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Abstract
Deep eutectic solvents (DESs) are a new class of green solvents analogous to ionic liquids due to their biodegradable

capacity and low cost. However, the direct extractive desulfurization of diesel oil by DESs cannot meet the government’s

standard. In this work, amphiphilic polyoxometalates were synthesized and characterized by FT-IR and mass spectrometry.

The oxidative desulfurization results showed that benzothiophene (BT) could be completely removed by employing a

[(C6H13)3P(C14H29)]3PMo12O40, DES (ChCl/2Ac) and H2O2 system. It was also found that the organic cation of catalysts

played a positive role in oxidative desulfurization. The reaction conditions, such as reaction temperature and time, the

amount of catalyst and DES and H2O2/S (O/S) molar ratio, were optimized. Different sulfides were tested to determine the

desulfurization selectivity of the optimal reaction system, and it was found that 97.2% of dibenzothiophene (DBT) could be

removed followed by 80.7% of 4-MDBT and 76.0% of 4,6-DMDBT. After reaction, the IR spectra showed that the catalyst

[(C6H13)3P(C14H29)]3PMo12O40 was stable during the reaction process and the oxidative product was dibenzothiophene

sulfone (DBTO2). Furthermore, the catalyst can be regenerated and recycled for four runs with little loss of activity.
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1 Introduction

Deep desulfurization of fuels is a worldwide topical issue

because of the air pollution caused by SOx. Thus,

increasingly strict regulations have been implemented to

limit sulfur content in fuels to 10 ppm or even lower (Xiao

et al. 2014; Zhang et al. 2018; Li et al. 2018; Liu et al.

2013; Wu et al. 2017). For example, since 2017 the sulfur

content in diesel fuel and gasoline must be not higher than

10 ppm according to the latest standard in China.

Hydrodesulfurization (HDS) is a classic technology that

can remove most of the sulfides in fuels but can barely

remove aromatic sulfides or needs harsh conditions such as

temperature [370 �C and pressure [40 atm (Zeng et al.

2017; Zhang et al. 2016; Wu et al. 2016; Rafiee et al. 2016;

Kianpour and Azizian 2016). Therefore, exploiting alter-

native or supplementary desulfurization approaches is

highly desirable for petroleum refineries (Rezvani et al.

2018; Ja’fari et al. 2018; Zhang et al. 2017; Li et al.

2017a, b; Jiang et al. 2014a, b).

Extractive desulfurization is a feasible approach because

of its simple and mild conditions (Nejad and Beigi 2015).

The common extractants are organic solvents, ionic liquids

and deep eutectic solvents (DESs) (Jiang et al. 2015; Li

et al. 2016a, b, c; Zhao et al. 2016; Jiang et al. 2016; Zhang

et al. 2018). Among the three types of solvent, DESs, a

eutectic mixture of two or more components, are the most

promising extractants due to their low cost and

Edited by Xiu-Qin Zhu

Handling editor: Wenshuai Zhu

& Wenshuai Zhu

zhuws@ujs.edu.cn

& Huaming Li

lihm@ujs.edu.cn

1 Institute for Energy Research, Jiangsu University, 301 Xuefu

Road, Zhenjiang 212013, People’s Republic of China

2 School of Chemistry and Chemical Engineering, Jiangsu

University, 301 Xuefu Road, Zhenjiang 212013, People’s

Republic of China

3 Key Laboratory of Tropical Medicinal Plant Chemistry of

Education, Hainan Normal University, Haikou 571158,

People’s Republic of China

123

Petroleum Science (2018) 15:841–848
https://doi.org/10.1007/s12182-018-0263-9(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-018-0263-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-018-0263-9&amp;domain=pdf
https://doi.org/10.1007/s12182-018-0263-9


biodegradability. However, the extraction efficiency is still

not very high in a one-step extraction. Li et al. (2016a, b, c)

reported several tetrabutyl ammonium chloride-based

DESs for extractive desulfurization and tetrabutyl ammo-

nium chloride/polyethylene glycol (TBAC/PEG) showed

82.8% of desulfurization efficiency in one cycle. Hence, it

is essential to extract for five cycles to reach deep desul-

furization (Li et al. 2016a, b, c). Another sample using

carboxylic acid-based DESs for extractive desulfurization

was also faced with the obstacle of low desulfurization

efficiency (Li et al. 2016a, b, c). Some researchers tried to

add an oxidant to acidic DESs to establish a new desul-

furization system, that is, extraction and catalytic oxidative

desulfurization (ECODS) (Yin et al. 2015; Lu et al. 2015;

Liu et al. 2016; Hao et al. 2017). Two p-toluenesulfonic

acid-based DESs were employed as extractants and cata-

lysts and H2O2 was used as oxidant for oxidation of ben-

zothiophene (BT) and the desulfurization efficiency could

reach up to 99.99% (Yin et al. 2015). Lu and his group (Lu

et al. 2015) found that an oxalate-based DES showed good

catalytic activity with H2O2 as an oxidant and 91% of

dibenzothiophene (DBT) could be removed. Therefore,

compared with extractive desulfurization, the oxidative

desulfurization with DESs may be more promising due to

its high activity. However, the reported DESs in oxidative

desulfurization are very few probably owing to the diffi-

culty of exploiting efficient DESs.

Polyoxometalates are commonly used in the field of

catalysis because of their adjustable acid–base and redox

properties over a wide range (Omwoma et al. 2015; Li et al.

2017a, b; Ma et al. 2017; Lu et al. 2017; Bertleff et al.

2017; Jiang et al. 2017; Chen et al. 2013). In our previous

work, an oxidative desulfurization system with DESs as

extractants was developed and commercial phospho-

tungstic acid (PTA) showed superior catalytic activity (Liu

et al. 2016). However, it is difficult to separate and recycle

the catalyst from the reaction system, and this may hinder

the application of the PTA/DESs system. Thus, develop-

ment of easily separable catalysts in the DESs system is

necessary. In this work, amphiphilic polyoxometalates

were introduced to acidic DESs to evaluate their catalytic

performance. The main advantage is that these catalysts

can be separated from the reaction system due to the fact

that the DESs can be dissolved in water, but the catalysts

amphiphilic polyoxometalates are insoluble. Then different

DESs, catalysts with different cations and reaction condi-

tions, with model oils with different aromatic sulfides,

olefins and aromatics, were investigated.

2 Experimental

2.1 Preparation of catalysts and DESs

According to the method in the literature (Zhu et al.

2015a, b), a solution of trihexyltetradecyl phosphonium

chloride ([(C6H13)3P(C14H29)]Cl; 1, 2, 3 mmol) in 20 mL

of anhydrous ethanol was added dropwise into 50 mL of

ethanol solution of H3PMo12O40�26H2O (1 mmol) while

stirring for 4 h at room temperature. A bright yellow pre-

cipitate was formed, filtered and washed several times with

anhydrous ethanol. Then, the catalysts, [(C6H13)3-

P(C14H29)]H2PMo12O40 (PH2Mo), [(C6H13)3P(C14H29)]2-

HPMo12O40 (PHMo) and [(C6H13)3P(C14H29)]3PMo12O40

(PMo), can be obtained by drying at 50 �C in vacuum for

24 h.

The DES ChCl/2Ac was simply prepared by mixing

choline chloride (ChCl) with acetic acid (Ac) at a molar

ratio of 1:2. The mixture was then warmed to 80 �C and

stirred for 3 h. DES ChCl/2Fo and TBAC/2Ac were

obtained according to the same process with formic acid

(Fo) as a hydrogen bond donor and tetrabutylammonium

chloride (TBAC) as a quaternary ammonium salt.

2.2 Desulfurization procedure

Preparation of model oils: The sulfur compounds including

BT, DBT, 3-MBT, 4-MDBT and 4,6-DMDBT were dis-

solved in n-octane, respectively, with tetradecane as an

internal standard. The sulfur contents of these model oils

are 500 mg L-1.

The desulfurization tests were performed in a self-made

two-necked flask, to which a certain amount of catalysts,

DES, model oil and H2O2 were added in turn. The reaction

mixture was stirred in a water bath at a set temperature for

3 h. The model oil in the upper layer was periodically

withdrawn and analyzed by gas chromatography–flame

ionization detection (GC-FID) with the analytical condi-

tions listed in our previous work (Zheng et al. 2015; Jiang

et al. 2014a, b).

3 Results and discussion

3.1 Characterization of catalysts

FT-IR spectra of H3PMo12O40, PMo, PHMo and PH2Mo

are shown in Fig. 1. The peaks at 1065, 965, 870 and

790 cm-1 of H3PMo12O40 are attributed to the Keggin

units. The prepared catalysts also have Keggin units

because of their four characteristic peaks at 1065, 960, 881

and 809 cm-1. However, the shift of the absorption bands
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indicates electrostatic interactions between [(C6H13)3-

P(C14H29)]? cations and [PMo12O40]3- anions (Xu et al.

2013). Compared with the IR spectrum of H3PMo12O40,

the catalysts showed extra absorption peaks, such as the C–

H stretching vibration at 2956, 2927 and 2855 cm-1 and

the bending vibration of CH3 and CH2 at 1461, 1407 and

1379 cm-1. The weak band at 722 cm-1 indicates the

bending vibration of –(CH2)n– (n[ 4). Based on above

discussion, the catalysts are prepared successfully by

metathetical reaction. The mass spectra of these catalysts

also confirmed this conclusion because they all show the

same cation [(C6H13)3P(C14H29)]? (m/z = 484) and anion

[(C6H13)3P(C14H29) PMo12O40]2- (m/z = 1153).

3.2 Effect of the cation on sulfur removal

Organic cations may act as a phase transfer agent to adsorb

the weakly polar sulfide molecules or as an emulsifying

agent to stabilize emulsion droplets, which can enhance the

catalytic ability of catalysts (Nisar et al. 2011; Xu, et al.

2013). Three Mo-based catalysts were prepared by

changing the molar ratio of [(C6H13)3P(C14H29)]Cl and

H3PMo12O40. As shown in Fig. 2, PH2Mo with 1 mol of

organic cation per mol of catalyst exhibited the lowest

desulfurization efficiency of 68.1%. The desulfurization

efficiency increased to 79.6% with PMo as a catalyst,

which had 3 mol of organic cation per mol of catalyst.

Therefore, the catalytic activity of the catalyst could be

enhanced by the organic cation. Acidity may promote the

catalytic activity of catalysts according to the literature

(Hao et al. 2017; Zhu et al. 2015a, b; Zhang et al. 2018). In

this work, although the PH2Mo and PHMo are Brønsted

acidic, their catalytic activities are still lower than the non-

acidic PMo, suggesting that the organic cation plays a more

important role than acidity.

3500 3000 1500 1000 500

809881

722

14071461

790

870965

PHMo

PMo

.u.a,ecnatti
msnarT

Wavenumber, cm-1

1065

1379

960

2956 2855
2927

PH2Mo

H3PMo12O40

Fig. 1 FT-IR spectra of catalysts
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Fig. 2 Effect of the cation on sulfur removal. Experimental condi-

tions: n(catalyst) = 0.0078 mmol, molar ratio n(O)/n(S) = 2, ChCl/

2Ac = 2.5 mL, model oil = 5 mL, T = 50 �C, t = 120 min
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Fig. 3 a FT-IR spectra of n-octane after mixing with DESs and

b desulfurization efficiency of different DESs. Experimental condi-

tions: n(catalyst) = 0.0156 mmol, molar ratio n(O)/n(S) = 3, DES =

2.5 mL, model oil = 5 mL, T = 50 �C, t = 120 min
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3.3 Selection of a suitable DES

It is a challenge to select a suitable extractant because the

extractant should be not dissolved in oil. IR spectra may be

an effective analytical method to determine whether the

acid DESs dissolve in oil owing to the characteristic

absorption of the carbonyl group. Figure 3a plots the IR

spectra of n-octane, n-octane saturated with ChCl/2Fo, n-

octane saturated with ChCl/2Ac, and n-octane saturated

with TBAC/2Ac. All samples presented the same absorp-

tion bands as n-octane, indicating the DESs cannot dissolve

in the fuel. Figure 3b shows the desulfurization with the

three DESs with PMo as a catalyst. The sulfur removal was

only 10.0% without using an extractant. However, it

increased to 88.5%, 95.6% and 63.6% with ChCl/2Fo,

ChCl/2Ac and TBAC/2Ac as extractants, respectively. It

can be concluded that DESs play an extremely positive role

in oxidative desulfurization. Furthermore, the carbon chain

length of DESs also greatly affects the desulfurization

efficiency.

3.4 Optimization of reaction conditions
for sulfur removal

In the above experiments, PMo combined with ChCl/2Ac

showed the best desulfurization performance, and thus

these were selected to evaluate a series of parallel experi-

ments to systematically study the effects of different

reaction conditions on sulfur removal.

Different temperatures, such as 40, 50, and 60 �C, were

tested for oxidative removal of DBT. Figure 4a shows that

the sulfur removal was only 29.6% at 40 �C and 58.6% at

50 �C in 20 min, and it significantly improved to 81.7% as

the temperature increased to 60 �C. However, the final
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Fig. 4 Effects of a temperature and time; b the amount of DES;

c n(DBT)/n(catalyst) and d O/S molar ratio on desulfurization

efficiency. Experimental conditions: model oil = 5 mL, a n(cata-

lyst) = 0.0156 mmol, O/S = 4 (molar ratio), ChCl/2Ac = 2.5 mL;

b O/S = 4, ChCl/2Ac = 2.5 mL, T = 50 �C; c EDS time = 10 min,

n(catalyst) = 0.0156 mmol, O/S = 4, T = 50 �C, t = 120 min and

d n(catalyst) = 0.0156 mmol, ChCl/2Ac = 2.5 mL, T = 50 �C

844 Petroleum Science (2018) 15:841–848

123



sulfur removal at 60 �C was lower than that at 50 �C
probably due to the kinetic competition of the unproductive

decomposition of H2O2 (Yang et al. 2017). 50 �C might be

the optimal reaction temperature, and the sulfur removal

reached 97.2% at 120 min.

As shown in Fig. 4b, c, the amount of catalyst and

extractant greatly affected the removal of DBT. The

extractive desulfurization (EDS) rate was only 2.7% at

V(DES)/V(model oil) = 1:5 and increased to 11.5% at

V(DES)/V(model oil) = 3:5 (Fig. 4b). And the catalytic

desulfurization rate was only 5.3% in the absence of DES

(Fig. 4b). In order to obtain low-sulfur fuel, the amounts of

catalyst and extractant were evaluated. The results showed

that the 97.2% of DBT could be removed at V (DES)/V (-

model oil) = 2.5:5 and n(DBT)/n(catalyst) = 5:1. Thus,

both the catalyst and extractant played important roles in

sulfur removal. Figure 4c shows that the H2O2/S (O/S)

molar ratio has a crucial influence on the sulfur removal.

According to a previous report (Jiang et al. 2017), the

decomposition of H2O2 is the competitive reaction to its

oxidative reaction, resulting in an increase of H2O2 dosage.

The sulfur removal increased from 72.8% at O/S = 2 to

97.2% at O/S = 4, and excessive H2O2 cannot promote the

oxidation of DBT.

3.5 Oxidative removal of different sulfur
compounds from model oil

It is well known that many kinds of aromatic sulfur com-

pounds in diesel fuel are difficult to remove by HDS

technology (Yun and Lee 2013; Li et al. 2016a, b, c).

Consequently, it is important to investigate the desulfur-

ization selectivity of different sulfur compounds. As shown

in Fig. 5, BT can be removed completely. The removal of

DBT can reach 97.2% followed by 4-MDBT (80.7%) and

4,6-DMDBT (76%). According to our previous work (Li,

et al. 2016), the desulfurization efficiency was closely

related to f?(r) Fukui function on the S site. The

f?(r) values decrease in the order of BT[DBT[
4-MDBT[ 4,6-DMDBT. It was found that the desulfur-

ization selectivity of different sulfur compounds in this

work was in accordance with the order of f?(r) Fukui

function value.

3.6 Effects of fuel composition on sulfur removal

The actual fuel is complicated because of its components

including olefins, aromatics and many other compounds

(Xun et al. 2015; Wu et al. 2017; Xiao et al. 2014). In order

to examine the effect of olefins and aromatics on sulfur

removal, toluene, p-xylene and cyclohexene were added to

the model oil with DBT as the modeled sulfur compound.

Figure 6 shows that the sulfur removal decreased from

97.2% to 92.1%, 89.0% and 85.6% with the addition of 5

wt%, 10 wt% and 15 wt% toluene, respectively. The effect

of p-xylene on sulfur removal was similar to that of

toluene. However, the sulfur removal dropped sharply to

26.2% with addition of 10 wt% cyclohexene. Therefore, it

could be concluded that cyclohexene was oxidized more

easily than toluene, p-xylene and even DBT. It will be

suggested that this desulfurization system should be used to

treat actual fuels with a low concentration of olefins.

3.7 Reusability of the catalyst

The reusability and stability of the catalyst are undoubtedly

important factors for industrial application. The oil was

removed by decantation after reaction, and then the catalyst
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and oxidative product could be precipitated by adding

deionized water into the DES phase. IR spectra of the fresh

and used catalyst are plotted in Fig. 7, and the character-

istic bands at 1065, 960, 881 and 809 cm-1 showed no

destruction of the Keggin structure. Also, the peaks at 1290

and 1164 cm-1 were attributed to the stretching vibration

of S=O in dibenzothiophene sulfone (DBTO2). The catalyst

could be purified by washing the precipitate with ethyl

ether several times. Then, the regenerated catalyst was

evaluated with the addition of fresh model oil, DES and

H2O2 under the optimal conditions. The results in Fig. 8

showed that the PMo could be recycled four times without

a significant decline in activity.

4 Conclusion

A deep desulfurization system with DES as extractant was

explored. BT could be removed completely with ChCl/2Ac

as extractant and [(C6H13)3P(C14H29)]3PMo12O40 as cata-

lyst, followed by DBT, 4-MDBT and 4,6-DMDBT. Two

other catalysts [(C6H13)3P(C14H29)]2HPMo12O40 and [(C6-

H13)3P(C14H29)]H2PMo12O40 showed the lower activity

than [(C6H13)3P(C14H29)]3PMo12O40, indicating the posi-

tive role of the long carbon chain cation of the catalysts.

However, the long carbon chain of DESs exhibited a

contrary role for oxidative desulfurization because the

sulfur removal was 88.5% and 63.6% with ChCl/2Fo and

TBAC/2Ac, respectively, while 95.6% with ChCl/2Ac.

After reaction, the catalyst can be regenerated by water and

recycled for at least four times. The reaction product was

determined by IR spectra as DBTO2.
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