0.6360 0.6633 0.7078
Risk level Medium Low Low Low
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However, the model in this study has the following limita-
tions: The influence of human factors cannot be completely 
removed when constructing comparison matrices by using 
the improved AHP. In addition, universally accepted criteria 
for the classification of risk factors for oil and gas pipelines 
do not exist. Therefore, the evaluation index dataset selected 
in this work requires further improvement. Hence, future 
research could begin from the following two aspects: First, 
big data techniques, such as artificial neural network, sup-
port vector machine, decision tree, and random forest algo-
rithm, can be used to compute the weight of the evaluation 
index given their high objectivity and rationality. Second, 
research on the risk factors of oil and gas pipelines should 
be strengthened to establish a comprehensive index dataset 
of oil and gas pipeline risk evaluation.
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