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Abstract It is important to predict the fracture distribution

in the tight reservoirs of the Ordos Basin because fracturing

is very crucial for the reconstruction of the low-perme-

ability reservoirs. Three-dimensional finite element models

are used to predict the fracture orientation and distribution

of the Triassic Yanchang Formation in the Longdong area,

southern Ordos Basin. The numerical modeling is based on

the distribution of sand bodies in the Chang 71 and 72
members, and the different forces that have been exerted

along each boundary of the basin in the Late Mesozoic and

the Cenozoic. The calculated results demonstrate that the

fracture orientations in the Late Mesozoic and the Ceno-

zoic are NW–EW and NNE–ENE, respectively. In this

paper, the two-factor method is applied to analyze the

distribution of fracture density. The distribution maps of

predicted fracture density in the Chang 71 and 72 members

are obtained, indicating that the tectonic movement in the

Late Mesozoic has a greater influence on the fracture

development than that in the Cenozoic. The average frac-

ture densities in the Chang 71 and 72 members are similar,

but there are differences in their distributions. Compared

with other geological elements, the lithology and the layer

thickness are the primary factors that control the stress

distribution in the study area, which further determine the

fracture distribution in the stable Ordos Basin. The pre-

dicted fracture density and the two-factor method can be

utilized to guide future exploration in the tight-sand

reservoirs.

Keywords Ordos Basin � Yanchang Formation � Fracture
prediction � Finite element modeling � Two-factor method �
Tight-sand reservoirs

1 Introduction

Unconventional oil and gas resources, such as tight gas,

tight oil and shale oil, have been successfully developed

commercially in the USA, Canada, Australia and some

other countries. The production of tight oil soared from 30

million tons in 2011 to 96.9 million tons in 2012 in the

USA by using new unconventional technologies (Du et al.

2014). In China, the Ordos Basin, the Junggar Basin, the

Songliao Basin, the Sichuan Basin, the Qaidam Basin, etc.,

have abundant tight-oil resources with an output of 97

million tons, accounting for 22% of the nationwide total oil

output (Jia et al. 2014). In the Ordos Basin, the tight-oil

reservoirs in the Triassic Yanchang Formation have

become a major target of petroleum exploration and

development in recent years (e.g., Guo et al. 2012; Yao

et al. 2013).

Since tight-oil reservoirs in the Ordos Basin are of low-

permeability (\2 9 10-3 lm2) and low-porosity (\10%)

overall, fracturing is crucial for the reservoir reconstruc-

tion, even though the reservoirs are formed with compli-

cated mechanisms (e.g., Yao et al. 2013; Ezulike and

Dehghanpour 2014). Therefore, it is important to predict

the natural fracture distribution in reservoirs, including
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their orientation and density, for future exploration and

development (e.g., Smart et al. 2009). Previous studies

have focused on the geometrical or kinematic models, such

as analyses of seismic techniques or of the layer curvature

(e.g., Zahm et al. 2010; Pearce et al. 2011; Tong and Yin

2011), and fracture prediction in the Ordos Basin has also

been involved in some papers (e.g., Ju et al. 2014a).

However, since earlier fracture prediction was mainly

carried out through layer curvature or two-dimensional

(2D) models, which cannot meet the demands for the tight-

oil study and exploration, it is necessary to build three-

dimensional (3D) mechanical models in order to achieve

the accuracy needed for further research on the uncon-

ventional petroleum.

Various factors, such as the proximity of faults, the

curvature of folds, the layer thickness and the lithology, are

deemed to control the fracture development in tight

reservoirs (e.g., Ju et al. 2013), and the anisotropy or

heterogeneity should also be considered in the modeling

(e.g., Glukhmanchuk and Vasilevskiy 2013). However, it is

difficult for 2D geomechanical models to fully consider all

these factors, and the modeling results cannot be used

successfully for exploration and production. Therefore, 3D

models will be utilized in this paper, which take the

lithology, the thickness and the stress fields into

consideration.

The study area in this paper, namely the Longdong area,

is located in the southern Ordos Basin, where research on

structural fractures in the tight reservoirs is still deficient

(e.g., Ren et al. 2014; Li et al. 2015). The structural frac-

tures in the Longdong area were mainly formed after the

Late Triassic, as a result of multiple-stage tectonic events

in the Late Mesozoic and the Cenozoic. These extensively

developed fractures are mostly unfilled and effective,

which noticeably improve the permeability of tight reser-

voirs in the Ordos Basin.

2 Geological background

The Ordos Basin, covering an area of 2.6 9 105 km2, is a

large N–S trending basin in the western North China

Craton, which is located between the Siberian Craton and

the South China Craton (Hou et al. 2010) (Fig. 1). Three

orogenic belts have been developed along different

boundaries of the stable basin, including the Yinshan

Mountain in the north, the Qinling Orogen in the south and

the Liupanshan Mountain in the southwest (e.g., Nutman

et al. 2011) (Fig. 2). The basement of the basin is com-

posed of Archean rocks with Proterozoic sedimentary

cover. Although the margin underwent multiple tectonic

activities, the central part is still stable and is covered by

shallow Paleozoic marine carbonate sediment (Kusky and

Li 2009). Some small-scale paleo-faults exist, but no large

faults have been found within the basin (Wan and Zeng

2002; Yang et al. 2013).

Contrary to the evolution of the eastern North China

Craton including thickening, thinning and destruction, the

Ordos Basin has evolved from three Mesoproterozoic

aulacogens to a Paleozoic–Mesozoic cratonic basin since

the Middle Proterozoic (Menzies et al. 2007; Yang et al.

2013; Wang et al. 2014b). The interior part of the basin is

characterized by horizontal or gently dipping strata (\3�),
especially for the Mesozoic and Cenozoic strata, whereas

the strata along the margins have been subjected to sig-

nificant folding and faulting since the Late Triassic.

Two distinct tectonic events took place from the Late

Mesozoic to the Cenozoic, resulting in two different stress

fields in these periods. In the Late Mesozoic, namely from

the Early Jurassic to the Late Cretaceous, the long-distance

effect of subduction of the Izanagi Plate turned from north-

northwestward to northwestward when the force arrived at

the Ordos Basin, resulting in the WNW-trending stress

fields and the structural fractures in NW–EW trends (e.g.,

Wan 1994; Hou et al. 2010; Sun et al. 2014; Zhao et al.

2016); while in the Cenozoic, the predominant tectonic

event became the northeastward collision between the

Indian and the Eurasian Plate, which led to the NE-trending

stress fields and the structural fractures in NNE–ENE

trends (e.g., Yuan et al. 2007; Wang et al. 2014b). Two

episodes of fractures are developed under distinct tectonic

events, so the stress fields of different periods should be

taken into consideration during the fracture prediction.

3 Fracture measurement

The parameters of fracture characteristics are important in

the exploration and development of fractured tight reser-

voirs. The fracture density is one of the significant indicators

to reflect the failure degree of rocks, which can be divided

into three types, including the linear density, the surface

density and the bulk density of fractures. In this paper, the

surface density is utilized to describe the fracture distribution

in the Ordos Basin. The surface density is defined as the ratio

between the cumulative fracture length and the cross-sec-

tional area of the matrix, which can better reflect the degrees

of fracture development and be measured more effectively

than others (Golf-Racht 1982). The fracture density from

core observations can be calculated as:

f ¼
P

li

S
¼

P
li

2pr2 þ 2pr � L
ð1Þ

where f is the fracture surface density, li is the length of

each structural fracture, S is the surface area of the

observed core, r is the radius and L is the length of the core.
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In this paper, the Longdong area was selected as the

study area to carry out fracture measurements (Fig. 2).

Sixty-six wells were chosen to study the distribution of

structural fractures in the Chang 71 and 72 members

(Fig. 3). As shown in Fig. 4, the fracture density in the

tight-sandstone cores is relatively low (smaller than

0.5 m-1), representing the general condition in the

Longdong area. The fracture density of the Chang 72
member is more concentrative than that of Chang 71
member, even though their average densities are similar

in general (0.071 m-1 for the Chang 71 member and

0.081 m-1 for the Chang 72 member). The difference of

fracture distribution between the Chang 71 and 72
members is obvious: The highest fracture density in the

Chang 71 member lies in the Laocheng and Qingyang

areas, while that in the Chang 72 member lies in the

Laocheng, the Qingyang and the Zhengning areas

(Fig. 4).

4 Modeling approach

Methods such as geological analysis, physical modeling

and numerical simulation including the finite element

method (FEM) can be applied in the study of stress fields,

which is the foundation of fracture prediction. In this study,

the finite element software ANSYS is used to calculate the

stress field and predict the fracture distribution (Velázquez

et al. 2009; Jarosinski et al. 2011). The basic concept of

FEM is that a geological body can be discretized into finite

continuous elements connected by nodes. The geometrical

and mechanical parameters allocated on each element are

consistent with the properties of real rocks. The continuous

field function of the geological area is first transformed into

linear functions at every node that contain displacement,

stress and strain variables resulting from the applied forces

(Jiu et al. 2013), and then all these elements are used to

obtain the stress distribution over the entire area.
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4.1 Geometrical model

The Ordos Basin is a near-rectangular basin in the western

part of the North China Craton (Li and Li 2008; Tang et al.

2012) (Fig. 2). Although the Ordos Basin underwent multi-

stage tectonic movements in the Late Mesozoic–Cenozoic

eras, the deformation was confined to the western margin

and no significant tectonic events occurred in the central

part. Therefore, the outline of the basin remained unchan-

ged in these periods (Sun et al. 2014) (Fig. 5a). Since no

large faults or folds have been recorded inside the Ordos

Basin, the sedimentary facies, the lithology and the distri-

bution of sand bodies are the key factors to determine the

fracture development.

In this paper, the Chang 71 and 72 members in the Tri-

assic Yanchang Formation, the major tight-oil members in
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the Ordos Basin, are selected as the study strata, and the

Longdong area is chosen to discuss the stress fields and the

fracture distribution (Figs. 2, 3, 5). Since the Yanchang

Formation is characterized by strong heterogeneity with

facies change, the simplified model with only one rock

mechanical property is no longer suitable for the complex

interior of the Ordos Basin (Yang and Deng 2013). Based

on the sandstone-mudstone ratio, it is assumed that the

ratios between the sandstone and mudstone layers are

0.43–4.26 (average 1.27) in the Chang 71 member and

0.54–9.00 (average 1.70) in the Chang 72 member (e.g.,

Guo et al. 2012; Li et al. 2015), and multiple-layer con-

structions (four sandstone layers in Chang 71 member and

three sandstone layers in Chang 72 member) are applied in
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the geometrical model to simulate the sandstone-mudstone

interlayers (Fig. 5). To avoid the boundary effect, forces in

the models are set on the boundaries of the Ordos Basin,

and the study area is nested inside the basin (Fig. 5). The

sandstone layers, which are also the main layers in fracture

development, in the middle of each member, are selected to

display the modeling results in the following text, repre-

senting the general situation of fracture development in the

Chang 71 and 72 members.

4.2 Boundary conditions and modeling

In order to predict the fracture distribution of the Ordos

Basin, it is assumed that the upper crustal thickness of the

basin in the Late Mesozoic–Cenozoic era is 25 km (e.g.,

Liu et al. 2006). The top of the model is set as a free

surface, and the entire model is subjected to gravity load.

The average density of the upper crust, which mainly

consists of sedimentary cover, greenschist and granite, is

2750 kg/m3 (Hou et al. 2010; Wang et al. 2014b). Based on

the velocities of P and S waves, the calculated average

Poisson’s ratio is 0.20 and the average Young’s modulus is

80 GPa for the whole basin (Liu et al. 2006).

To subtly depict the distribution of structural fractures in

the Longdong area, four more kinds of material elements

are involved in the 3D geometrical model, including the

sandstones/mudstones of the Chang 71 member and the

sandstones/mudstones of the Chang 72 member. Tri-axial

rock mechanical experiments were carried out by the

Institute of Acoustics, Chinese Academy of Sciences, on 62

core samples collected from observed wells in the Long-

dong area (Fig. 4). In order to simulate the real conditions

underground, in these experiments, confining pressures

corresponding to the original depth of the Yanchang For-

mation are applied in the radial directions, and vertical

pressures are applied in the axial directions of all samples.
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Through statistical analysis and geological classification,

five sets of rock mechanical properties, the average density,

Young’s modulus, Poisson’s ratio, internal friction angle

and cohesion, are listed in Table 1 by layer and lithology.

Because the stress fields in the Late Mesozoic and

the Cenozoic are strikingly different and both of them

had a significant effect on the fracture development in

the Ordos Basin, the boundary conditions during these

two episodes along the basin need to be defined (Zhao

et al. 2016).

As a result of intense compression from the Early

Jurassic to the Middle Cretaceous, the Yinshan Orogen

Belt was developed as thrust faults with dextral shearing

features in the Late Mesozoic (Darby and Ritts 2002;

Zhang et al. 2007; Faure et al. 2012). A uniform direction

and a constant magnitude of a 40 MPa normal component

with a 10 MPa dextral shearing component are applied

along the northern side of the Ordos Basin (L1) (Fig. 6a).

The east-dipping thrusts, the NWW-dipping back-thrusts

and the associated folds developed along the Lüliang

Mountain in the Jurassic show that the stress regime in the

eastern margin was related to the long-distance effect of the

push from the northwestward subduction of the Izanagi

Plate in the Late Mesozoic (Zhang et al. 2007; Hou and

Hari 2014). Hence, it is a compressive boundary with a

sinistral shearing component along the eastern edge of the

basin. A deviatoric stress of an approximately 150 MPa

normal component with a 45 MPa shearing component is

set along the eastern boundary (L2) (Fig. 6a). Based on the

paleo-magnetic constraints, geological evidence and
40Ar/39Ar and U–Pb dating, it can be assumed that in the

southern part of the Ordos Basin, the Qinling Ocean finally

closed during the Late Jurassic-Early Cretaceous period.

This indicates that the collision between the North China

Craton and the South China Craton continued up to the

Cretaceous period (Huang et al. 2005; Liu et al. 2015). And

due to this collision, thrust faults with sinistral strike-slip

features were developed along the northern margin of the

Qinling Orogen Belt (Malaspina et al. 2006; Yuan et al.

2007). Therefore, a constant magnitude of normal stress

(60 MPa) with sinistral shearing stress (30 MPa) is applied

along the southern margin of the basin (L3) (Fig. 6a). In

the western and southern margins, the long-distance effect

of collision from the Qiangtang Massif affected the Ordos
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Fig. 5 Simplified geometrical model of the Longdong area (b) and its nested model (a) in the Ordos Basin

Table 1 Rock mechanical parameters for the numerical modeling of the Chang 71 and 72 members in the Longdong area

Model position Lithology Density, g/cm3 Young’s modulus, GPa Poisson’s ratio Internal friction angle, � Cohesion, MPa

Chang 71 Sandstone 2.562 26.971 0.229 36.00 37.62

Chang 71 Mudstone 2.457 24.296 0.269 24.02 40.34

Chang 72 Sandstone 2.639 25.629 0.229 37.80 31.13

Chang 72 Mudstone 2.485 24.943 0.269 24.08 40.12

Pet. Sci. (2017) 14:1–23 7

123



Basin (Zhang et al. 2007; Li and Li 2008), so a compres-

sive traction with a uniform direction and a constant

magnitude of deviatoric stress of 30 MPa on the south-

western boundary (L4) and 75 MPa on the western

boundary (L5) are applied along the basin (Fig. 6a). On the

basis of SHRIMP zircon U–Pb ages and other geochrono-

logical data, it can be presumed that the closure of the

Paleo-Asian Ocean finally took place after the Early Per-

mian. Due to this episode of closure, the northward

movement of the Alashan Block (Fig. 2) was arrested by

the Siberian Craton in the Late Mesozoic (e.g., Zheng et al.

2014). The final closure of the Qilian Ocean took place at

the end of the Ordovician, and after that, the Qaidam

Block, which was adjacent to the Alashan Block, restricted

the southward movement of the Alashan Block (Song et al.

2013). The nonidentical apparent polar wandering paths of

the Tarim Block and the Alashan Block up to the Jurassic

period clearly indicates that the amalgamation of these two

blocks might have occurred during the Jurassic (Gilder

et al. 2008). As a result of amalgamation in the Jurassic, the

wedge-shaped Alashan Block was trapped between the

Siberian Plate, the Qaidam Block, the Tarim Block and the

Ordos Block (Zhang et al. 2007). Therefore, the north-

western boundary (L6) is kept fixed as the Alashan Block

was locked by the adjacent blocks in the Late Mesozoic

(Fig. 6a).

The stress field in the Cenozoic era, which is regarded as

a consequence of the Indo-Asian collision, is strikingly

different from that in the Late Mesozoic era (e.g., Darby

and Ritts 2002; Bao et al. 2013) (Fig. 6b). During the

Cenozoic, the extension along the margins of the Ordos

Basin triggered the formation of the Hetao, the Weibei and

the Yinchuan Grabens, which in turn transposed reverse

faults to normal faults in the Helan Mountain and the

Qinling Mountain (Rao et al. 2014). Therefore, a tensile

traction with a uniform direction and a constant magnitude

of 5 MPa is applied on the northern, the southern and the

northwestern margins, respectively (L7, L9 and L12)

(Fig. 6b). The subduction of northwestern Pacific Plate

restricted the further eastward movement of the Ordos

Basin (Fournier et al. 2004; Schellart and Lister 2005). The

current GPS horizontal velocity field map shows that the

eastward velocity of the Shanxi Block (Fig. 2) is relatively

smaller than that of the Ordos Basin (e.g., Zhu and Shi

2011; Wang et al. 2014c). The velocity differences

between the Shanxi Block and the Ordos Basin suggest that

the northeastward motion of the Ordos Basin, which was

pushed by the Tibet Plateau, was restricted by the Shanxi
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Block due to the westward subduction of the Pacific Plate

in the Cenozoic (Hou et al. 2010). Accordingly, the eastern

edge of the basin is kept fixed for the Cenozoic era (L8)

(Fig. 6b). On the basis of massive fault-striation data, it can

be interpreted that the southern margin, namely the Weihe

Graben, turned into a sinistral shearing tensile boundary

(e.g., Mercier et al. 2013; Rao et al. 2014), and hence, a

constant left-lateral shearing stress of 30 MPa is set on the

southeastern border of the basin (L9) (Fig. 6b).

Due to the impact of collision between the Indian Plate

and the Eurasian Plate, the Liupanshan Thrust-Fold Belt

(namely the Liupan Mountain in Fig. 2) was developed

along the southwestern margin of the Ordos Basin, which

resulted in the transformation of the west-southwestern

margin into a strongly compressive boundary during the

Cenozoic era (Yuan et al. 2007; Li and Li 2008). When the

western boundary of the basin is taken into consideration,

as the shortening rate of the northern section (Tianshuibao

Profile: 30.4%–50.6%) is greater than that of the southern

one (Pengyang Profile: 12.9%–17.9%) (Feng et al. 2013)

(Table 2; Fig. 7), a compressive traction with a uniform

direction and a gradient magnitude from 80 to 55 MPa is

applied on the western boundary (L11), whereas a com-

pressive traction with a constant magnitude of 80 MPa is

applied on the southwestern margin (L10) (Fig. 6b).

4.3 Theory of fracture prediction

Lagrangian formulations are used in ANSYS to simulate the

three-dimensional, plane strain deformation, applying

Table 2 Shortening rates of

different profiles in the mid-

south section of the western

margin (L11) in the Ordos Basin

(Source: Feng et al. 2013)

Profiles Shortening rate, % Average shortening rate, %

Tianshuibao (A–A0) 30.4–50.6 42.4

Shibangou (B–B0) 32.8 32.8

Shajingzi (C–C0) 16.5–38.6 29.3

Pengyang (D–D0) 12.9–17.9 15.4
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8-node isotropic elements to represent each lithological

layer. The mechanical behavior in the elastic domain is

dominated by the generalized Hook’s law. As the Yanchang

Formation is generally less than 3000 m in depth where the

plastic deformation is not obvious and the structural fractures

in the Chang 71 and 72 members are chiefly shearing frac-

tures based on field measurements and core observations

(Fig. 8), the mechanical behavior follows the elastic model,

which is described by the generalized Hook’s law.

Various methods for fracture prediction have been pro-

posed in previous literature, such as the conventional logging

method, the stress field method, the principle curvature

method, the geostatistical method, etc. (e.g., Savage et al.

2010; Zahm et al. 2010; Jiu et al. 2013). The two-factor

method, involving the rupture value and the strain energy

density, is used in this paper to predict the distribution of

structural fractures in the Ordos Basin (Ding et al. 1998).

4.3.1 Rupture value

Tensile fractures and shearing fractures conform to different

criteria. Griffith’s criterion, which is derived from the micro-

mechanism, is an effective criterion to predict the develop-

ment and the distribution of tensile fractures; however, this

criterion, which in nature is equivalent with the theory of

maximum tensional stress, is only suitable for the tensile

fractures (Griffith 1920). Although tensile fractures are found

in some areas of the Ordos Basin, they are limited to the

contact surfaces of sandstone and mudstone layers, and more

than 95% of structural fractures in the Longdong area are

shearing fractures, whose rupture is controlled by the Mohr–

Coulomb failure criterion (Xie et al. 2008). Therefore, only

Mohr–Coulomb failure criterion is taken into consideration in

this study, which follows the equation (Coulomb 1776):

s½ � ¼ C þ rn � tanu ð2Þ

where [s] represents the critical shearing stress, C repre-

sents the cohesion, rn represents the stress normal to the

shearing fractures and u represents the internal friction

angle (Table 1). Shearing fracture is triggered once the

shearing stress exceeds the critical shearing stress ([s]) in
Eq. (2). rn can be obtained via the maximum principal

stress (r1) and the minimum principal stress (r3) according
to Wang et al. (2004):

Fig. 8 Photographs of structural fractures in outcrops and cores of the Ordos Basin. a Conjugate fractures indicate the maximum principal

compressive stress of WNW orientation in the Late Mesozoic; b conjugate fractures indicate the maximum principal compressive stress of NE

orientation in the Cenozoic; c near-vertical fracture plane in a core from the Longdong area; and d moderate-dipping fracture plane in a core from

the Longdong area
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rn ¼ r1 þ r3ð Þ=2� r1 � r3ð Þ � sinu=2 ð3Þ

The shearing stress (sn) can also be obtained via the two

principal stresses according to Wang et al. (2004):

sn ¼ r1 � r3ð Þ � cosu=2 ð4Þ

Following the Mohr–Coulomb failure criterion, the rock

will break when the shearing stress is equal or greater than

the critical shearing stress in Eq. (2), so the rupture value

(I) is introduced in order to measure the probability of

rock’s rupture according to Ding et al. (1998):

I ¼ sn= s½ � ð5Þ

The possibility of rock’s failure is very small when the

rupture value (I) is far smaller than 1, whereas the possi-

bility is relatively larger when the rupture value (I) exceeds

1. The fracture density (f) and the rupture value (I) may

have a positive correlation, so the rupture value (I) is an

effective index for fracture prediction through empirical

formulas established between them.

4.3.2 Strain energy density

It is generally accepted that the rocks with relatively high

strain energy density are more likely to develop structural

fractures than those with a lower one. The strain energy

density, namely the strain energy per unit volume, is

described as follows (Prince and Rhodes 1966):

U ¼ r2X þ r2Y þ r2Z � 2v rXrY þ rYrZ þ rZrXð Þ
�

þ 2 1þ vð Þ s2XY þ s2YZ þ s2ZX
� ��

=2E
ð6Þ

where U is the strain energy density, v is Poisson’s ratio,

rX, rY and rZ are the normal stress components in x, y and

z directions, respectively, and sXY, sYZ and sZX are the

shearing stress components in the corresponding directions.

Strain energy density (U) could be utilized to indicate the

fracture distribution.

Rupture value (I) stands for the possibility of rock

failure, whereas the strain energy density (U) stands for the

developing ability of structural fractures. In this study,
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syntheses of the rupture value and the strain energy density,

namely the two-factor method, are applied, in order to

build finite element models for fracture prediction in the

Ordos Basin (Ding et al. 1998).

5 Results and analyses

Because the orientation and the distribution of structural

fractures are the key elements in fracture prediction, the

fracture orientation and the estimated density have been

calculated with the finite element modeling and will be

compared with the observed data in outcrops and cores.

With the two-factor method, modeling results, including

the principal compressive stress orientations, the rupture

values, the strain energy density and the fracture density,

are presented as maps, which can imply the relative

degrees of fracture development in the Longdong area.

5.1 Validity of models

Since reliable numerical models are the basis of further

study on the fracture prediction in the Longdong area, it is

necessary to verify the correctness of the two models

proposed in this paper, including the Late Mesozoic and

the Cenozoic ones, by comparing the results of finite ele-

ment modeling with earlier published data.

The calculated displacement directions reveal that the

relative rotation directions in these periods are (1) anti-

clockwise from the Early Jurassic to the Cretaceous and (2)

clockwise in the Cenozoic era (Fig. 9). These results are in

good agreement with earlier findings (e.g., Pei et al. 2011;

Li et al. 2014; Yang et al. 2014).

Acoustic Emission (AE) is an important technique in

rock mechanics and experimental seismology, which can

offer rock mechanical parameters, such as the maximum

principal stress magnitudes generated in the geological

history. The maximum principal stress magnitudes of the

Late Mesozoic era after pore-pressure correction range

from 40.0 to 103.9 MPa in the Yanhewan, the Dingbian,

the Dongsheng areas, etc. (Fig. 10a). The Cenozoic stress

magnitudes remain in a limited range of 22.3–58.5 MPa

within the Wuqi-Yanhewan, the Zhenyuan, the Wushengqi

areas, etc. (Zhou et al. 2009a, b; Wang et al. 2014a; Zhang

et al. 2014) (Fig. 10b). The calculated maximum principal

stress magnitudes in the Late Mesozoic and the Cenozoic
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are in agreement with the range of stress magnitudes

measured by AE technology (Fig. 10). The above-men-

tioned evidence strengthens the validity of our calculated

results in the models.

In addition, earlier published stress orientation data

(Wan 1994; Hou et al. 2010; Sun et al. 2014) are also used

as evidence to substantiate our models (Fig. 11a). These

stress orientation data suggest that the dominant orientation

of maximum principal compressive stress in the Late

Mesozoic is WNW. Current stress field data can also be

utilized to interpret the Cenozoic stress fields because the

basin has been stable during this period (Wang et al. 2008;

Xie et al. 2011; Sun et al. 2014; Yang et al. 2014). Based

on the borehole collapse and multiple strain analyses in the

Yanhewan area, it can be inferred that the dominant ori-

entation of maximum principle compressive stress in the

Cenozoic is NE (Zhou et al. 2009a). All these orientations

are presented in the stereonets (Fig. 11). The differences

between the calculated orientations of maximum

compressive stress and the measured ones, including the

stress orientations in previous literature (e.g., Wan 1994;

Hou et al. 2010; Sun et al. 2014) and the measured data in

the present study, are in general less than 5�, proving the

reliability of the Late Mesozoic and Cenozoic models

(Fig. 11).

Evidence including the rotation directions, the measured

maximum principal stress magnitudes and the previous

stress data is gathered to prove the authenticity of the two

stress fields in the Late Mesozoic–Cenozoic models, and it

is found that the calculated results are reliable. Despite

slight differences between the calculated and observed

maximum principal compressive stress, the modeling

results of the Late Mesozoic stress fields indicate that the

orientation of the maximum principal compressive stress in

the Ordos Basin is WNW, whereas in the Cenozoic model,

the orientation is NE. Based on the above-mentioned

proofs, the validity of the two models in the Late Mesozoic

and the Cenozoic can be corroborated.
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5.2 Maximum principal stress orientations

Tectonic events of different episodes have distinct effects

on the principal stress orientations in the Ordos Basin.

Since there is little difference between the Chang 71 and 72
members except for lithology and layer thickness, the

pattern of principal stress orientation during the same

period is similar in each layer of the Longdong area. Thus,

the Chang 71 member is taken as an example to demon-

strate the distribution of maximum principal compressive

stress in the study area (Fig. 12).

On the basis of paleo-magnetic evidence in earlier

studies, although the Ordos Basin experienced rotation in

different directions from the Late Mesozoic to the Ceno-

zoic, the rotation angle of the basin is less than 5� in the

Late Mesozoic–Cenozoic eras (e.g., Huang et al. 2005).

Therefore, the present stress data, including fracture trends

and Formation Microscanner Image (FMI) data, can also be

utilized to indicate the stress orientations in the Late

Mesozoic–Cenozoic. From numerical modeling, the ori-

entations of calculated maximum compressive stress in the

Late Mesozoic are mainly WNW, while those in the

Cenozoic are mainly NE (Zhao et al. 2013, 2016) (Fig. 12).

In outcrops and cores, the observed fractures developed in

the Late Mesozoic are chiefly in NW–EW trends and those

in the Cenozoic are chiefly in NNE–ENE trends (Fig. 8).

Our field measurements also corroborate that the ENE-

trending structural fractures developed later than the NW-

trending ones. Therefore, it can be concluded that the NW

to EW fractures were developed in a Late Mesozoic stress

field, whereas the NNE to ENE ones were developed in a

Cenozoic stress field. Despite tiny differences between the

calculated and the observed data, in general, modeling

results fit well with the dominant orientations of observed

fractures which are obtained from the FMI technology

(Fig. 12).
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Structural fractures in the Ordos Basin were developed

in multiple orientations under different stress fields, pri-

marily in the Late Mesozoic and the Cenozoic episodes,

and this intersection pattern will contribute to wider

opening and better connectivity of the fractures. The

formed fracture networks provide a path for fluid trans-

mission and enhance the permeability, which will have

notably improved the fractured tight-oil reservoirs in the

Ordos Basin (e.g., Izadi and Elsworth 2014).

5.3 Rupture values

Since the rupture value is an important parameter to indi-

cate the fracture development in the study area, comparison

between the calculated rupture values and the observed

core fracture density is informative to help analyze the

reliability of the models (Figs. 13, 14).

In the maps of rupture values in the Chang 71 member

during the Late Mesozoic–Cenozoic era, the highest

rupture values are situated in the east and center of the

study area, mainly concentrated in the Qingyang, the

Laocheng and the Zhengning areas (Fig. 13a, b), while

the highest rupture values in the Chang 72 member are

chiefly situated in the mid-southern area, particularly in

the Qingyang-Heshui and the Ningxian areas (Fig. 13c,

d). The distribution of sand bodies and the thickness of

sandstone layers have a distinct impact on the distribution

of rupture values within the Longdong area. Both in the

Chang 71 and 72 members, the rupture values are rela-

tively higher where sand bodies are developed and the

thickness of sandstone layers is relatively larger, due to

the brittleness of sandstones (Fig. 4). The regional stress

fields during different periods also influence the rupture

values, resulting in the Cenozoic rupture values being

smaller than the Late Mesozoic ones. However, the

influence of regional stress fields is not as remarkable as

that of lithology, because regional stress fields determine

only the magnitudes, not the distribution of rupture values

in the Chang 71 and 72 members within the study area

(Fig. 13).

5.4 Strain energy density

Because rocks with higher strain energy density are more

likely to form structural fractures than those with a lower

one, the strain energy density can be used as another

parameter to predict the fracture density.

Similar to the rupture value, there is obvious positive

correlation between the strain energy density and the

thickness of sandstone layers. The strain energy density is
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higher where the sand bodies are developed as a whole

(Figs. 4, 14). Although the Cenozoic stress field of the

Ordos Basin is strikingly different from the Late Mesozoic

one, the impact of regional stress is mainly limited to the

magnitudes, not the distribution of strain energy density in

the Longdong area. The distribution of strain energy den-

sity in the Late Mesozoic and the Cenozoic periods is

similar, but the Late Mesozoic strain energy density is

larger than the Cenozoic one both in the Chang 71 and 72
members, implying that the strain energy density is more

influenced by the movement in the Late Mesozoic than that

in the Cenozoic (Fig. 14).

5.5 Predicted fracture distribution

In order to predict the fracture distribution in the Yanchang

Formation within the Longdong area, connection between

the calculated and the measured fracture density in cores

must be established to study their relationship. In this

paper, the two-factor method is utilized to compare the

calculated data (including the rupture value and the strain

energy density) and the measured fracture density (Ding

et al. 1998). Since structural fractures in the Ordos Basin

were chiefly developed during two stages of stress fields,

namely the Late Mesozoic and the Cenozoic ones, two
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Fig. 14 Distribution of strain energy density (104 J/m3) of the Late Mesozoic and the Cenozoic in Chang 71 and 72 members within the
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Table 3 Curve-fitting

relationships of the measured

fracture densities, the calculated

rupture values and the strain

energy densities of Chang 71
and 72 members in the

Longdong area

Layers Curve-fitting relations Correlation coefficient

Chang 71 DM = 3.493 I2 - 0.049 U2 - 6.241 I ? 0.695 U ? 0.270 0.947

DC = 3.581 I2 - 0.123 U2 - 7.105 I ? 3.240 U ? 1.054 0.904

Chang 72 DM = 48.429 I2 - 0.039 U2 - 100.308 I ? 0.734 U ? 48.585 0.871

DC = 22.944 I2 ? 0.450 U2 - 46.876 I - 4.094 U ? 33.241 0.941

DM (m-1) and DC (m-1) represent the measured fracture densities in cores of the Late Mesozoic and the

Cenozoic periods, respectively. I and U denote the calculated rupture values and the strain energy densities

(104 J/m3), respectively
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episodes of fractures should be fitted separately and then be

added up by weight.

By multiple regression analyses, bi-quadratic rela-

tionships between the rupture values, the strain energy

density and the measured fracture density in the Chang

71 and 72 members of different episodes have been built

and the empirical formulas are shown in Table 3. Cor-

relation coefficients in all curve-fitting relationships are

larger than 0.87, which means that there is a significant

correlation between the calculated and the measured

data.

To further illustrate the reliability of our models, error

analyses are carried out as follows. Both the absolute error

and the relative error were applied to reflect the accuracy of

fracture prediction. Absolute error is calculated by:

D ¼ Dp � Dm

�
�

�
� ð7Þ

And relative error can be described as follows:

e ¼
Dp � Dm

�
�

�
�

Dm

� 100% ð8Þ

D denotes the absolute error and e denotes the relative

error. DP and DM represent the predicted and the measured

fracture densities, respectively. Generally, when e is less

than 50%, we can consider that the predicted data match

the measured ones and the modeling results are reliable to a

certain extent.

The differences between the measured and the predicted

fracture densities are shown in Tables 4 and 5. For most of

the wells in the Chang 71 member, the predicted and the

measured data match quite well. In the 54 measured wells,

only 2 wells exceed 0.05 m-1 in absolute errors and 3

wells exceed 50% in relative errors (Table 4). The differ-

ences between them may be caused by the stress concen-

tration in some areas, such as Well Z47 and Z78, where

numerous fractures are found. As for the Chang 72

Table 4 Overview of predicted and measured fracture densities in the Chang 71 member in the Longdong area

Well

name

Measured

density, m-1
Predicted

density, m-1
Absolute

error, m-1
Relative

error, %

Well

name

Measured

density, m-1
Predicted

density, m-1
Absolute

error, m-1
Relative

error, %

B117 0.020 0.045 0.025 122 W98 0.000 0.000 0.000 –

B146 0.000 0.005 0.005 – X140 0.000 0.000 0.000 –

B170 0.000 0.008 0.008 – X195 0.028 0.015 0.013 46

B456 0.000 0.012 0.012 – X233 0.000 0.000 0.000 –

B478 0.059 0.085 0.026 44 X259 0.000 0.027 0.027 –

Ban12 0.320 0.305 0.015 5 X261 0.000 0.005 0.005 –

C87 0.070 0.058 0.012 18 X263 0.000 0.000 0.000 –

Hua56 0.000 0.007 0.007 – X67 0.015 0.008 0.007 47

L189 0.068 0.069 0.001 2 X73 0.026 0.057 0.031 118

L47 0.018 0.042 0.023 128 Y433 0.085 0.052 0.033 39

L79 0.033 0.023 0.010 29 Z124 0.000 0.013 0.013 –

L96 0.000 0.008 0.008 – Z148 0.000 0.020 0.020 –

M28 0.000 0.005 0.005 – Z15 0.068 0.099 0.031 46

M40 0.036 0.022 0.014 39 Z172 0.038 0.048 0.010 26

N43 0.062 0.090 0.029 46 Z186 0.344 0.372 0.028 8

N51 0.137 0.110 0.027 20 Z200 0.122 0.112 0.009 8

N57 0.055 0.080 0.025 45 Z230 0.046 0.054 0.009 19

N75 0.037 0.047 0.010 27 Z233 0.080 0.084 0.004 5

N76 0.155 0.155 0.000 0 Z24 0.061 0.086 0.025 41

N78 0.210 0.176 0.033 16 Z47 0.199 0.132 0.067 34

N81 0.057 0.084 0.027 47 Z57 0.151 0.121 0.030 20

S142 0.164 0.136 0.028 17 Z78 0.316 0.231 0.085 27

S160 0.000 0.000 0.000 – Z79 0.071 0.036 0.035 49

T15 0.113 0.097 0.016 14 Z87 0.201 0.234 0.033 16

T2 0.055 0.063 0.008 14 Ze220 0.050 0.026 0.024 48

W47 0.053 0.079 0.026 49 Ze97 0.000 0.000 0.000 –

W67 0.000 0.024 0.024 – Zeg70 0.180 0.132 0.048 27

‘‘–’’ means that the relative errors do not exist in these wells because the corresponding measured fracture densities are 0 m-1, and large errors,

including absolute and relative errors, are denoted in bold type in this table
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member, predicted data of only 8 wells in the 39 measured

wells are more than 0.05 m-1 in absolute errors, and data

of only 5 wells are more than 50% in relative errors

(Table 5). Most of these wells are with extraordinarily high

fracture density, which results in large errors between the

predicted and the measured fracture densities. Some large

errors may be caused by non-structural factors, such as

various sedimentary phenomena. Cross bedding and len-

ticular bedding appeared widely in Well Ze77, etc., which

may lead to the difference between the predicted and

measured data. Despite these differences, the tendency of

predicted fracture distribution is still in accordance with the

measured one. In short, the errors between the predicted

and the measured fracture densities are within accept-

able limits, implying that the modeling results are suit-

able for the fracture prediction in the Yanchang Formation

of the Ordos Basin.

6 Discussion

As is shown in the maps of maximum principal compres-

sive stress orientations in the Chang 71 and 72 members in

the Longdong area, the dominant orientations of the Late

Mesozoic fractures are NW–EW (Fig. 12a) and those of

the Cenozoic ones are NNE–ENE (Fig. 12b) which are

consistent with the regional stress fields of the Ordos Basin

in the corresponding periods (e.g., Zhang et al. 2003). In

the maps of predicted fracture density in different periods,

the average density of the Cenozoic fractures is larger than

that of the Late Mesozoic ones (Fig. 15). By comparison

between the distribution maps of predicted total fracture

densities in the Chang 71 and 72 members within the study

area (Fig. 16), the predicted fracture density in each

member is alike as a whole; however, their fracture dis-

tributions are significantly distinct. In the Chang 71 mem-

ber, the maximum fracture density is located in the center

and the east of the Longdong area (Fig. 16a), while in the

Chang 72 member, the maximum density is situated in the

southern-central section of the study area (Fig. 16b).

In addition, by comparing the predicted fracture density

with the distribution of sand bodies, their similarity reveals

that the lithology is a key factor in controlling the fracture

distribution in the Ordos Basin. Structural fractures are

more likely to be developed in the sandstones rather than in

the mudstones. Where thicker sandstone layers are devel-

oped, the fracture density is relatively higher than other

areas (Figs. 4, 16). However, there is still a difference

between the predicted fracture distribution and the outline

of sand bodies, indicating that the regional stress field also

Table 5 Overview of predicted and measured fracture densities in the Chang 72 member in the Longdong area

Well

name

Measured

density, m-1
Predicted

density, m-1
Absolute

error, m-1
Relative

error, %

Well

name

Measured

density, m-1
Predicted

density, m-1
Absolute

error, m-1
Relative

error, %

B117 0.062 0.083 0.021 34 X233 0.000 0.049 0.049 –

B146 0.000 0.033 0.033 – X263 0.000 0.004 0.004 –

B36 0.000 0.000 0.000 – X270 0.000 0.041 0.041 –

B401 0.000 0.026 0.026 – X65 0.053 0.040 0.013 25

B456 0.000 0.000 0.000 – X67 0.026 0.031 0.005 20

Ban12 0.918 0.903 0.016 2 X69 0.157 0.080 0.077 49

C87 0.043 0.036 0.007 15. Z172 0.025 0.022 0.003 12

Hua312 0.000 0.000 0.000 – Z230 0.064 0.037 0.027 42

L189 0.052 0.037 0.015 29 Z233 0.271 0.109 0.162 60

L47 0.000 0.009 0.009 – Z78 0.464 0.464 0.000 0

L79 0.047 0.039 0.008 16 Z79 0.072 0.000 0.072 100

L96 0.000 0.000 0.000 – Ze118 0.000 0.045 0.045 –

N43 0.000 0.000 0.000 – Ze284 0.000 0.023 0.023 –

N51 0.385 0.337 0.048 12 Ze298 0.000 0.097 0.097 –

N55 0.000 0.009 0.009 – Ze362 0.000 0.131 0.131 –

N57 0.137 0.100 0.036 27 Ze77 0.129 0.072 0.057 44

N75 0.036 0.149 0.113 317 Ze95 0.052 0.036 0.016 30

N76 0.093 0.038 0.055 59 Ze97 0.000 0.029 0.029 –

N78 0.024 0.056 0.032 132 Zeg70 0.050 0.036 0.014 27

W98 0.000 0.044 0.044 –

‘‘–’’ means that the relative errors do not exist in these wells because the corresponding measured fracture densities are 0 m-1, and large errors,

including absolute and relative errors, are denoted in bold type in this table
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plays a role in the fracture development, even though its

influence is limited compared with the lithology and the

layer thickness.

In brief, the stress fields determine the overall fracture

orientations, and the lithology distribution and the thick-

ness of sandstone layers in the study area play a predom-

inant role in the distribution of predicted fracture density.

Some potential factors which are not covered in these

numerical models may restrict the accuracy of predicted

results, including:

1. The complicated heterogeneity of each layer;

2. The extreme stress in some areas;

3. The interaction between the two episodes of structural

fractures; and

4. The influence of deep paleo-faults.

Since the modeling is on a relatively large-scale while the

outline of sand bodies is depicted in considerable detail, the

modeling results, including the rupture values and the strain

energy density, can still be used to guide further exploration

in spite of the four above-mentioned restrictions. Mean-

while, the qualitative fracture prediction obtained from the

numerical modeling may also be applicable. These results

act as a reference for future regional-scale petroleum

exploration, while the method of fracture prediction,

including the two-factor method and the empirical formulas

can be used at well scale. Structural fractures play an

important role in reconstructing the tight clastic reservoirs,

especially in their permeability (Réda 2013).

The controlling factors of fracture development are

complex owing to the complicated geological background.

Fault systems can be a vital factor in developing fractures

where tectonic movements are strong such as the Kuqa

Depression of the northern Tarim Basin in the northwestern

China (Ju et al. 2014b) and the Upper Rhine Graben in

France and Germany (Johanna et al. 2015); flow may

notably promote fracture development where fluid flow or

lava flow appears (e.g., Agosta et al. 2010). However, in

the Ordos Basin, where the tectonic events are rather weak

and the dips of the Mesozoic–Cenozoic strata are less than

3�, the lithology and the layer thickness are the dominant

factors in governing the distribution of fracture density.

The relationship between the lithology and the fracture

density is still obscure, but it may be related to the dif-

ference of rock physical parameters (Table 1) according to

previous study (e.g., Zeng et al. 2008). The different grain
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Fig. 15 Distribution of predicted fracture density (m-1) of the Late Mesozoic and the Cenozoic in the Chang 71 and 72 members within the

Longdong area. a Predicted fracture density of the Late Mesozoic in the Chang 71 member, b predicted fracture density of the Cenozoic in the

Chang 71 member, c predicted fracture density of the Late Mesozoic in the Chang 72 member and d predicted fracture density of the Cenozoic in

the Chang 72 member
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sizes in various clastic rocks may be the micro-mechanism

that causes the distribution of fracture density in the Ordos

Basin (Zhao et al. 2013; Ju et al. 2015).

7 Conclusions

The predicted fracture distribution provides a clear view of

the fracture concentration and fracture development. Sev-

eral primary conclusions can be drawn from the modeling

results:

1. A finite element modeling technique, applying the two-

factor method, is suitable for the fracture prediction of

the Ordos Basin, based on comparison between the

calculated and the measured fracture densities of the

Chang 71 and 72 members in the Longdong area.

2. Two episodes of structural fractures have been devel-

oped since the Late Triassic: The dominant orienta-

tions of the Late Mesozoic fractures in the Yanchang

Formation are NW–EW, whereas those of the Ceno-

zoic fractures are NNE–ENE, both of which are in

agreement with the modeling results.

3. Structural fractures in the Ordos Basin are controlled

by the regional stress fields, and the lithology and the

layer thickness have a significant impact on the

distribution of structural fractures, because the stress

distribution will be affected by the inhomogeneity of

lithology and layer thickness. This conclusion is shown

in the similarity between the maps of predicted fracture

density and observed sand bodies in the Yanchang

Formation within the study area.

4. The average fracture density is close in the Chang 71
and 72 members, but there are obvious differences in
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their fracture distributions. In the Chang 71 member,

the maximum fracture density is concentrated in the

center and the east of the Longdong area, particularly

in the Qingyang, the Laocheng and the Zhengning

areas (up to 1.5 m-1), while in the Chang 72 member,

the maximum value is located in the central and

southern part of the area.

5. The modeling results and the predicted fracture density

can be utilized to guide future regional exploration,

and the method of fracture prediction, namely the two-

factor method, can be referred for further study of the

tight-sand reservoirs.
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