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Abstract The seismic reflection and transmission charac-

teristics of a single layer sandwiched between two dis-

similar poroelastic solids saturated with two immiscible

viscous fluids are investigated. The sandwiched layer is

modeled as a porous solid with finite thickness. The

propagation of waves is represented with potential func-

tions. The displacements of particles in different phases of

the aggregate are defined in terms of these potential func-

tions. Due to the presence of viscosity in pore fluids, the

reflected and transmitted waves are inhomogeneous in

nature, i.e., with different directions of propagation and

attenuation. The closed-form analytical expressions for

reflection and transmission coefficients are derived theo-

retically for appropriate boundary conditions. These

expressions are calculated as a non-singular system of

linear algebraic equations and depend on the various

parameters involved in this non-singular system. Hence,

numerical examples are studied to determine the effects of

various properties of the sandwich layer on reflection and

transmission coefficients. The essential features of layer

thickness, incident direction, wave frequency, liquid

saturation and capillary pressure of the porous layer on

reflection and transmission coefficients are depicted

graphically and discussed. The analysis shows that reflec-

tion and transmission coefficients are strongly associated

with incident direction and various properties of the porous

layer.

Keywords Sandwiched layer � Immiscible pore fluids �
Inhomogeneous wave � Reflection and transmission

coefficients

1 Introduction

In general, earth is a layered structure with different elastic

properties. Thus, propagation of seismic waves through

such a layered structure is influenced very much by these

elastic properties. The nature of these layers present in the

interior of earth’s crust has not yet been addressed com-

pletely. Therefore, it is necessary to consider the various

studies to determine the actual internal structure of earth

and the various phases such as oil, gases and hydrocarbons

embedded in the earth. The problem of reflection and

transmission of seismic waves at a sandwiched layer is an

important phenomenon due to its practical applications in

earthquake engineering, geophysics, seismology, petro-

leum engineering and hydrology. During the past several

decades, most of the studies on reflection and transmission

phenomena have preferred to use a single interface, for

example Pride et al. (1992), Kaynia and Banerjee (1993),

Gurevich and Schoenberg (1999), Denneman et al. (2002),

Sharma (2008, 2013), Tomar and Arora (2006), Arora and

Tomar (2007), Yeh et al. (2010), Sharma and Kumar

(2011), Chen et al. (2012), Kumar and Saini (2012, 2016),
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Kumar and Sharma (2013), Kumar and Kumari (2014). The

latest book by Carcione (2014) is also recommended for

relevant references and detailed procedures. However, to

the best of our knowledge, in view the importance of the

transition layer, only a few limited efforts have been made

to study the phenomenon of reflection and transmission of

plane waves at a layer sandwiched between two dissimilar

media. Some of the recent studies on reflection and trans-

mission of seismic waves through a transition layer have

been carried out by various authors including Sinha (1964),

Cerveny and Vanek (1974), Kuo (1992), Ainslie (1996),

Wang et al. (2013), Lyu et al. (2014), Sahu et al. (2015)

and Paswan et al. (2016). Recently, Corredor et al. (2014)

studied the effects of layer thickness on reflection and

transmission coefficients of a single layer sandwiched

between two dissimilar poroelastic media. They also dis-

cussed several special cases. Chen et al. (2015) studied the

reflection of acoustic waves from the elastic seabed with an

overlying gassy poroelastic layer. They studied the influ-

ences of poroelastic layer thickness, wave frequency,

incident direction and liquid saturation on reflection

characteristics.

To the best of our knowledge, until now the problem of

reflection and transmission of plane waves at the surface of

a layer sandwiched between two dissimilar porous solids

saturated with two immiscible viscous fluids has not been

investigated. Generally, it is observed that natural rocks are

composed of multi-fluid porous solids. The phenomenon of

wave propagation is generally affected by the nature of

such rocks. In the present work, the complete reflection–

transmission phenomenon across a poroelastic layer sand-

wiched between two dissimilar porous solids saturated with

two immiscible viscous fluids is investigated. This type of

study is motivated by the problems faced by the oil

industry, where the desired product is usually found in the

form of multiple fluids. The mathematical model presented

in this article is based on the continuum mixture theory of

Tuncay and Corapcioglu (1997). Corredor et al. (2014)

studied the reflection and transmission coefficients of a

single layer embedded between two dissimilar porous solid

saturated with a single fluid. It is based on the poroelastic

theory of Biot. The present work generalizes reflec-

tion/transmission phenomenon studied by Corredor et al.

(2014) to the reflection/transmission phenomena across a

poroelastic layer sandwiched between two dissimilar por-

ous solids saturated with two immiscible viscous fluids.

In this study, the propagation of waves is represented

with potential functions. The displacement of particles in

different phases of the aggregate is defined in terms of

these potential functions. All the poroelastic media are

dissipative due to the presence of viscosity in pore fluids.

Hence, the propagation of plane waves in such media is

represented by inhomogeneous waves, i.e., different

directions of propagation and attenuation. Thus, the inci-

dent wave is an inhomogeneous wave specified by two

angles, one for the propagation direction and the other for

its deviation from the attenuation direction. The closed-

form expressions for reflection and transmission coeffi-

cients are derived theoretically for appropriate boundary

conditions. These expressions are calculated as a non-sin-

gular system of linear algebraic equations and depend on

various parameters involved in this non-singular system.

Hence, numerical examples are studied to determine the

effects of various properties of the sandwich layer on

reflection and transmission coefficients. The influences of

layer thickness, liquid saturation and capillary pressure of

the porous layer, incident direction and wave frequency on

reflection and transmission coefficients are depicted

graphically and discussed.

2 Basics equations

Following Tuncay and Corapcioglu (1997), the equations

of motion for two-phase immiscible viscous fluid flows in

deformable porous media, in the absence of body forces,

are defined as follows

d0sij;j ¼ d0q0€ui þ d1 _ui � _við Þ þ d2 _ui � _wið Þ; ð1Þ

� d1p
ð1Þ
;i ¼ d1q1€vi þ d1 _vi � _uið Þ; ð2Þ

� d2p
ð2Þ
;i ¼ d2q2 €wi þ d2 _wi � _uið Þ; ð3Þ

where ui; vi and wi denote the components of displacements

of solid, first fluid and second fluid particles, respectively.

p 1ð Þ; p 2ð Þ are pressures in fluid phases, and sij is the stress

tensor for the drained porous frame. q0s are intrinsic den-

sities of constituents. Dots over these vectors denote partial

time derivatives. A comma before an index implies partial

differentiation in space. d0; d1 and d2 are the volume

fractions of the solid, first and second fluid phases,

respectively. d0 ¼ 1� f ; d1 ¼ ð1� rÞf ; d2 ¼ fr with

d0 þ d1 þ d2 ¼ 1; where r is the fraction of second fluid

saturation in connected pore space and f is porosity. d1ð¼
g1d

2
1=v0kr1Þ and d2ð¼ g2d

2
2=v0kr2Þ are the dissipation

coefficients of first and second fluid phases, respectively.

These coefficients involve relative permeabilities ðkr1; kr2Þ
and viscosities ðm1; m2Þ of the corresponding phases and the

intrinsic permeability of the composite medium v0. The
relative permeabilities ðkr1; kr2Þ for current model are given

as follows (Lo et al. 2005): kr1 ¼ ð1� rÞv 1� r
n

n�1

� �2ðn�1Þ
n ;

kr2 ¼ rv 1� f1� r
n

n�1g
n�1
n

h i2
; where n and v are fitting

parameters. Following Tuncay and Corapcioglu (1997), the

constitutive relations for stresses in the porous matrix and

fluid pressures in the pore space are given by
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d0sij ¼ a11r:u~þ a12r:v~þ a13r:w
*

� �
dij

þ G ui;j þ uj;i �
2

3
uk;kdij

� �
; ð4Þ

� d1p
ð1Þ ¼ ða21r:u~þ a22r:v~þ a23r:w~Þdij; ð5Þ

� d2p
ð2Þ ¼ ða31r:u~þ a32r:v~þ a33r:w~Þdij; ð6Þ

where dij is the Kronecker symbol. The coefficients aijð¼
ajiÞ denote the elastic constants and are given by

a11 ¼ K0; a12 ¼ K1d0ð1� rÞðKc þ K2Þ=K;
a13 ¼ K2d0rðKc þ K1Þ=K;

a22 ¼ K1d1ðð1� rÞK2 þ KcÞ=K; a23 ¼ K1K2ð1� rÞd2=K;

a33 ¼ K2d2ðK1rþ KcÞ=K; K ¼ K1rþ Kc þ K2ð1� rÞ;

where K1 and K2 are the bulk moduli of first and second

fluid phases, respectively, whereas K0 is bulk modulus of

the porous frame or drained matrix. G is the shear modulus

of the porous solid. Kc ¼ rKcap; where Kcap is the equiva-

lent bulk modulus (Garg and Nayfeh 1986) for macroscopic

capillary pressure between wetting and non-wetting fluids.

Following Kumar and Saini (2012), the displacement

potentials ui; ði ¼ 1; 2; 3; 4Þ; represent the propagation of

P1;P2;P3; SV waves with velocities V1;V2;V3;V4; respec-

tively. The velocities ðV1;V2;V3Þ of longitudinal waves are
derived from the three roots of a cubic equation inV2; given by

DV6 þ CV4 þ BV2 þ A ¼ 0: ð7Þ

The various coefficients in this cubic equation are given by

A ¼ a�11A3 þ a12A1 þ a13A2;

B ¼ a�11B3 þ KsA3 þ a12B1 þ a13B2 � v1A1 � v2A2;

C ¼ a�11C3 þ KsB3 þ a12C1 þ a13C2 � v1B1 � v2B2;

D ¼ KsC3 � v1C1 � v2C2;

where

A1 ¼ a23a13 � a12a33; A2 ¼ a12a23 � a13a22;

A3 ¼ a22a33 � a23a23;

B1 ¼ a33v1 � a12K2 � a23v2; B2 ¼ a22v2 � a13K1 � a23v1;

B3 ¼ a22K2 þ a33K1;

C1 ¼ K2v1; C2 ¼ K1v2; C3 ¼ K1K2; a
�
11 ¼ a11 þ

4

3
G;

and

v1 ¼
i
x
d1; v2 ¼

i
x
d2; K1 ¼ d1q1 þ v1;

K2 ¼ d2q2 þ v2;

where i ¼
ffiffiffiffiffiffiffi
�1

p
and x is angular frequency. The coupling

coefficients between the potentials of longitudinal waves

are given by

lj ¼
A1 � B1V

2
j þ C1V

4
j

A3 � B3V
2
j þ C3V

4
j

; kj ¼
A2 � B2V

2
j þ C2V

4
j

A3 � B3V
2
j þ C3V

4
j

;

ðj ¼ 1; 2; 3Þ:

The shear wave velocity V4 and coupling coefficients

ðC1; C2Þ are given by

V2
4 ¼ G

K0 � v1C1 � v2C2

; C1 ¼
v1
K1

; C2 ¼
v2
K2

;

K0 ¼ d0q0 þ v1 þ v2:

3 Displacements

For two-dimensional motion in the x� z plane, the dis-

placement components of solid and fluid phases are given

by

ux ¼
X3

j¼1

ouj

ox
� ou4

oz
; uz ¼

X3

j¼1

ouj

oz
þ ou4

ox
; ð8Þ

vx ¼
X3

j¼1

lj
ouj

ox
� C1

ou4

oz
; vz ¼

X3

j¼1

lj
ouj

oz
þ C1

ou4

ox
;

ð9Þ

wx ¼
X3

j¼1

kj
ouj

ox
� C2

ou4

oz
; wz ¼

X3

j¼1

kj
ouj

oz
þ C2

ou4

ox
:

ð10Þ

4 Formulation of the problem

We consider a poroelastic layer sandwiched between two

dissimilar poroelastic solids saturated with two immiscible

viscous fluids. This poroelastic layer is considered as solid

matrix (or skeleton) whose pores are filled with two

immiscible viscous fluids. Hence, this system consists of

three dissimilar poroelastic media designated by Xj; ðj ¼
1; 2; 3Þ as shown in Fig. 1. A rectangular Cartesian coor-

dinate system ðx; y; zÞ is chosen with the z-axis directed

vertically downwards and the x-axis considered as the

horizontal direction. Let z ¼ 0 and z ¼ h represent two

plane interfaces separating the media X1; X2 and X3;

respectively. Hence, the poroelastic solid X1 occupies the

region �1\z\0; poroelastic layer X2 occupies the

region 0\z\h, and poroelastic solid X3 occupies the

region h\z\1.

5 Boundary conditions

Boundary conditions are considered to determine the

unknown complex amplitudes of various reflected and

transmitted waves. These boundary conditions concerning

the displacements of solid and fluid particles, normal and

678 Pet. Sci. (2017) 14:676–693
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shear stresses, and fluids pressure need to ensure continuity

at the interfaces located at z ¼ 0 and z ¼ h. Therefore, the

boundary conditions at the interfaces (Dutta and Ode 1983;

Santos et al. 2004; Corredor et al. 2014), in the present

formulations, are given by

ðd0szzÞðmÞ ¼ ðd0szzÞðmþ1Þ; ðd0szxÞðmÞ ¼ ðd0szxÞðmþ1Þ;

ð�d1p
ð1ÞÞðmÞ ¼ ð�d1p

ð1ÞÞðmþ1Þ;

ð�d2p
ð2ÞÞðmÞ ¼ ð�d2p

ð2ÞÞðmþ1Þ;

uðmÞx ¼ uðmþ1Þ
x ; uðmÞz ¼ uðmþ1Þ

z ; vðmÞz ¼ vðmþ1Þ
z ;

wðmÞ
z ¼ wðmþ1Þ

z ; m ¼ 1; 2: ð11Þ

h
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The super-index ðmÞ denotes the any variable associated

with the medium Xm.

6 Reflection and transmission coefficients

In the present study, our goal is to analyze the reflection and

transmission coefficients of a poroelastic layer sandwiched

between two dissimilar poroelastic solids saturated with two

immiscible fluids. A plane wave, either P1 or SV , is incident

on the plane interface z ¼ 0 with an angular frequency x
and an angle of incidence h0 with respect to vertical z-axis.

This incidence results in four reflected waves generated in

the poroelastic medium X1. Furthermore, four waves from

the upper interface (i.e., z ¼ 0) and four reflected waves

from the lower interface (i.e., z ¼ h) are generated in the

poroelastic layer X2 and four transmitted waves exist in the

poroelastic medium X3; as shown in Fig. 1. Hence, as a

result of multiple reflections at the boundaries of the layer,

eight resulting waves with different directions of propaga-

tion and attenuation are developed. The procedure used in

the present work to determine the reflection and transmis-

sion coefficients of plane waves is illustrated by Bre-

khovskikh (1960), p. 45. This recursive approach is used by

various authors including Carcione (2001), Wang et al.

(2013), Lyu et al. (2014), Corredor et al. (2014), Chen et al.

(2015, 2017), Sahu et al. (2015), Bai et al. (2015, 2016),

Paswan et al. (2016), Feng et al. (2016). All the poroelastic

media are dissipative due to the presence of viscosity in

pore fluids. Hence, the propagation of plane waves in such a

medium is represented by inhomogeneous waves, i.e., with

different directions of propagation and attenuation. Thus,

the incidence of an inhomogeneous wave at the boundary

z ¼ 0 is specified through its propagation direction h0 and

attenuation angle c0. In the x-z plane, h0 is the angle that

propagation vector P~0 of the incident wave makes with the

z-axis and c0 is the angle between propagation vector ðP~0Þ
and attenuation vector ðA~0Þ:

In terms of these angles, the complex wave number k is

written as (Borcherdt 1982),

k ¼ P~0

		 		 sin h0 � i A~0

			
			 sinðh0 � c0Þ; ð12Þ

where for incident wave of velocity V0, we have

P~0

		 		2¼ 1

2
< x2

V2
0

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< x2

V2
0

� �� �2

þ = x2

V2
0

� �� �2
,

cos2 c0

( )vuut

2

4

3

5;

ð13Þ

A~0

			
			
2

¼1

2
�< x2

V2
0

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< x2

V2
0

� �� �2

þ = x2

V2
0

� �� �2
,

cos2c0

( )vuut

2

4

3

5:

ð14Þ

Then, the displacement potential for the incident wave is

defined as

/0 ¼ F0 expðA~0 � r~Þ expðiP~0 � r~� xtÞ; ð15Þ

The propagation vector P~0 and attenuation vector A~0 are

defined as

P~0 ¼ kRx̂þ d0Rẑ; A~0 ¼ � kI x̂� d0I ẑ;

d0 ¼ � p:v:
x
V0

� �2

� kð1Þ
� �2

" #1=2
; r~¼ xx̂þ zẑ;

where x̂ and ẑ denote unit (or coordinate) vectors along x-

axis and z-axis, respectively. F0 is the amplitude of the

incident wave. Subscripts R and I denote the real and

imaginary parts of the corresponding complex quantities.

Following Borcherdt (1982), the displacement potential

functions of reflected and transmitted waves can be

expressed as

(1) In the poroelastic solid X1 ð�1\z\0Þ

uð1Þ
j ¼ F

ð1Þ
rj expðA~ð1Þ

rj � r~Þ expfiðP~ð1Þ
rj � r~� xtÞg;

ðj ¼ 1; 2; 3; 4Þ;
ð16Þ

where arbitrary constants F
ð1Þ
rj ; ðj ¼ 1; 2; 3; 4Þ; represent the

amplitudes of reflected P1;P2;P3; SV waves, respectively.

The propagation vectors P~
ð1Þ
rj and attenuation vectors

A~
ð1Þ
rj are defined as

P~
ð1Þ
rj ¼ k

ð1Þ
R x̂� d

ð1Þ
rjRẑ; A~

ð1Þ
rj ¼ � k

ð1Þ
I x̂þ d

ð1Þ
rjI ẑ;

d
ð1Þ
rj ¼ � p:v:

x

V
ð1Þ
j

 !2

� kð1Þ
� �2

2

4

3

5

1=2

;

where p:v: denotes the principal value of the complex

quantity derived from the square root. The sign of d
ð1Þ
rj is

chosen to ensure the decay of associated reflected wave

along negative z-direction, i.e., a positive value for imag-

inary part of d
ð1Þ
rj . Wave number kð1Þ ð¼ k

ð1Þ
R þ ikð1ÞI Þ is a

complex quantity such that k
ð1Þ
R � 0 defines the propagation

in positive x-direction.

(2) In the poroelastic layer X2 ð0\z\hÞ

uð2Þ
j ¼ F

ð2Þ
tj expðA~ð2Þ

tj � r~Þ expfiðP~ð2Þ
tj � r~� xtÞg

þ F
ð2Þ
rj expðA~ð2Þ

rj � r~Þ expfiðP~ð2Þ
rj � r~� xtÞg;

ðj ¼ 1; 2; 3; 4Þ;

ð17Þ

where arbitrary constants F
ð2Þ
rj ðFð2Þ

tj Þ; ðj ¼ 1; 2; 3; 4Þ; rep-
resent the amplitudes of reflected (transmitted)

P1; P2; P3; SV waves, respectively.
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The propagation vectors ðP~ð2Þ
rj ;P

~ð2Þ
tj Þ and attenuation

vectors ðA~ð2Þ
rj ; A

~ð2Þ
tj Þ are defined as

P~
ð2Þ
rj ¼ k

ð2Þ
R x̂� d

ð2Þ
rjRẑ; P~

ð2Þ
tj ¼ k

ð2Þ
R x̂þ d

ð2Þ
tjR ẑ;

A~
ð2Þ
rj ¼ � k

ð2Þ
I x̂þ d

ð2Þ
rjI ẑ; A~

ð2Þ
tj ¼ � k

ð2Þ
I x̂� d

ð2Þ
tjI ẑ;

d
ð2Þ
rj ¼ � p:v:

x

V
ð2Þ
j

 !2

� kð2Þ
� �2

2

4

3

5

1=2

;

d
ð2Þ
tj ¼ � p:v:

x

V
ð2Þ
j

 !2

� kð2Þ
� �2

2

4

3

5

1=2

; ðj ¼ 1; 2; 3; 4Þ:

(3) In the poroelastic solid X3 ðh\z\1Þ

uð3Þ
j ¼ F

ð3Þ
tj expðA~ð3Þ

tj � r~Þ expfiðP~ð3Þ
tj � r~� xtÞg; ðj

¼ 1; 2; 3; 4Þ; ð18Þ

where arbitrary constants F
ð3Þ
tj ; ðj ¼ 1; 2; 3; 4Þ; represent

the amplitudes of transmitted P1; P2; P3; SV waves,

respectively.

The propagation vectors P~
ð3Þ
tj and attenuation vectors

A~
ð3Þ
tj are defined as

P~
ð3Þ
tj ¼ k

ð3Þ
R x̂þ d

ð3Þ
tjR ẑ; A~

ð3Þ
tj ¼ �k

ð3Þ
I x̂� d

ð3Þ
tjI ẑ;

d
ð3Þ
tj ¼ � p:v:

x

V
ð3Þ
j

 !2

� kð3Þ
� �2

2

4

3

5

1=2

; ðj ¼ 1; 2; 3; 4Þ:

Sign of d
ð3Þ
tj is chosen to ensure the decay of the associated

transmitted wave along the positive z-direction, i.e., a pos-

itive value for the imaginary part of d
ð3Þ
tj . The subscripts t; r

indicate the transmitted and reflected waves, respectively.

To satisfy the system of boundary conditions defined by

(11), the potentials given by (15), (16), (17) and (18) are used

to calculate the displacements and stresses in the media

Xj; ðj ¼ 1; 2; 3Þ. The continuity requirements along the

interfaces z ¼ 0 and z ¼ h are satisfied with the identical

phase for all the waves on either side of the interfaces. This

provides that Snell’s law for reflection/transmission phe-

nomenon is considered. This translates further into the same

wave number for all the waves across interfaces, i.e.,

k ¼ kð1Þ ¼ kð2Þ ¼ kð3Þ. Then, for an incident wave specified

withV0; h0; c0 andx; k is calculated from (12). This k is used

further to calculate d
ðmÞ
rj ; d

ðmÞ
tj ; ðm ¼ 1; 2; 3Þ; for reflected

and transmitted waves, respectively. Applying boundary

conditions (11) and considering Snell’s law at the interfaces

z ¼ 0 and z ¼ h;, we get two systems of simultaneous linear

equations (see Appendix 1). These two systems of equations

are combined by using matrix notations of Carcione (2007,

Section 6.4) to relate the fields at z ¼ 0 and z ¼ h. Hence,

these two systems are translated into a system of eight

simultaneous linear equations given by

ðM� N �OÞQ ¼ R; ð19Þ

where Q ¼ ½Cð1Þ
r1 ; C

ð1Þ
r2 ; C

ð1Þ
r3 ; C

ð1Þ
r4 ; C

ð3Þ
t1 ; C

ð3Þ
t2 ; C

ð3Þ
t3 ; C

ð3Þ
t4 �T;

and N ¼ Tð0Þ � TðhÞ�1
.

The matrices M;O and T are given in Appendix 2. The

matrix R in the system (19) is written as follows.

(1) For incident P-waves

R¼ ½�m1j; m2j; �m3j; �m4j; �m5j; m6j; m7j; m8j�T;
ðj¼ 1; 2; 3Þ:

(2) For incident SV-wave

R¼½m14;�m24;m34;m44;m54;�m64;�m74;�m84�T:

7 Numerical results and discussion

7.1 Numerical example

The expressions for velocities, reflection and transmission

coefficients involve a large number of parameters. Hence, to

study the dependence of reflection and transmission coeffi-

cients on layer thickness, wave frequency, liquid saturation,

capillary pressure of the porous layer, propagation and

attenuation direction of the incident wave, we restrict our

numerical work to a particular model. In this model, medium

X1 is taken to be Columbia fine sandy loam saturated by an

air–water mixture, medium X2 is taken to be sandstone sat-

urated by water, and CO2; medium X3 is taken to be

Columbia fine sandy loam saturated by an oil–watermixture.

Following Lo et al. (2005), the values of elastic and

dynamic constants chosen for Columbia fine sandy loam

(medium X1) saturated by an air–water mixture are as

follows. The skeletal frame of sandstone with bulk modu-

lus K0 = 8.33 MPa, rigidity modulus G = 3.83 MPa and

density q0 = 2650 kg/m3 supports the porosity f = 0.45.

The pore space is filled with air of bulk modulus

K1 = 0.145 MPa, density q1 = 1.1 kg/m3 and viscosity

g1 ¼ 18� 10�6 Ns/m2 mixed with water of bulk modulus

K2 ¼ 2:25 GPa, density q2 ¼ 997 kg/m3 and viscosity

g2 ¼ 0:001 Ns/m2. The fitting parameters n ¼ 2:145, v ¼
0:5 along with intrinsic permeability v0 ¼ 5:3� 10�13 m2

of composite. The value of Kcap ¼ 0:005K2 and r ¼ 0:5:

A reservoir rock (sandstone) saturated with water and

CO2 (medium X2) is chosen for the numerical model of the

poroelastic layer (Garg and Nayfeh 1986). The skeletal

frame of sandstone with bulk modulus K0 ¼ 12 GPa,

rigidity modulus G ¼ 9 GPa and density q0 ¼ 2650 kg/m3

supports the porosity f ¼ 0:45. The pore space is filled with

Pet. Sci. (2017) 14:676–693 681

123



gas of bulkmodulusK1 ¼ 3:7 MPa and densityq1 ¼ 103 kg/

m3 mixed with water of bulk modulus K2 ¼ 2:25 GPa and

density q2 ¼ 990 kg/m3. Viscous dissipation in pores is

defined with coefficient d1 ¼ 0:04 MPa s m-2 for gas and

d2 ¼ 1 MPa s m-2 for water.

Following Lo et al. (2005), the values of elastic and

dynamic constants chosen for Columbia fine sandy loam

(medium X3) saturated by an oil–water mixture are: the

skeletal frame of sandstone with bulk modulus

K0 ¼ 8:33 MPa, rigidity modulus G ¼ 3:85 MPa and den-

sity q0 ¼ 2650 kg/m3 supports the porosity f ¼ 0:45. The

pore space is filled with oil of bulk modulusK1 ¼ 0:57 GPa,

density q1 ¼ 762 kg/m3 and viscosity g1 ¼ 0:00144 Ns/m2

mixed with water of bulk modulus K2 ¼ 2:25 GPa, density

q2 ¼ 997 kg/m3 and viscosity g2 ¼ 0:001 Ns/m2. The fit-

ting parameters are n ¼ 2:037, v ¼ 0:5 along with intrinsic

permeability v0 ¼ 8� 10�13 m2 of composite. The value of

Kcap ¼ 0:005K2 and r ¼ 0:5:

7.2 Numerical discussion

The reflection and transmission coefficients defined in

Sect. 6 are calculated for incident direction h0 2 ð0; 900Þ:
In this article, the incidence of two main waves (i.e., P1

and SV) is considered. The variations of reflection and

transmission coefficients with incident direction (h0) are
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Fig. 2 Reflection and transmission coefficients as a function of incident direction ðh0Þ for four different layer thickness: h ¼ 0; 1; 10m and

h ! 1; x ¼ 2p� 100Hz; r ¼ 0:2; Kcap ¼ 0:005K2; incident P1 wave
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shown in Figs. 2–6 (for incident P1 wave) and in Figs. 7–

11 (for incident SV wave). The detailed discussion on

figures is as follows.

Figure 2 displays the variation of reflection and trans-

mission coefficients as a function of incident direction (h0)
for four different values of h: 0, 1, 10 m and h ! 1. The

reflected and transmitted SV waves get stronger with an

increase in layer thickness. It is clear that at normal inci-

dence reflected and transmitted SV waves do not survive

quantitatively for any value of layer thickness (h). The

transmission coefficients of P1; P2; P3 waves behave dif-

ferently to reflection coefficients in regards to layer

thickness. A critical angle is observed between 80 and 150.

In both cases (i.e., h ¼ 0 and h ! 1), the poroelastic layer

is eliminated from the system and represents the reflection

and transmission of waves at the boundary between two

dissimilar poroelastic solids saturated with two immiscible

fluids. In case of h ¼ 0, the variations in reflection and

transmission coefficients with incident direction are dif-

ferent from that in the case of h ! 1. This variation in

reflection and transmission coefficients occurs due to the

difference in the numerical values of elastic/dynamical

constants of the two media. The effect of the saturating

fluid on the variation of reflection and transmission
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coefficients is shown in Fig. 3. It is observed that the

transmission coefficients of P3 and SV waves behave

almost like reflection coefficients, for any value of r.
However, with the change in r, the transmission coeffi-

cients of P1 and P2 waves behave opposite to reflection

coefficients. The effect of wave frequency on reflection and

transmission coefficients is displayed in Fig. 4. It is noticed

that the reflection and transmission coefficients of P2; P3

and SV waves increase with an increase in wave frequency

x. The effect of frequency on the transmission coefficient

of the P1 wave is insignificant. However, beyond 100

incidence, the reflection coefficient of the P1 wave

decreases with an increase in frequency. Further, the

behavior of the transmission coefficient of P1 is opposite to

the corresponding reflection coefficient for h0 2
ð500; 900Þ: The effect of capillary pressure on the reflec-

tion and transmission coefficients is displayed in Fig. 5.

For h0 2 ð0; 900Þ, the transmission coefficients of P3 and

SV waves behave like their corresponding reflection coef-

ficients. However, the transmission coefficients of P1 and

P2 waves behave opposite to the reflection coefficients with

the change in capillary pressure. The effect of viscosity of

pore fluids on reflection and transmission coefficients is

shown in Fig. 6. The viscosity of pore fluids may have

considerable effect on all the reflected and transmitted

waves for h0 2 ð200; 850Þ except for the transmitted P1
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wave. The reflection coefficient of the P1 wave increases

due to the presence of viscosity in pore fluids, while all the

other reflection and transmission coefficients decrease due

to the presence of viscosity in pore fluids.

For the incidence of the SV wave, the reflection and

transmission coefficients as a function of incident direction

(h0) are shown in Fig. 7 for four different values of h: 0, 1,

10 m and h ! 1. In Fig. 7, a significant effect of varia-

tions in layer thickness is observed on the reflection and

transmission coefficients. It is clear that at normal inci-

dence only reflected SV waves survive quantitatively for

any value of layer thickness (h). In the absence of a

sandwiched layer (i.e., h ¼ 0), a critical angle is not

observed for both reflected and transmitted SV waves,

while critical angles are observed for all the other reflected

and transmitted waves. The effect of saturation (r) on

reflection and transmission coefficients is shown in Fig. 8.

A significant effect of saturation is observed on the

reflection and transmission coefficients of P2 and P3 waves,

while P1 and SV waves are only slightly influenced by a

change in liquid saturation. The transmission coefficients

of P2 waves behave nearly opposite to their corresponding
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reflection coefficient with respect to saturation. In Fig. 9, a

significant effect of variations in frequency is visible on all

the reflected and transmitted waves. Hence, all the waves

are dispersive in nature. In Fig. 10, a small effect of cap-

illary pressure is observed on the two main waves (i.e.,

P1; SV), but a significant effect of capillary pressure is

observed on the two slower waves (i.e., P2; P3). The effect

of viscosity of pore fluids on reflection and transmission

coefficients is shown in Fig. 11. Similar to the case of

incident P1 wave, the presence of viscosity in pore fluids

may have considerable effect on the reflection and trans-

mission coefficients for h0 2 ð200; 800Þ. The variational

pattern of transmission coefficients is nearly similar to

reflection coefficients except for the SV wave.

8 Conclusions

In the present study, a theoretical procedure is used to

analyze the effects of layer thickness, liquid saturation,

capillary pressure of the porous layer, incident direction

and wave frequency on the reflection and transmission

characteristics. This mathematical model can be used in

many practical applications such as to predict the seismic

response of fractures in sandstones. Some interesting con-

sequences of the present study are explained as follows.

(1) At the normal incidence of P1 wave, reflected and

transmitted SV waves do not survive quantitatively,

while at the normal incidence of SV wave, only

transmitted SV waves survive.
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(2) All the reflected and transmitted waves are strongly

influenced by variations in frequency for both

incidence (i.e., P1 and SV). Therefore, all the

reflected and transmitted waves are frequency

dependent in nature.

(3) For the incidence of SV wave, in the absence of a

sandwiched layer (i.e., h ¼ 0 and h ! 1), a critical

angle is not observed for either reflected or trans-

mitted SV waves.

(4) All the reflected and transmitted waves are signif-

icantly influenced by the presence of viscosity in

pore fluids for both incidences.

(5) For both incidences, all reflected and transmitted

waves are strongly associated with layer thickness,

liquid saturation, capillary pressure of the sand-

wiched layer and incident direction.

The study of reservoir characteristics such as layer thick-

ness, capillary pressure and saturation through seismic

(reflection and transmission) methods is helpful in detect-

ing hydrocarbons and minerals present beneath the Earth’s

surface. Hence, the various issues resolved in this study are

relevant to many of the practical problems of hydrology,

geophysics, petroleum engineering and seismology.
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Appendix 1: Linear systems

The first system of simultaneous linear equations at the

interface z ¼ 0 is given by

X4

j¼1

xi;jC
ð1Þ
rj þ

X8

j¼5

xi;jC
ð2Þ
tl þ

X12

j¼9

xi;jC
ð2Þ
rq ¼ bi; l ¼ j� 4;

q ¼ j� 8; i ¼ 1; 2; 3; 4; 5; 6; 7; 8:

ð20Þ

where

x1;j ¼ � ½að1Þj þ ðað1Þj þ 2Gð1ÞÞðdð1Þrj =kÞ
2�;

x1;4 ¼ 2Gð1Þðdð1Þr4 =kÞ; x2;j ¼ 2Gð1Þðdð1Þrj =kÞ ;

x2;4 ¼ Gð1Þððdð1Þr4 =kÞ
2 � 1Þ; x3;j ¼ � bð1Þj ð1þ ðdð1Þrj =kÞ

2Þ;

x3;4 ¼ 0; x4;j ¼ � cð1Þj ð1þ ðdð1Þrj =kÞ
2Þ; x4;4 ¼ 0:

For ðj ¼ 5; 6; 7; l ¼ j� 4Þ; we have

x5;j ¼ 1; x5;4 ¼ d
ð1Þ
r4 =k; x6;j ¼ � d

ð1Þ
rj =k; x6;4 ¼ 1;

x7;j ¼ � lð1Þj ðdð1Þrj =kÞ; x7;4 ¼ Cð1Þ
1 ; x8;j ¼ � cð1Þj ðdð1Þrj =kÞ;

x8;4 ¼ Cð1Þ
2 :

For ðj ¼ 5; 6; 7; l ¼ j� 4Þ; we have
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x1;j ¼ ½að2Þl þðað2Þl þ 2Gð2ÞÞðdð2Þtl =kÞ2�; x1;8 ¼ 2Gð2Þðdð2Þt4 =kÞ;
x2;j ¼ 2Gð2Þðdð2Þtl =kÞ ; x2;8 ¼ �Gð2Þððdð2Þt4 =kÞ2 � 1Þ;
x3;j ¼ bð2Þl ð1þðdð2Þtl =kÞ2Þ; x3;8 ¼ 0;

x4;j ¼ cð2Þl ð1þðdð2Þtl =kÞ2Þ; x4;8 ¼ 0;

x5;j ¼� 1; x5;8 ¼ d
ð2Þ
t4 =k; x6;j ¼� d

ð2Þ
tl =k; x6;8 ¼� 1;

x7;j ¼� lð2Þl ðdð2Þtl =kÞ; x7;8 ¼� Cð2Þ
1 ;

x8;j ¼� cð2Þl ðdð2Þtl =kÞ; x8;4 ¼� Cð2Þ
2 :

For ðj¼ 9; 10; 11; q¼ j� 8Þ; we have

x1;j ¼ ½að2Þq þ ðað2Þq þ 2Gð2ÞÞðdð2Þrq =kÞ
2�;

x1;12 ¼ 2Gð2Þðdð2Þr4 =kÞ; x2;j ¼ �2Gð2Þðdð2Þrq =kÞ ;

x2;12 ¼ �Gð2Þððdð2Þr4 =kÞ
2 � 1Þ; x3;j ¼ bð2Þq ð1þ ðdð2Þrq =kÞ

2Þ;
x3;12 ¼ 0; x4;j ¼ cð2Þq ð1þ ðdð2Þrq =kÞ

2Þ; x4;12 ¼ 0;

x5;j ¼ � 1; x5;12 ¼ � d
ð2Þ
r4 =k; x6;j ¼ dð2Þrq =k; x6;12 ¼ � 1;

x7;j ¼ lð2Þq ðdð2Þrq =kÞ; x7;12 ¼ � Cð2Þ
1 ; x8;j ¼ cð2Þq ðdð2Þrq =kÞ;

x8;12 ¼ � Cð2Þ
2 :

The second system of simultaneous linear equations at the

interface z ¼ h; is given by
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X4

j¼1

yi;je
idð2Þ

j
hC

ð2Þ
tj þ

X8

j¼5

yi;je
�idð2Þ

j
hCð2Þ

rq ¼
X4

j¼1

zi;je
idð2Þ

j
hC

ð3Þ
tj ;

q ¼ j� 8; i ¼ 1; 2; 3; 4; 5; 6; 7; 8:

ð21Þ

For ðj ¼ 1; 2; 3Þ; we have

y1;j ¼ � ½að2Þj þ ðað2Þj þ 2Gð2ÞÞðdð2Þtj =kÞ2�;

y1;4 ¼ � 2Gð2Þðdð2Þt4 =kÞ;

y2;j ¼ �2Gð2Þðdð2Þtj =kÞ ; y2;4 ¼ Gð2Þððdð2Þt4 =kÞ2 � 1Þ;

y3;j ¼ � bð2Þj ð1þ ðdð2Þtj =kÞ2Þ;

y3;4 ¼ 0; y4;j ¼ � cð2Þj ð1þ ðdð2Þtj =kÞ2Þ; y4;4 ¼ 0;

y5;j ¼ 1; y5;4 ¼ � d
ð2Þ
t4 =k; y6;j ¼ d

ð2Þ
tj =k; y6;4 ¼ 1;

y7;j ¼ lð2Þj ðdð2Þtj =kÞ; y7;4 ¼ Cð2Þ
1 ; y8;j ¼ cð2Þj ðdð2Þtj =kÞ;

y8;4 ¼ Cð2Þ
2 :

For ðj ¼ 5; 6; 7; q ¼ j� 4Þ; we have

20 40 60 80 20 40 60 80

20 40 60 80

5

10

15

20 40 60 80

5

10

15

20 40 60 80

1

2

3

20 40 60 80

2

4

6

8

10

12

14

20 40 60 80

S
V

−w
av

e

20 40 60 80
 

 

0, in degreeθ 0, in degreeθ

×10-4

P
2-

w
av

e

×10-3

P
3-

w
av

e
P

1-
w

av
e

S
V

−w
av

e
P

2-
w

av
e

P
3-

w
av

e
P

1-
w

av
e

×10-3

×10-4

1.5

1.0

0.5

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

1.5

1.0

0.5

Kcap=0.1K2

Kcap=0.02K2

Kcap=0.005K2

Absolute value of reflection coefficient Absolute value of transmission coefficient

Fig. 10 Same as Fig. 5 but for incident SV wave
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y1;j ¼ � ½að2Þq þ ðað2Þq þ 2Gð2ÞÞðdð2Þrq =kÞ
2�;

y1;8 ¼ 2Gð2Þðdð2Þr4 =kÞ; y2;j ¼ 2Gð2Þðdð2Þrq =kÞ ;

y2;8 ¼ �Gð2Þððdð2Þr4 =kÞ
2 � 1Þ; y3;j ¼ � bð2Þq ð1þ ðdð2Þrq =kÞ

2Þ;
y3;8 ¼ 0; y4;j ¼ � cð2Þq ð1þ ðdð2Þrq =kÞ

2Þ; y4;8 ¼ 0;

y5;j ¼ 1; y5;8 ¼ d
ð2Þ
r4 =k; y6;j ¼ � dð2Þrq =k; y6;8 ¼ 1;

y7;j ¼ � lð2Þq ðdð2Þrq =kÞ; y7;8 ¼ Cð2Þ
1 ;

y8;j ¼ � cð2Þq ðdð2Þrq =kÞ; y8;4 ¼ Cð2Þ
2 :

For ðj ¼ 1; 2; 3Þ; we have

z1;j ¼ � ½að3Þj þ ðað3Þj þ 2Gð3ÞÞðdð3Þtj =kÞ2�eid
ð3Þ
tj

h;

z1;4 ¼ � 2Gð3Þðdð3Þt4 =kÞeid
ð3Þ
j4

h;

z2;j ¼ � 2Gð3Þðdð3Þtj =kÞ eid
ð3Þ
tj

h;

z2;4 ¼ Gð3Þððdð3Þt4 =kÞ2 � 1Þeid
ð3Þ
t4

h;

z3;j ¼ � bð3Þj ð1þ ðdð3Þtj =kÞ2Þeid
ð3Þ
tj

h; z3;4 ¼ 0;

z4;j ¼ � cð3Þj ð1þ ðdð3Þtj =kÞ2Þeid
ð3Þ
tj

h; z4;4 ¼ 0;

z5;j ¼ eid
ð3Þ
tj

h; z5;4 ¼ � ðdð3Þt4 =kÞeid
ð3Þ
t4

h;

z6;j ¼ ðdð3Þtj =kÞeid
ð3Þ
tj

h; z6;4 ¼ eid
ð3Þ
t4

h;
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z7;j ¼ lð3Þj ðdð3Þtj =kÞeid
ð3Þ
tj

h; z7;4 ¼ Cð3Þ
1 eid

ð3Þ
t4

h;

z8;j ¼ cð3Þj ðdð3Þtj =kÞeid
ð3Þ
tj

h; z8;4 ¼ Cð3Þ
2 eid

ð3Þ
t4

h:

Appendix 2: Linear systems

The final system of linear equations. The matrices given in

system (19) are defined as

M ¼

x1;1 x1;2 x1;3 x1;4 0 0 0 0

x2;1 x2;2 x2;3 x2;4 0 0 0 0

x3;1 x3;2 x3;3 x3;4 0 0 0 0

x4;1 x4;2 x4;3 x4;4 0 0 0 0

x5;1 x5;2 x5;3 x5;4 0 0 0 0

x6;1 x6;2 x6;3 x6;4 0 0 0 0

x7;1 x7;2 x7;3 x7;4 0 0 0 0

x8;1 x8;2 x8;3 x8;4 0 0 0 0

2

66666666664

3

77777777775

and

O ¼

0 0 0 0 z1;1 z1;2 z1;3 z1;4
0 0 0 0 z2;1 z2;2 z2;3 z2;4
0 0 0 0 z3;1 z3;2 z3;3 z3;4
0 0 0 0 z4;1 z4;2 z4;3 z4;4
0 0 0 0 z5;1 z5;2 z5;3 z5;4
0 0 0 0 z6;1 z6;2 z6;3 z6;4
0 0 0 0 z7;1 z7;2 z7;3 z7;4
0 0 0 0 z8;1 z8;2 z8;3 z8;4

2

66666666664

3

77777777775

Finally, N ¼ Tð0Þ � ½TðhÞ��1
and TðzÞ ¼ S1 � S2ðzÞ being

S1 ¼

y1;1 y1;2 y1;3 y1;4 y1;5 y1;6 y1;7 y1;8
y2;1 y2;2 y2;3 y2;4 y2;5 y2;6 y2;7 y2;8
y3;1 y3;2 y3;3 y3;4 y3;5 y3;6 y3;7 y3;8
y4;1 y4;2 y4;3 y4;4 y4;5 y4;6 y4;7 y4;8
y5;1 y5;2 y5;3 y5;4 y5;5 y5;6 y5;7 y5;8
y6;1 y6;2 y6;3 y6;4 y6;5 y6;6 y6;7 y6;8
y7;1 y7;2 y7;3 y7;4 y7;5 y7;6 y7;7 y7;8
y8;1 y8;2 y8;3 y8;4 y8;5 y8;6 y8;7 y8;8

2

66666666664

3

77777777775

and

S2 ¼

eidt1z 0 0 0 0 0 0 0

0 eidt2z 0 0 0 0 0 0

0 0 eidt3z 0 0 0 0 0

0 0 0 eidt4z 0 0 0 0

0 0 0 0 e�idr1z 0 0 0

0 0 0 0 0 e�idr2z 0 0

0 0 0 0 0 0 e�idr3z 0

0 0 0 0 0 0 0 e�idr4z

2

66666666666664

3

77777777777775
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