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Abstract Geochemical analysis of 64 oils sampled from

an Ordovician carbonate reservoir in the Tuoputai region

was undertaken to study the composition of molecular

markers. All the oils have similar geochemical character-

istics and belong to a single oil family. They are presumed

to derive from the same source kitchen and have similar oil

charging history. A histogram of homogenization temper-

atures (Th) of aqueous inclusions in reservoir rocks shows a

bimodal distribution pattern, indicating that the Ordovician

reservoir has been charged twice. Coupling the measured

Th (�C) with the burial and geothermal histories recon-

structed using 1D basin modeling, we relate the homoge-

nization temperature to the relevant geological ages: i.e.,

425–412 and 9–4 Ma, corresponding to the Middle to Late

Silurian and the Miocene to Pliocene, respectively. The oil

filling orientation and pathways are traced using molecular

indicators related to alkyldibenzothiophenes and

benzo[b]naphthothiophenes. The oil charging orientation is

from south to north generally. It can be predicted that the

Ordovician reservoirs were sourced from a kitchen located

to the south of the Tuoputai region, most probably between

the Awati and Manjiaer Depressions. Traps located in the

southern side of the Tuoputai region, along the oil charging

pathways, should therefore be preferred oil exploration

targets.

Keywords Oil population � Oil charging events � Fluid

inclusion � 1D numerical modeling � Oil filling pathway

1 Introduction

The Tuoputai region is located in the Tabei Uplift of the

Tarim Basin, NW China. It is situated on the southwest

slope of the Akekule High (Fig. 1), which has been

affected by multiple tectonic events (Zhang 1999; Zhou

et al. 2001; Li and Xu 2004). In terms of petroleum yield,

the Tuoputai region is one of the most prolific blocks in the

Tahe Oilfield, which is the largest oilfield of marine origin

in China, with over 3.2 9 108 t proven in-place oil/gas

reserves (Wang et al. 2008). Up to now, more than 100

wells delivering moderate to high commercial yields have

been drilled in the Tuoputai region. The majority of oil

accumulations occur in the Ordovician carbonate reservoir.

The source of the Ordovician oil reservoir in the Tabei

Uplift of the Tarim Basin has long been a controversial

issue, because the oils are of high thermal maturity and

there are few wells of sufficient depth to penetrate the

potential source rock intervals (Li et al. 2010a, b; Chang

et al. 2013a). However, more and more studies have indi-

cated that oils in the Tabei Uplift are sourced from Middle–

Upper Ordovician carbonate source rocks (Zhang et al.

2000; Zhang and Huang 2005; Wang et al. 2008; Yu et al.

2011; Chang et al. 2013a).
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Previous reports (Gu 2000; Ding et al. 2001) have pro-

posed that the Tahe Oilfield has experienced multistage oil

charging events, from the Carboniferous–Permian to

Mesozoic–Neogene periods, based on the saturation/bubble

point pressure of crude oil pools, homogenization tem-

peratures (Th) of fluid inclusions and reservoir bitumen

reflectance. Chen et al. (2003) proposed that five oil

charging events, ranging from the Middle Carboniferous to

Neogene, may have occurred in the Tahe Oilfield on the

basis of the fluorescent colors of fluid inclusions. Based on

the Th of fluid inclusions and reconstructed burial and

geothermal histories, Wang et al. (2008) proposed that the

Tahe Ordovician oil reservoir has been charged twice. The

early oil charging phase arose from the Middle to Late

Silurian (429–415 Ma) and the later one from the Miocene

to Pliocene (8–2 Ma). Shi et al. (2012) reported that the

Ordovician reservoirs in the Tuoputai region have been

charged twice, and the early oil charge occurred from 420

to 405 Ma and the second from 8 to 2 Ma based on the

integrated analyses of microthermometry, petrography,

laser Raman spectrum and confocal laser scanning micro-

scopy of fluid inclusions. Ni et al. (2016) and Xiao et al.

(2016) reported that there were two phases of oil charging

in the Halahatang Depression, west of the Tuoputai region,

the first phase was from the Middle to Late Silurian

(422–410 Ma), and the second occurred during the middle

Miocene (20–6 Ma).

Recently, more and more work has been done on the oil

filling history and oil charging pathways of the Ordovician

carbonate reservoirs in the Tabei Uplift. Using tricyclic

terpanes/17a(H)-hopanes ratios of 18 oil samples from the

Tahe Oilfield, Huang (2003) traced oil migration orienta-

tions. The results showed that the general orientation of oil

charging is from east to west and from south to north,

suggesting that the source kitchen may be located in the

Manjiaer Depression (Huang 2003). By combining multi-

ple molecular indicators, such as the total content of pyr-

rolic nitrogen compounds and 4-/1-MDBT, Wang et al.

(2004a, 2008) determined that oils charge from south to

north generally in the Tahe Oilfield. Much work has also

been done, using various geochemical parameters, on the

oil filling history and migration orientation of Ordovician

reservoirs in other oilfields in the Tabei Uplift, including

the Lunnan Oilfield (Wang et al. 2004b; Zhang and Huang

2005; Gong et al. 2007; Lu et al. 2008; Zhu et al. 2013), the

Yakela Oilfield (Li et al. 2013a, b) and the Halahatang

Manjiaer Depression
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Fig. 1 Map showing well locations in the Tuoputai region of the Tabei Uplift of the Tarim Basin, NW China

Pet. Sci. (2017) 14:662–675 663

123



Oilfield (e.g., Chang et al. 2013b; Fang et al. 2016; Xiao

et al. 2016). However, little work has been done on the oil

reservoir geochemistry of the Tuoputai region in the Tabei

Uplift.

This study investigated oil filling pathways from sys-

tematic geochemical analyses of 62 crude oil samples from

62 different wells in the Tuoputai region of the Tabei

Uplift. By combining the homogenization temperatures of

fluid inclusions with reconstructed burial and geothermal

histories, episodes of oil filling in the Ordovician reservoir

and their timing were also identified and determined. The

results of this study will further help to predict the location

of the source beds/kitchen and identify preferred explo-

ration targets in the Tabei Uplift.

2 Geological settings and samples

The Tuoputai region of the Tabei Uplift is surrounded by

the Caohu Depression to the east, the Halahatang Depres-

sion to the west, the Manjiaer Depression to the south and

the Hadexun Structure Belt to the southeast (Fig. 1). The

Tabei Uplift has undergone multistage tectonic events,

including (1) the formation of the pre-Sinian basement and

rift during the Sinian to Ordovician, (2) the formation of a

paleo-uplift during the Silurian to Permian and its evolu-

tion (250–290 Ma), (3) the formation of a foreland basin

during the Triassic to Jurassic period, (4) the extension of

the basin during the Cretaceous to Neogene and (5) the

rapid subsidence from the late Neogene to Quaternary

(Kang and Kang 1996; Jia and Wei 2002; Jin et al. 2008;

Zhu et al. 2011, 2013; Fang et al. 2016). The sedimentary

successions of the Tabei Uplift are marine sediments

(Sinian to Ordovician), marine–terrestrial transitional suc-

cessions (Carboniferous to Permian) and terrestrial

sequences (Triassic to Quaternary). The main Ordovician

reservoirs in the Tuoputai region occur in the Lower–

Middle Ordovician Yingshan (O1-2y), the Middle

Ordovician Yijianfang (O2y) and the Upper Ordovician

Lianglitage (O3l) Formations, mainly composed of bio-

clastic limestones, calcarenite, micrite and dolomite.

In this study, 62 oil samples were gathered from the

Tuoputai region. Two typical oil samples collected from

Wells TD2 and T904 were also analyzed for comparison.

Oils in these two wells are considered to be sourced from

Cambrian–Lower Ordovician source rocks (Ma et al. 2005;

Zhang and Huang 2005; Li et al. 2010a, b, 2012, 2015;

Song et al. 2016).

3 Methods

3.1 Sample preparation

The crude oil samples were analyzed as follows:

asphaltenes were precipitated using n-hexane and then

isolated by filtration. Then, the resulting n-hexane solutions

were separated into saturated and aromatic hydrocarbon

fractions by silica gel/alumina (3:2, w/w) column chro-

matography, using n-hexane and dichloromethane/n-hex-

ane (2:1 v/v) as eluents, respectively.

3.2 Gas chromatography–mass spectrometry (GC–

MS) analyses

The GC–MS analyses of the saturated and aromatic

hydrocarbon fractions were conducted on an Agilent 6890

gas chromatograph, equipped with an HP–5MS (5%

phenylmethylpolysiloxane) fused silica capillary column

(60 m 9 0.25 mm i.d., with a 0.25 lm film thickness). The

chromatograph was coupled to an Agilent 5975i mass

spectrometry system, which operated at 70 eV within a

mass range of 50–600 Da. Helium was used as the carrier

gas. For the saturated fractions, the GC operating condi-

tions were as follows: the oven temperature was set at

50 �C initially for 1 min, ramped to 120 �C at 20 �C/min,

subsequently to 310 �C at 3 �C/min and finally held

isothermally for 25 min. For the aromatic fractions, the

oven temperature was set at 80 �C for 1 min, then ramped

to 310 �C at 3 �C/min and finally held isothermally for

16 min. The split injector temperature was set at 300 �C.

3.3 Microthermometry of fluid inclusions

A total of 10 carbonate cores were sampled from the pro-

duction interval of the Middle Ordovician Formation (O2y)

in Well TP37.

Analyses of fluid inclusions were performed as follows:

Double-polished thin sections were prepared for fluid

inclusion observation, and the homogenization tempera-

tures measured using a Linkam Model THMSG 600 heat-

ing–cooling stage coupled to a Leica Model DMRXP

optical microscope. The measurement range was between

- 196 and 600 �C, and the freezing and heating error was,

respectively ± 0.1 and ± 2 �C. After adjustment of tem-

perature, measurements were set at a rate of 15 �C/min and

then the rate gradually decreased to 5 and 2 �C/min.

Finally, the rate was decreased to 1 �C/min when the fluid

inclusion was close to homogenization.
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4 Results and discussion

4.1 Composition and population of Ordovician oil

in the Tuoputai region

Sixty-four oil samples (including two oils from wells in the

cratonic region of the Tarim Basin) (Table 1) were ana-

lyzed geochemically to study their organic molecular

composition and classify their oil population. Various

molecular indicators relative to tricyclic terpanes, hopanes,

C27–C29 regular steranes, triaromatic steroids and selected

polycyclic aromatic compounds were applied in this study.

Figure 2 maps m/z 217 mass chromatograms of the

saturates in the oils show the distribution pattern of

steranes. All oils in the Tuoputai region are characterized

by a ‘‘V-shape’’ distribution pattern (Fig. 2) of the relative

abundances of C27–C28–C29 regular steranes. The relative

content of C28 regular steranes in all Tuoputai oils is lower

than 25% (Table 1), which is consistent with data from the

Middle–Upper Ordovician source rocks (Hanson et al.

2000; Zhang et al. 2000; Zhang and Huang 2005; Li et al.

2012). A ternary diagram based on the relative molecular

compositions of C27–C28–C29 regular steranes (Fig. 3a) is a

method commonly used to determine oil-to-oil correlation

and oil classification (Peters et al. 2005). Here we found

that all the oils from the Tuoputai region have a similar

composition of C27, C28 and C29 regular steranes and are

closely distributed in one group (Fig. 3a). A ternary

TP20
Ordovician
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C28%=23.82%

C27
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Fig. 2 Mass chromatograms (m/z 217) showing the distribution patterns of steranes in selected oils of the Tuoputai region and Well TD2 from

the Tarim Basin
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diagram mapping the relative abundance of dibenzothio-

phenes (DBTs), fluorenes (FLs) and dibenzofurans (DBFs)

can be used effectively to investigate depositional envi-

ronments, oil-to-oil and oil-to-source correlation (Li et al.

2013a, b). All oils from the Tuoputai region have a rela-

tively high content of DBTs, with the ratio of DBTs/

(DBTs ? FLs ? DBFs) higher than 70% (Fig. 3b). This

indicates a strongly reducing depositional environment and

their source from marine carbonates (Li et al. 2013a, b).

Figure 4 shows the distribution of tricyclic terpanes

(TTs) and hopanes in m/z 191 mass chromatographs of

saturates from selected oil samples. The content of tricyclic

terpanes (TTs) is relatively higher than hopanes in all

Tuoputai oils, and the relative content of C23TT is higher

than that of C21TT with a C21TT/C23TT ratio lower than

1.0, which is consistent with the majority of oils from other

oilfields in the Tabei Uplift (Wang et al. 2008; Chang et al.

2013a; Xiao et al. 2016).

Triaromatic steroids (TAS) are relatively abundant in

the studied region (Fig. 5). Previous studies have been

reported that most oils originating from Middle–Upper

Ordovician source rocks have relatively low abundances of

C26, C27 TAS (C26 20S, C26 20R ? C27 20S, C27 20R) and

a high content of C28 TAS, while oils from Cambrian–

Lower Ordovician source rocks feature higher concentra-

tions of C26, C27 TAS relative to C28 TAS (Zhang et al.

2002; Mi et al. 2007; Li et al. 2012; Xiao et al. 2016).

Figure 5 shows that the Ordovician oils in the studied

region have relatively low contents of C26, C27 TAS and a

high content of C28 TAS, with a ratio of C26/C28 20S

TAS\ 0.50 and C27/C28 20R TAS\ 0.60 (Fig. 5,

Table 1). All of these molecular markers clearly show that

oils in the Ordovician carbonate reservoir of the Tuoputai

region have similar molecular compositions, as well as a

high degree of consistency in source affinity and oil

accumulation history. They clearly belong to a single oil

family and may all derive from Middle–Upper Ordovician

source rocks/beds.

However, oils from Wells TD2 and T904 are signifi-

cantly different from the Ordovician oils in molecular

composition. The TD2 and T904 oils have a relatively high

abundance of C28 regular steranes ([ 25%) (Figs. 2, 3a,

Table 1), a lower abundance of DBTs (Fig. 3b, Table 1),

higher C21TT content (C21/C23TT[ 1.0) (Fig. 4, Table 1),

and higher C26 and C27 TAS contents (C26/C28 20S

TAS[ 0.4, C27/C28 20R TAS[ 0.75) (Fig. 5, Table 1),

indicating that they derived from a different oil family.

Previous reports showed that oils in these wells derived

from Cambrian–Lower Ordovician source rocks (e.g., Li

et al. 2010a, b, 2012, 2015; Song et al. 2016).

4.2 Oil charging history and timing of entrapment

From the microthermometric characteristics of fluid

inclusions in the carbonate reservoir rock samples from

Well TP37, it can be deduced that there were two phases of

fluid inclusion formation. Aqueous inclusions paragenetic

with the hydrocarbon inclusions were observed, and their

homogenization temperatures (Th) were measured. There

are distinctive differences between the two phases of fluid

inclusion in Th and ice final melting temperatures. A total

of 107 data points of Th were measured. A histogram of Th

values of aqueous inclusions displays a bimodal distribu-

tion pattern, with the majority of the first phase within
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80–90 �C and the second within 110–120 �C (Fig. 6),

suggesting different fluid inclusion entrapment tempera-

tures for these two oil charging events. In addition, the ice

final melting temperature values range from - 11.0 to

- 10 �C for the first phase and from - 7 to - 6 �C for the

second, indicating obvious differences in diagenetic paleo-

fluid properties between the two fluid inclusion phases. The

water should be more saline in the fluid inclusion of the

first phase than in that of the second.

Homogenization temperatures and pressures are the

minimum-trapping temperatures and pressures of fluid

inclusions. They should be calibrated by using PVT sim-

ulation modeling (Liu et al. 2003, 2005). As well, the ratios

of vapor/liquid in petroleum-bearing fluid inclusions were

obtained accurately using confocal laser scanning micro-

scopy (CLSM) (Ni et al. 2016). The Tuoputai region and

the adjacent Halahatang Sag have undergone the same

tectonic events and have similar thermal histories, so we

choose samples from Well RP3-1 of the Halahatang Sag

for the PVT simulation modeling (Ni et al. 2016). Based on

isochors of a number of petroleum inclusions in Well RP3-

1 in the Halahatang Oilfield of the Tabei Uplift (Ni et al.

2016; Xiao et al. 2016), the trapping temperatures of the

first and the second phases of fluid inclusions in typical

Ordovician carbonate reservoirs range from 82 to 97 and

136 to 170 �C, respectively. The calibration of aqueous
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Fig. 4 Mass chromatograms (m/z 191) showing the distribution patterns of tricyclic terpanes and hopanes in selected oils of the Tuoputai region

and Well TD2 from the Tarim Basin
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inclusions temperatures is & 10 �C higher than the mea-

sured Th for the first phase and & 40 �C for the second

phase (Xiao et al. 2016). Therefore, the trapping temper-

atures of fluid inclusions in the Ordovician oil reservoirs of

Well TP37 range from 90 to 100, and 150 to 160 �C,

respectively.

Stratigraphic burial and thermal histories for Well TP37

(Fig. 7) were reconstructed using one-dimensional (1D)

numerical modeling (Fig. 7). The geological parameters

input into the software and the method used were

determined by reference to Li et al. (2010a, b). A maturity

profile based on the measured vitrinite reflectance (Ro%)

was established (Fig. 8). Optimization processes have been

conducted until the calculated values matched with the

measured one (Li et al. 2010a, b). Here we found that the

calculated maturity profile is consistent overall with that

measured (Fig. 8). Therefore, the modeled stratigraphic

burial and thermal histories are reliable and practical.

Combined with the reconstructed stratigraphic burial and

thermal histories, entrapment temperatures can be related
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to geological ages for the oil charging events in the

Ordovician reservoir of the Tuoputai region (Fig. 7).

Figure 7 shows that the Ordovician reservoir in Well

TP37 has been charged twice from 425 to 412 and 9 to

4 Ma, respectively. The history and timing of oil charging

in the Tuoputai Ordovician reservoir are generally consis-

tent with those of the wells in the major part of the Tahe

Oilfield (Wang et al. 2008).

4.3 Oil charging orientation and filling pathways

It has been reported that the relative content of

alkyldibenzothiophene isomers (4-/1-MDBT and 2,4-/1,4-

DMDBT) can be applied as a molecular tracer for oil

migration pathways (Wang et al. 2004a, 2008). These

molecular indicators were successfully applied in Tertiary

sandstone reservoirs in the north margin basins of the

South China Sea (Wang et al. 2004a; Li et al. 2008) and in

the Ordovician carbonate reservoir of a karst pore-fissure-

network type in the Tahe and Halahatang Oilfields of the

Tarim Basin (Wang et al. 2004a, 2008; Li et al. 2014a, b;

Fang et al. 2016). The results suggest that these parameters

can be used as an effective tracing indicator for oil filling

orientation and migration pathways.

Bressler et al. (1997) and Mazeas et al. (2002) have

reported that methylated dibenzothiophene may be sus-

ceptible to biodegradation, especially the C1 and C2

alkyldibenzothiophene. Recently, Shi et al. (2015) reported

the absolute content of DBTs and BNTs decrease with

increasing biodegradation degree; however, the relative

content of alkyl DBTs with same number of methyl groups

and BNTs has no significant change according to a pre-

liminary experiment. Therefore, 4-/1-MDBT and

[2,1]BNT/([2,1]BNT ? [1,2]BNT) are primarily influ-

enced by the oil filling fractionation (Fang et al. 2016).
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Figure 9 shows the isopleth map of the 4-/1-MDBT ratio

of Ordovician oils from the Tuoputai region. The direction

of decrease in the ratio indicates the oil migration orien-

tation, and the projection trajectory of the isopleths indi-

cates the preferential oil filling pathways. It is clear to see

that there was one main oil filling point around Well TP329

at the southern side of the Tuoputai region, with a 4-/1-

MDBT ratio higher than 6.50. From there, two oil strings

flowed northward. One migrated from south to northwest

along Wells TP37, TP318, TP16, TP18 to Well TP217; the

other migrated from south to northeast along Wells

TP321X, TP315, TP208, TP227X to Well TP209CH.

Benzo[b]naphthothiophene (BNT) isomers, namely

benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[1,2-

d]thiophene and benzo[b]naphtho[2,3-d]thiophene (abbr.

[2,1]BNT, [1,2]BNT and [2,3]BNT, respectively), are

structurally similar to benzo[a]carbazole, benzo[c]car-

bazole and benzo[b]carbazole. The relative concentrations

of [2,1]BNT and [1,2]BNT in reservoired oils are mainly

affected by migration fractionation effects (Li et al. 2014a).

The ratio of [2,1]BNT/([2,1]BNT ? [1,2]BNT) can be

applied as a tracer for oil filling orientation and migration

pathways (Li et al. 2014a). The isopleth map of the

[2,1]BNT/([2,1]BNT ? [1,2]BNT) ratio has been

successfully applied in the Ordovician carbonate reservoir

of the Halahatang Oilfield in the Tabei Uplift (Fang et al.

2016). The isopleth map of the [2,1]BNT/

([2,1]BNT ? [1,2]BNT) ratio for oils from the Tuoputai

Oilfield is illustrated in Fig. 10. It shows that the ratios of

[2,1]BNT/([2,1]BNT ? [1,2]BNT) of the Ordovician oils

in the Tuoputai region decrease from south to north, which

is approximately similar to that in the 4-/1-MDBT

parameter. The main filling point indicated by this ratio is

also around Well TP329.

Peng et al. (2010) and Yang et al. (2011) mapped the

fracture-cavity units, the longitudinal distribution of
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fractures and cavities by means of drilling and logging

data, seismic interpretation and production test. Clearly,

the preferred oil migration pathways are consistent with the

distribution of major fracture-cavity units.

4.4 Implications for petroleum exploration

On the whole, the tracing results of the oil filling stages

demonstrate a general oil filling orientation from south to

north in the Tuoputai region. The main oil filling point

identified in this study is located around Well TP329.

Therefore, the source kitchen/bed for the Ordovician

reservoir of the Tuoputai region is predicted to be to the

south side of the study area, most likely in the Shuntuo-

guole Uplift, which lies between the Awati and Manjiaer

Depressions (Fig. 1). The location of the source kitchen/

bed is in agreement with the findings of previous studies

(e.g., Wang et al. 2008; Chang et al. 2013b; Xiao et al.

2016; Fang et al. 2016).

During recent oil exploration efforts, a number of new

boreholes in the south part of the Tuoputai region have

delivered commercial light oil yields. A total of

8000 9 104 t of controlled oil reserves have been discov-

ered in the south part of the Tuoputai region. For example,

the cumulative total of oil products from Well TP39, which

is located in the southernmost of the Tuoputai region,

reached over 12 9 104 t by the end of 2014. Therefore, the

southern part of the Tuoputai region, along the oil charging

pathways into the Tahe Oilfield, is likely to be the most

prolific region for prospective development. The study of

reservoir geochemistry therefore has real practical signifi-

cance in petroleum exploration.

5 Conclusions

All Ordovician oils reservoired in the Tuoputai region

possess similar molecular geochemical characteristics,

such as the distribution characteristics of tricyclic terpanes,

regular steranes and triaromatic steroids. They belong to a

single oil family and evidently derived from the same

source kitchen/bed.

Coupling the homogenization temperatures of fluid

inclusions with stratigraphic burial and geothermal histo-

ries, reconstructed using 1D basin modeling, the episodes

and timing of oil entrapment were determined. The results

show that the Ordovician carbonate reservoir in the

Tuoputai region has undergone two oil accumulation

events. The early oil filling phase happened from 425 to

412 Ma and the late one from 9 to 4 Ma, equivalent to the

Middle to Late Silurian and the Miocene to Pliocene,

respectively.

The oil migration and filling pathways were traced using

isopleth maps of the 4-/1-MDBT and [2,1]BNT/

([2,1]BNT ? [1,2]BNT) ratios. The oil filling orientation

of the Ordovician oil reservoir in the Tuoputai region is

generally from south to north. Therefore, the source

kitchen/bed is predicted to lie to the south part of the
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Tuoputai region, most possibly in the Shuntuoguole Uplift.

The prediction of preferred oil exploration targets has been

proven to be of practical significance by its use in recent

petroleum exploration discoveries in this region.
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