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Abstract
In this communication, the impacts of adding SDS (sodium dodecyl sulfate), TBAF (tetra-n-butylammonium fluoride) and

the mixture of SDS ? TBAF on the main kinetic parameters of CO2 hydrate formation (induction time, the quantity and

rate of gas uptake, and storage capacity) were investigated. The tests were performed under stirring conditions at T = 5 �C
and P = 3.8 MPa in a 169 cm3 batch reactor. The results show that adding SDS with a concentration of 400 ppm, TBAF

with a concentration of 1–5 wt%, and the mixture of SDS ? TBAF, would increase the storage capacity of CO2 hydrate

and the quantity of gas uptake, and decrease the induction time of hydrate formation process. The addition of 5 wt% of

TBAF and 400 ppm of SDS would increase the CO2 hydrate storage capacity by 86.1% and 81.6%, respectively, compared

to pure water. Investigation of the impact of SDS, TBAF and their mixture on the rate of gas uptake indicates that the

mixture of SDS ? TBAF does not have a significant effect on the rate of gas uptake during hydrate formation process.
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List of symbols
P Pressure

R Universal gas constant

T Temperature

V Volume of the gas phase

Z Compressibility factor

Subscripts
0 Conditions of the cell at time t = 0

i Counter

t Time

w Water

1 Introduction

According to the Paris Agreement on Climate Change

(2015), 195 United Nations members states agreed to

reduce their carbon output as soon as possible (UNFCCC

2015).1 CO2, one of the main human-produced greenhouse

gases, is a by-product of energy related industries (espe-

cially power plants) (Bhattacharjee et al. 2015). The

quantity of CO2 in the atmosphere has increased consid-

erably in recent decades. Therefore, the capture and

sequestration (storage) of CO2 have become a priority

within energy research. Chemical and physical absorption

and chemical adsorption on zeolite are common ways to

separate CO2 from gas mixtures (Herzog et al. 1997; Kohl

and Nielsen 1997; Kuramochi et al. 2012; Peng and

Zhuang 2012; Riemer 1996). These technologies are gen-

erally expensive and thus finding an energy efficient

method to capture CO2 molecules is necessary. One of new

and promising methods to separate CO2 from flue/indus-

trial gases is using gas hydrate technology.
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Gas hydrates or clathrate hydrates are ice-like non-sto-

ichiometric crystalline inclusion compounds that are

formed by enclathration of some guest molecules of certain

sizes (such as methane, CO2 and hydrogen sulfide.) into a

three-dimensional network of hydrogen-bonded water

(host) molecules (Kang and Lee 2010; Sloan 2011; Sloan

and Koh 2008). Due to high gas and energy storage

capacity of gas hydrates and their potential for separation

processes, great attention has been paid to the positive

applications of this technology (such as natural gas storage

and transportation, gas separation, energy storage, water

desalination, refrigeration systems, and so on (Adisasmito

et al. 1991; Chatti et al. 2005; Eslamimanesh et al. 2012;

Javanmardi and Moshfeghian 2003; Ji et al. 2001; Li et al.

2012; Ohgaki et al. 1996; Xu and Ge 2011; Tanii 1994), in

recent years. However, high pressure/low temperature

dissociation conditions, long induction time, and slow

kinetic rate of hydrate growth are the major problems with

using gas hydrates in gas industries (Babaee et al. 2015;

Mohammadi et al. 2014a; Zhang et al. 2008). Therefore,

moderating the thermodynamic conditions and promoting

the kinetics of gas hydrate formation are essential to benefit

the positive applications of this technology and thus reli-

able design of hydrate-based industries. The moderating of

thermodynamic conditions of gas hydrate formation has

been the objective of many research studies in recent

decades (Delahaye et al. 2006; Jager et al. 1999; Lu et al.

2009; Manteghian et al. 2013; Papadimitriou et al. 2011;

Strobel et al. 2006; Sun et al. 2010; Zhang and Wu 2010;

Zhang et al. 2006, 2009; Zhao et al. 2008).

In 1940, Fowler et al. discovered a new structure of the

hydrates, which is formed by tetra-n-butylammonium salts

(Fowler et al. 1940). Because in these structures some

water lattice sites are replaced by the guest molecules

(anions), they are called semi-clathrates. In semi-clathrates

formed by tetra-n-butylammonium salts, tetra-n-butylam-

monium chains occupy the large cages and the small cages

remain vacant or partially occupied with water molecules

or small gas molecules (Bonamico et al. 1962; Fowler et al.

1940; Hughes 2008; Komarov et al. 2007; Makino et al.

2009; McMullan et al. 1963; Mohammadi et al.

2013, 2014b). Mohammadi and coworkers have widely

investigated the thermodynamic conditions of gas hydrate

formation in the presence of some semi-clathrate formers

such as tetra-n-butylammonium fluoride (TBAF), tetra-n-

butylammonium chloride (TBAC), and tetra-n-butylam-

monium bromide (TBAB) (Belandria et al. 2011, 2012;

Mohammadi et al. 2013, 2014b; Mohammadi et al. 2012;

Mohammadi and Richon 2009). They found that the pres-

ence of studied semi-clathrate formers moderates the

thermodynamics of gas hydrate formation dramatically

(Belandria et al. 2011, 2012; Mohammadi et al.

2013, 2014b, 2012; Mohammadi and Richon 2009).

Despite a large number of studies undertaken on the ther-

modynamics of semi-clathrate hydrates, few attempts have

been made to investigate the kinetics of this type of

hydrates (Fan et al. 2011; Ye et al. 2014).

In recent years, the kinetic parameters of clathrate

hydrate formation (such as induction time, the quantity of

gas uptake and growth rate) in the presence of different

additives have been studied by many researchers (Arjang

et al. 2013; Bi et al. 2009; Dashti et al. 2015; Farhang et al.

2014; Fazlali et al. 2013; Ganji et al. 2007a, b; Kang and

Lee 2010; Kumar et al. 2013; Lirio et al. 2013; Manteghian

et al. 2013; Mohammadi et al. 2014a; Ricaurte et al. 2014;

Rogers et al. 2007; Roosta et al. 2015; Sabil et al. 2010;

Torré et al. 2011; Zhang et al. 2004, 2007). Mohammadi

and coworkers studied the impact of sodium dodecyl sul-

fate and silver nanoparticles on the kinetic parameters of

CO2 clathrate hydrate formation (Mohammadi et al.

2014a). Their results show that simultaneous utilization of

SDS and silver nanoparticles increases the hydrate forma-

tion rate, storage capacity and the quantity of gas uptake

during hydrate formation considerably (Mohammadi et al.

2014a). Kang et al. investigated the kinetic behavior of

CO2 hydrate formation in porous media in the presence of

SDS. They showed that adding SDS increases the initial

CO2 hydrate formation rate, compared to pure water. The

investigation of Kumar and coworkers (Kumar et al. 2013)

on the impact of different additives (Tween-80, dode-

cyltrimethylammonium chloride (DTACl), and SDS) on

CO2 hydrate formation kinetics show that SDS is probably

the most effective among their studied additives (Kumar

et al. 2013). Although, the kinetics of CO2 ‘‘clathrate’’

hydrate formation in the presence of surfactants have been

studied by some researchers, in recent years, the kinetics of

CO2 hydrate formation in the presence of ‘‘semi-clathrate’’

formers (that moderate the thermodynamics of gas hydrate

formation noticeably) requires more attention.

In the present study, the impacts of SDS, TBAF, and the

mixture of SDS ? TBAF on the induction time, the

quantity of gas uptake, the hydrate growth rate, and the

storage capacity of CO2 hydrate formation process were

investigated.

2 Experimental

2.1 Materials and apparatus

The purities and suppliers of the materials used in this work

are reported in Table 1.

The experimental apparatus is fully described elsewhere

(Mohammadi et al. 2014a). Figure 1 shows the schematic

picture of the apparatus. Briefly, the hydrate formation

reactor with an effective volume of 169 cm3, is a jacketed
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stainless steel cell. For appropriate mixing of the gas,

aqueous solution and hydrate, an electric motor is used to

rock the reactor. The stirring rate of the reactor is 10 rpm.

2.2 Procedure

Experiments were carried out at the Central Laboratory of

Gas Conversions at the University of Bojnord, Iran. At

first, the cell was washed with distilled water. To ensure

that all parts of the set up are free of air, inner parts were

evacuated with a vacuum pump. 50 cm3 of prepared

solution was loaded into the cell at room temperature and

atmospheric pressure. Then, the temperature of the reactor

was set to the desired temperature of 5 �C. To achieve the

desired pressure (3.8 MPa), the cell was charged with CO2.

After the reactor was pressurized with CO2, the electric

motor was turned on with a speed of 10 rpm. The cell

pressure decreased continuously due to hydrate formation

until reaching a steady state condition. During the experi-

ments, the cell temperature and pressure were recorded by

the digital acquisition (DAQ) system.

3 Results and discussion

The phase equilibrium conditions for hydrate-containing

systems of TBAF have been studied by some researchers.

Mohammadi and coworkers (Mohammadi et al. 2013) and

Li and coworkers (Li et al. 2010) determined the semi-

clathrate hydrate phase equilibria of water ? TBAF (2, 4,

Table 1 Purities and suppliers

of the materials used in this

work

Chemical Supplier Purity

SDS Daejung Chemical & Metal Co. Ltd. (Korea) 98 wt%

CO2 Sepehr gas (Iran) 99.99 mol%

TBAF Merck (Germany) 97 mol%

Drain valve Reactor

Gas injection

Water injection

Sensors P,T

DAQ system

Computer

CO2

cylinder

In coolant

Out coolant

Circulation system

Inverter

Electromotor

Ball
bearing

Fig. 1 Schematic illustration of the experimental apparatus used in this study
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and 5 wt%) ? CO2 systems. In this study, we measured

the phase equilibrium conditions for 1 wt% of TBAF. The

results of the measurements are shown in Fig. 2.

3.1 Quantity and rate of gas uptake

The impact of adding TBAF, SDS, and the mixture of

TBAF ? SDS on the quantity of CO2 uptake, induction

time, and rate of gas uptake during CO2 hydrate formation

were investigated, as mentioned earlier (Mohammadi et al.

2014a). The kinetics of hydrate formation was studied in a

stirred batch reactor at the temperature of 5 �C and the

pressure of 3.8 MPa, as pointed out earlier. Aqueous

solutions of (a) TBAF with concentrations of 0, 1, 4, and

5 wt%, (b) SDS with concentrations of 0 and 400 ppm, and

(c) SDS 400 ppm ? TBAF (0–4) wt% were prepared, in

order to investigate the impacts of SDS, TBAF, and

SDS ? TBAF on the kinetics of CO2 hydrate formation.

The quantity of gas uptake during CO2 hydrate forma-

tion process can be calculated by employing the real gas

law (Eq. (1) (Mohammadi et al. 2014a; Smith et al. 2001).

DnCO2
¼ P0V0

Z0RT0
� PtVt

ZtRTt
ð1Þ

where P is the pressure; T represents the temperature;

V stands for the volume of the gas inside the reactor; Z is

the gas compressibility factor; R represents the universal

gas constant; and subscripts 0 and t stand for conditions of

the cell at time t = 0 and time t, respectively.

The quantities of CO2 uptake during hydrate formation

for the systems of CO2 ? water and CO2 ? wa-

ter ? TBAF (1, 4, and 5 wt%) are depicted in Fig. 3. As

shown in this Fig. 3, adding aqueous solution of TBAF (1,

4, and 5 wt%) increases the quantities of CO2 uptake

within 60 min of hydrate formation experiments, compared

to pure water and the quantity of gas uptake during hydrate

formation is proportional to the concentration of TBAF.

The maximum quantity of CO2 uptake was obtained for

5 wt% TBAF aqueous solution. At t = 60 min, the quantity

of CO2 consumption per mole of feed water for this solu-

tion was found to be 0.1382 mol compared to pure water

having 0.0742 mol. This means that adding 5 wt% of

TBAF increases the quantity of CO2 uptake 86%, com-

pared to pure water. By increasing the concentration of

TBAF from 1 to 5 wt%, the thermodynamics of hydrate

formation are moderated (Mohammadi et al. 2013).

Therefore, the driving force of CO2 hydrate formation

increases. Increasing the driving force of hydrate formation

process increases the quantity of gas uptake.

Figure 4 illustrates the quantity of CO2 uptake per mole

of water during hydrate formation process in the presence

of SDS (400 ppm) and the various concentrations of TBAF

at an initial pressure of 3.8 MPa and temperature of 5 �C.
As shown in Fig. 4, simultaneous utilization of SDS

(400 ppm) and TBAF (1–4 wt%) decreases the quantity of

gas uptake within 20 min of hydrate formation experi-

ments, compared to the system of CO2 ? SDS

(400 ppm) ? water. In other words, adding TBAF (with

concentration of (1–4 wt%) to aqueous solution of SDS
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(with concentration of 400 ppm) results in a negative effect

on the quantity of gas uptake during hydrate formation.

A likely reason for this phenomenon is as follows: The

strong interaction between the ions of Na? (released from

SDS) and F- (in the lattice structure of semi-clathrate

hydrates) results in a negative effect on the stability of

semi-clathrate lattice structure and consequently, the

quantity of trapped gases will be decreased.

As shown in Fig. 4, by increasing the concentration of

TBAF from 1 to 4 wt% at constant concentration of SDS

(400 ppm), the quantity of CO2 uptake during hydrate

formation process increases. By increasing the concentra-

tion of TBAF (from 1 to 4 wt%) at constant concentration

of SDS (400 ppm), the quantity of Na? per mole of F-

decreases. Therefore, the negative effect of Na? on the

stability of semi-clathrate hydrate lattice decreases and

consequently, the quantity of gas consumption would

increase.

Figures 5, 6 and 7 depict the impact of adding SDS on

the quantity of CO2 uptake during hydrate formation pro-

cess. Figure 5 shows the impact of SDS on the quantity of

CO2 consumption in the absence of TBAF. As shown in

this figure, adding SDS increases the quantity of gas uptake

during hydrate formation. SDS increases the solubility of

CO2 in water by decreasing the surface tension of water

molecules at the gas–liquid interface.

The impact of SDS on the quantity of CO2 uptake during

hydrate formation in the presence of 1 wt% TBAF at an

initial pressure of 3.8 MPa and temperature of 5 �C is

illustrated in Fig. 6. As shown in this figure, at low con-

centration of TBAF, the presence of SDS -by decreasing

the stability of semi-clathrate lattice- causes a negative

effect on the quantity of gas uptake during hydrate for-

mation process.

Figure 7 depicts the impact of SDS on the quantity of

CO2 uptake during hydrate formation in the presence of

4 wt% of TBAF. As illustrated in this figure, at this

concentration of TBAF, the presence of SDS has a positive

effect on the quantity of gas uptake during hydrate for-

mation process. At this concentration of TBAF, the quan-

tity of Na? per mole of F- decreases, compared to 1 wt%

aqueous solution of TBAF. Therefore, the negative effect

of Na? on the stability of semi-clathrate lattice decreases.

On the other hand, SDS decreases the surface tension of

water molecules. Therefore, the quantity of CO2 con-

sumption in the presence of SDS is higher than that of in

the absence of SDS.

Equation (2) was employed to calculate the rate of gas

uptake, r(t), during hydrate formation process (Moham-

madi et al. 2014a):

rðtÞ ¼ nCO2;i�1 � nCO2;iþ1

ðtiþ1 � ti�1Þnw0

ð2Þ

where nCO2;i�1 and nCO2;iþ1 are, respectively, the mole

number of CO2 in the gas phase at ti-1 and ti?1; and nw0
is

the initial mole number of water.
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Fig. 5 The impact of adding SDS on the quantity of CO2 uptake

during hydrate formation at an initial pressure of 3.8 MPa and

temperature of 5 �C
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Figures 8 and 9, respectively, show the impacts of dif-

ferent concentrations of TBAF on the rate of CO2 con-

sumption in the absence and the presence of SDS (with

concentration of 400 ppm). As shown in these fig-

ures (Figs. 8, 9), the time range of rapid CO2 consumption

for the systems of CO2 ? water and CO2-

? TABF ? water was 0–5 min. This time range was

0–3 min for the systems of CO2 ? SDS ? water, and

CO2 ? SDS ? TABF ? water. The rate of gas consump-

tion tended to a very small value, after these time periods.

As shown in these figures, the addition of TBAF does not

have a significant effect on increasing the gas consumption

rate.

The impact of SDS (with concentration of 400 ppm) on

the rate of CO2 uptake during hydrate formation process is

illustrated in Figs. 10, 11 and 12. It can be seen that, adding

SDS with concentration of 400 ppm does not have a sig-

nificant effect on increasing the gas consumption rate.

3.2 Impact of SDS and TBAF on induction time
and storage capacity of CO2

Figure 13 depicts the induction time of CO2 hydrate for-

mation for the systems of CO2 ? water, CO2-

? TABF ? water, CO2 ? SDS ? water, and

CO2 ? SDS ? TABF ? water. The numerical data of

induction times are given in Table 2. In this study, the

induction time is defined as the time from introducing the

gas to the cell to the time of initial formation of hydrate. As

shown in Fig. 13 and Table 2, all the tested additives

decrease the induction time of hydrate formation. Adding

SDS decreases the induction time of CO2 hydrate forma-

tion considerably. The induction time of CO2 hydrate for-

mation in the presence of 400 ppm SDS is 0.4 min, while

this value is 73 min for the system of CO2 ? water.

Adding 5 wt% TBAF decreases the induction time of CO2

hydrate formation noticeably, compared to pure water. The

induction time of hydrate formation for the system of

CO2 ? 5 wt% TABF ? water is 0.9 min at initial pressure

of 3.8 MPa and temperature of 5 �C. SDS improves the

induction time of hydrate formation process by decreasing

the surface tension of water molecules and TBAF and by

increasing the driving force of CO2 hydrate formation.

Figure 14 shows the impacts of adding SDS, TBAF, and

the mixture of SDS ? TBAF on storage capacity of CO2

within 60 min of experiments of the hydrate formation at

an initial pressure of 3.8 MPa and temperature of 5 �C. The
numerical data of storage capacities are given in Table 3.

As shown in Fig. 14 and Table 3, all the tested additives

increased the storage capacity of CO2 in the process of

hydrate formation, compared to pure water.

The storage capacity of CO2 hydrate for 5 wt% TBAF

aqueous solution was 60.6 v/v, compared to pure water
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with 32.5 v/v. This means that adding TBAF with 5 wt%

increases the storage capacity of CO2 hydrate 86.1%,

compared to pure water. TBAF increased the storage

capacity of CO2 hydrate formation by moderating the

hydrate formation conditions.

The storage capacity of CO2 hydrate for aqueous solu-

tion of SDS with concentration of 400 ppm was 59.1 v/v.

This means that adding 400 ppm SDS increases the storage

capacity of CO2 hydrate 81.6%, compared to pure water.

SDS improves the storage capacity of CO2 hydrate by

decreasing the surface tension of water molecules.

4 Conclusions

In this study, the impacts of adding SDS, TBAF, and the

mixture of SDS ? TBAF on induction time, storage

capacity, and the quantity and rate of gas uptake during

CO2 hydrate formation were investigated. Our main con-

clusions can be summarized as follows:
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Storage capacity, v/v

Fig. 14 The impact of SDS, TBAF, and the mixture of SDS ? TBAF

on storage capacity of CO2 in the process of hydrate formation at an

initial pressure of 3.8 MPa and temperature of 5 �C

Table 2 The induction time of CO2 hydrate formation or (CO2-

? TBAF) hydrate formation in the absence and the presence of SDS

at an initial pressure of 3.8 MPa and temperature of 5 �C

System tind, min

CO2 ? water 73

CO2 ? TBAF (1 wt%) ? water 10

CO2 ? TBAF (4 wt%) ? water 25

CO2 ? TBAF (5 wt%) ? water 0.9

CO2 ? SDS (400 ppm) ? water 0.4

CO2 ? SDS (400 ppm) ? TBAF (1 wt%) ? water 40

CO2 ? SDS (400 ppm) ? TBAF (2 wt%) ? water 28

CO2 ? SDS (400 ppm) ? TBAF (3 wt%) ? water 14

CO2 ? SDS (400 ppm) ? TBAF (4 wt%) ? water 12.5
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(1) The results show that adding SDS (400 ppm) and

TBAF (5 wt%) increases the storage capacity of CO2

hydrate and decreases the induction time of hydrate

formation considerably.

(2) Adding TBAF increases the quantity of CO2 uptake

within 60 min of hydrate formation experiments,

compared to pure water and the quantity of gas

uptake during hydrate formation is proportional to

the concentration of TBAF.

(3) Adding 400 ppm SDS at low concentration of TBAF

(1 wt%), presents a negative effect on the quantity of

gas uptake during hydrate formation process. By

increasing the concentration of TBAF, the negative

effect of SDS decreases.

(4) Finally, adding SDS and TBAF at tested conditions

does not have a significant effect on increasing the

rate of gas consumption.
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