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Abstract The conventional Markov chain Monte Carlo

(MCMC) method is limited to the selected shape and size

of proposal distribution and is not easy to start when the

initial proposal distribution is far away from the target

distribution. To overcome these drawbacks of the con-

ventional MCMC method, two useful improvements in

MCMC method, adaptive Metropolis (AM) algorithm and

delayed rejection (DR) algorithm, are attempted to be

combined. The AM algorithm aims at adapting the pro-

posal distribution by using the generated estimators, and

the DR algorithm aims at enhancing the efficiency of the

improved MCMC method. Based on the improved MCMC

method, a Bayesian amplitude versus offset (AVO) inver-

sion method on the basis of the exact Zoeppritz equation

has been developed, with which the P- and S-wave

velocities and the density can be obtained directly, and the

uncertainty of AVO inversion results has been estimated as

well. The study based on the logging data and the seismic

data demonstrates the feasibility and robustness of the

method and shows that all three parameters are well

retrieved. So the exact Zoeppritz-based nonlinear inversion

method by using the improved MCMC is not only suit-

able for reservoirs with strong-contrast interfaces and long-

offset ranges but also it is more stable, accurate and anti-

noise.

Keywords Adaptive Metropolis (AM) algorithm �
Delayed rejection (DR) algorithm � Bayesian AVO

inversion � Exact Zoeppritz � Nonlinear inversion

1 Introduction

Inversion of reflection coefficients extracted from ampli-

tudes of seismic waves can provide estimates of significant

reservoir parameters. In many cases, the approximations of

Zoeppritz equation at small and moderate incidences are

sufficiently accurate to reproduce the exact reflection

coefficients quantitatively (Jilek 2001; Buland and Omre

2003; Zhang et al. 2011, 2014a, b; Russell et al. 2011;

Zong et al. 2012, 2013a, b; Yang et al. 2015). In terms of

the reservoirs with strong-contrast interfaces (salt domes,

heavy oil fields, basalts, etc.) and long-offset ranges,

however, the conventional AVO inversion based on the

approximations would be not appropriate or suit-

able (Larsen 1999; Chen et al. 2009; Liu et al.

2010, 2012a, b, 2014; Wang et al. 2011; Zhu et al. 2012;

Zhang et al. 2013; Huang et al. 2013; Zhi et al. 2013, 2015;

Zong et al. 2013a, b; Lu et al. 2015; Lehochi et al. 2015).

A more sophisticated and time-consuming nonlinear

inversion based on the exact Zoeppritz equation provides

an alternative to obtain more accurate three AVO param-

eters. Chen and Wei (2012) studied the joint PP and PS

AVO inversion based on Zoeppritz equation in ray

parameter domain. Not having used PS-wave constraint,

Zhu and McMechan (2012) proposed to apply the ‘‘exact’’

elastic Zoeppritz equations to do the AVO inversion for

reflections without critical angles. Zhi et al. (2013) made

efforts to explore the joint nonlinear least-squares inversion

with a trust-region reflective Newton method. Based on the

generalized linear inversion theory, Wang et al. (2011),
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Zhang et al. (2013) and Huang et al. (2013) studied the pre-

stack inversion using the Zoeppritz equation. Liu et al.

(2014) explored the joint AVO inversion of PP and PS

reflections based on the Zoeppritz equation using the

reflectivity method. Zhi et al. (2015) proposed an iterative

regularizing Levenberg–Marquardt (IRLM) scheme for

Zoeppritz-based pre-stack amplitude versus angle (AVA)

inversion. Combining the PP and PS information based on

a least-squares approach, Lu et al. (2015) developed a

method of nonlinear joint pre-stack inversion for the P- and

S-wave velocities and the density. Lehocki et al. (2015)

proposed a method of probabilistic estimation for density

and shear information from Zoeppritz’s equation, which is

used for better hydrocarbon detection in sandstone reser-

voirs. Obviously, inverting the exact reflection coefficients

based on the exact Zoeppritz equation completely removes

the bias caused by the inaccuracy of the approximate

reflection coefficients of Zoeppritz equation. Also, the

nonlinear inversion may produce results with higher

accuracy and resolution (Jilek 2002; Rabben et al. 2008;

Zong et al. 2013a, b; Fernández-Martı́nez et al. 2013;

Zunino et al. 2015), improving the accuracy of reservoir

prediction and fluid identification (Tian et al. 2013; Du and

Yan 2013; Yin et al. 2013; Wang et al. 2014; Yin et al.

2015). This paper is devoted to the nonlinear inversion of

the exact reflection coefficients RPP based on the exact

Zoeppritz equation to obtain the P- and S-velocities and

density directly.

The core of the MCMC algorithm is Markov chains, and

the convergence properties and convergence speed of

Markov chains limit to the proposal distribution. In order to

improve the optimization of proposal distribution in the

inverse problems, especially in the high-dimensional

inverse problems, Haario et al. (2001) proposed an adap-

tive Metropolis algorithm based on the global adaptive

strategy to adaptively update the proposal distribution. In

addition, the MCMC algorithm has difficulty in launching

when the proposal distribution is far away from the target

distribution, and then Green and Mira (2001) proposed a

delayed rejection algorithm based on the local adaptive

strategy, which turns out to be an effective solution to the

problem. We intend to propose an improved MCMC

method, combining both advantages of AM and DR algo-

rithm, and use Bayesian theory to introduce a priori

information. Ultimately, we will realize the Zoeppritz-

based AVO inversion, which can estimate P- and S-ve-

locities and density directly, and estimate the uncertainty of

AVO inversion results. We will initially introduce the

improved MCMC method combining the AM and DR

algorithm, and then discuss the Bayesian AVO nonlinear

inversion method to obtain the P- and S-velocities and

density directly by using the exact Zoeppritz equation, and

estimate the uncertainty of AVO inversion results based on

the logging data (Hong and Sen 2009). We end with real

data case studies that illustrate the method.

2 Theory

2.1 The improved MCMC method

Based on the Bayesian framework, the MCMC method

uses the existing data to constrain the solutions, which not

only satisfies the statistical characteristics of the inversion

parameters but also integrates the prior information to

improve the inversion accuracy. Moreover, the MCMC

algorithm can jump out of the local optimal solutions in the

optimization process to get the global optimal solution.

Sampling the Bayesian posterior probability density dis-

tribution, the MCMC method can obtain mass samples,

statistically analyzed to acquire the estimators indirectly

and the uncertainty information as well. The principle of

the conventional MCMC method is described in Zhang

et al. (2011), and there is no need for it to be reiterated

here.

The core of the MCMC method is Markov chains,

while the convergence properties and convergence speed

is subject to the shape and size of proposal distributions

(Wang and Zhang 2010). In order to improve computa-

tional efficiency, the usage of an appropriate proposal

distribution is necessary, especially for high-dimensional

inverse problems. Meanwhile, the MCMC method is not

easy to start when the initial proposal distribution is far

away from the target distribution. So, we adopt an

improved MCMC method, combining the AM algorithm

based on the global adaptive strategy (Haario et al. 2001)

and the DR algorithm based on the local adaptive strategy

(Green and Mira 2001) to speed up the convergence of

Markov chains.

The core of the AM algorithm is to build a Gaussian

proposal distribution, and assumed at time t in the program,

we have already created chain q0, q1, …, qt-1. The pro-

posal distribution is now defined as the Gaussian distri-

bution with mean at the current state qt-1 and covariance

Cov(q0, q1, …, qt-1), and the covariance is set to be:

Ci ¼
C0 i� t0
sdCovðq0; q1; . . .; qt�1Þ þ sdeId i[ t0

�
ð1Þ

where, t0 is the initial period after which the adaptation

began; C0 is the initial covariance, which is chosen

according to a priori information when t\ t0; sd is a

parameter that depends only on the dimension d, which is

often chosen to be 2.42/d according to Gelman et al.

(1996); e[ 0 is a very small constant to ensure that the

covariance matrix Ci is not a singular matrix; Id denotes the

d-dimensional identity matrix. And after some formula
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manipulation, the covariance Ci?1 satisfies the recursive

formula:

Ciþ1 ¼
i� 1

i
Ci

þ sd

i
i�qi�1�q

T
i�1 � ðiþ 1Þ�qi�qTi þ qiq

T
i þ eId

� �
; ð2Þ

where qi denotes the mean value of the previous sampled

Markov chain. So we can estimate the covariance with less

computational cost by using the recursive formula (Haario

et al. 2001).

The DR algorithm is an improved MCMC method, and

its basic idea is allowing partial local adaptation of the

rejected candidates, where the Markov chains still retain

the Markovian property and converge to the second or

higher stages. The ultimate targets of the DR algorithm are

to improve the accuracy and efficiency of the estimators.

The creation of proposal distributions in higher stages is

allowed to depend not only on the current position of the

chain but also on the proposal distribution created previ-

ously and the rejected candidates in higher stages (Green

and Mira 2001; Haario et al. 2006). Suppose a Markov

chain that has p as its unique stationary distribution is

created, and the current position of the Markov chain is xt,

then a candidate move, x*, is generated from a proposal

q1(x, x*) and accepted with the probability.

a1ðxt; x�Þ ¼ min 1;
pðx�Þq1ðx�; xtÞ
pðxtÞq1ðxt; x�Þ

� �
ð3Þ

When rejected in first stage, a second stage move, y, is

generated from a proposal q2(xt, x*, y). The second stage

proposal is accepted with probability.

a2ðxt; x�; yÞ ¼

min 1;
pðyÞq1ðy; x�Þq2ðy; x�; xtÞ 1� a1ðx�; xtÞ½ �
pðxtÞq1ðxt; x�Þq2ðxt; x�; yÞ 1� a1ðxt; x�Þ½ �

� � ð4Þ

Of course, this process of delaying rejection can be

iterated, and the expression in higher stages can be seen in

Green and Mira (2001) and Haario et al. (2006).

It may be difficult to get the AM adaptation started when

the initial proposal distribution is far from the correct one

and the DR framework provides a natural remedy for these

situations. The covariance at the DR stage j can be com-

puted simply by scaling the covariance produced by the

AM step: Ci
j = ciCi, where j = 1… m. Here m is the

number of DR stages applied for every rejected point, and

m is often chosen to be 2 in practice (Haario et al. 2006).

So the improved MCMC method enhances the efficiency

compared to the conventional MCMC and the AM algo-

rithm especially when the initial proposal distribution is

badly chosen. In addition, if the algorithms have difficulties

in getting themselves moving especially when the

acceptance ratio resulted in MCMC method is very low,

the improved MCMC method, with second stage moves

scaled down, can provide help.

In conclusion, the improved MCMC method, integrating

the advantages and overcoming the disadvantages of the

AM and DR algorithms, can improve the practicability

significantly. The flow chart of the improved MCMC

method can be seen as Fig. 1.

Fig. 1 Flow chart of the improved MCMC method
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2.2 Exact Zoeppritz equation

To make the method proposed in this paper suitable for

reservoirs with strong-contrast interfaces and long-offset

ranges and avoid calculation errors brought by the

approximate Zoeppritz equation, we choose the exact

Zoeppritz equation to do the inversion. The equation is as

follows (Aki and Richards 1980):

RPP ¼ b
cos h1
VP1

� c
cos h2
VP2

� �
F

�

� aþ d
cos h1
VP1

cosu2

VS2

� �
Hp2

	

D

ð5Þ

where,

sin h1
VP1

¼ sin h2
VP2

¼ sinu1

VS1

¼ sinu2

VS2

¼ p;

a ¼ q2 1� 2V2
S2p

2
� �

� q1 1� 2V2
S1p

2
� �

;

b ¼ q2 1� 2V2
S2p

2
� �

þ 2q1V
2
S1p

2;

c ¼ q1 1� 2V2
S1p

2
� �

þ 2q2V
2
S2p

2;

d ¼ 2 q2V
2
S2 � q1V

2
S1

� �
;

E ¼ b
cos h1
VP1

þ c
cos h2
VP2

; F ¼ b
cosu1

VS1

þ c
cosu2

VS2

;

G ¼ a� d
cos h1
VP1

cosu2

VS2

; H ¼ a� d
cos h2
VP2

cosu1

VS1

;

D ¼ EF þ GHp2 ð6Þ

RPP is the P-wave reflection coefficient; h1, h2 are the

incidence or reflection angle and transmission angle of P-

wave, respectively, and u1, u2 are the reflection angle and

transmission angle of SV-wave, respectively;

VP1;VP2;VS1;VS2 are the velocities of P- and SV-waves in

two layers, respectively.

2.3 Bayesian AVO inversion based on the improved

MCMC method

The inverse problem in this paper can be expressed as

follows:

d ¼ fZoeppritzðVP;VS; qÞ þ e ð7Þ

where d ¼ ½d1; d2; . . .dM�T represents the observed seismic

data; e represents independent Gaussian distribution noise;

fZoeppritz represents the forward equation, which is the exact

Zoeppritz equation. Based on Bayesian theory, the poste-

rior probability density distribution of unknown parameters

is given by the following formula:

pðVP;VS; qjdÞ / pðVP;VS; qÞpðdjVP;VS; qÞ ð8Þ

in which pðVP;VS; qÞ indicates the prior information dis-

tribution coming from core data, logging data or other

sources to ensure the inverted parameters contain low-

frequency components. Based on the statistical distribution

of the logging P- and S-wave velocity information and the

density information, we assume that VP;VS and q have

Gaussian distribution and are also independent of each

other, with means and variances lVP
; lVS

; lq and

rVP
; rVS

; rq, respectively. So the prior distribution function

is given by:

pðVP;VS; qÞ ¼ pðVPÞ � pðVSÞ � pðqÞ

¼ 1

2pr2VP

� �N
2

exp �
X VP � lVP

� �2
2r2VP

 !
�

1

2pr2VS

� �N
2

exp �
X VS � lVS

� �2
2r2VS

 !
�

1

2pr2q

� �N
2

exp �
X q� lq

� �2
2r2q

 !
ð9Þ

where N is the number of the inversion parameters, and

r2VP
,r2VS

and rq
2 represent the variance of the P- and S-wave

velocities and the density, respectively, and can be

acquired by the statistical analysis of the logging data in

practice. p djVP;VS; qð Þ indicates the likelihood function

combining the observed seismic data and the synthesized

seismic data using the inverted parameters VP;VS; q.
Assuming that e has a Gaussian distribution with zero

mean and rPP standard deviation, the likelihood function is

p djVP;VS; qð Þ ¼ 1

2pr2PPð Þ
M
2

� exp �
X d� fZoeppritz VP;VS;qð Þ

� �2
2r2PP

 !

ð10Þ

in which r2PP represents the noisy variance of the P-wave

seismic data. To obtain the posterior distribution

pðVP;VS; qjdÞ, we use the improved MCMC algorithm to

generate Markov chains converging to the posterior prob-

ability density distribution pðVP;VS; qjdÞ.
To make the Markov chains converge to the posterior

probability density distribution of the P- and S-wave

velocities and the density, the stationary distribution can be

described as pðVP;VS; qÞpðdjVP;VS; qÞ. Let

g mð Þ ¼ �
X VP � lVP

� �2
2r2VP

�
X VS � lVS

� �2
2r2VS

�
X q� lq

� �2
2r2q

�
X d� fZoeppritz VP;VS; qð Þ

� �2
2r2PP

ð11Þ

where m represents the inverted parameters VP;VS; q.
Therefore, the acceptance probability can be expressed as.
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aðmi;m
�Þ ¼ exp min 0; gðm�Þ � gðmiÞf gð Þ ð12Þ

Finally, we can create the Markov chains converging to

the posterior probability density distribution of the P- and

S-wave velocities and the density, and based on the sta-

tistical analysis of the Markov chains, we can obtain the

inversion results of the P- and S-wave velocities and the

density.

3 Example

3.1 Logging data

We use logging data to test the feasibility of the method of

prestack nonlinear inversion based on the improved MCMC

algorithm using the exact Zoeppritz equation. In the forward

process, we use the 35 Hz Ricker wavelet to synthetize

prestack PP wave angle gathers, and add SNR = 2

(SNR ¼ rðd trueÞ
rðd obs�d trueÞ, d_obs represents the observed seis-

mic data, and d_true represents the true synthesized data)

random noise. We do the inversion using the method pro-

posed in this paper and the method of prestack linear

inversion based on the damped least square (DLS) method

using the Aki and Richards (1980) approximate Zoeppritz

2000 4000 6000

0

0.2

0.4

0.6

0.8

1

1.2

1.4
0 2000 4000

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1000 2000 3000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ti
m

e,
 s

Vp, m·s-1 Vs, m·s-1 Den, kg·m-3
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equation to invert the P- and S-wave velocities and the

density directly showed as Figs. 2 and 3, respectively. Fig-

ure 5 shows the observed seismic data for the inversion and

the synthetic seismic data using the estimators.

From Fig. 3, we find that the inverted AVO parameters

with S/N ratio of 2 are consistent with the logging data,

demonstrating the effectiveness of the method. Based on

the results of error comparison showed in Fig. 4, we find

that both methods can obtain good inversion results, and

the results of pre-stack nonlinear inversion based on the

improved MCMC algorithm using the exact Zoeppritz

equation have smaller errors, better stability and stronger

noise immunity, so we can obtain better P- and S-wave

velocities and the density, and validate the reliability and

effectiveness of this method (Fig. 5).

Meanwhile, the improved MCMC inversion method can

get multiple results at the same sampling point and perform

probability statistics and uncertainty analysis.

From Fig. 6, we find that the P- and S-wave velocities

and the density all show Gaussian distribution, which is

consistent with the prior assumption of the three parame-

ters, so we can use the average of the three parameters as

the maximum a posteriori probability (MAP) estimation.

The numerical magnitude in Fig. 7 represents the

probability value or the uncertainty condition of the P- and

S-wave velocities and the density results, and it shows that

the uncertainty of the P- and S-wave velocities is smaller

than that of the density, so we will further study to invert

more accurate density parameters based on long-offset
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seismic data by using the method in this paper (Downton

and Ursenbach 2006; Skopintseva et al. 2011).

3.2 Real seismic data

Real data is used to validate the application of the method

of Zoeppritz-based AVO nonlinear inversion using the

improved MCMC strategy. The prestack seismic data used

in this paper is from an oil–gas field in the Sichuan Basin of

Southwest China. Its maximum incident angle is around

27�, and the target is a carbonate gas-bearing reservoir in

the Permian system. The seismic data was processed to

ensure that the final prestack amplitudes should image the

reflection strength of the subsurface interfaces as correctly

as possible. A well located at CDP 100 (the black ellipse)

shows a gas reservoir at around 2.12 s. To save the time of

inversion, we stack the seismic offset gathers to three

different angle-stack seismic profiles, showed as Fig. 8.

The inverted results are shown as Fig. 9.

Figure 9 shows the inverted AVO parameter profiles

including P-wave velocity, S-wave velocity and density.

Figure 10 shows the comparison between the inversion

results and the real logging data based on the improved

MCMC method, while Fig. 11 shows the comparison

0.2

0.4

0.6

0.8

1.0

1.2

1.4
2500 3000 3500 4000 4500 5000

Vp, m·s-1 Vs, m·s-1

(a) (b) (c)

5500

0.9
0.8
0.7

0.6
0.5
0.4
0.3

1.0

0.2
0.1
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1000 1500 2000 2500 3000

0.9
0.8
0.7

0.6
0.5
0.4
0.3

1.0

0.2
0.1
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1900 2100 2300 2500 2700

0.9
0.8
0.7

0.6
0.5
0.4
0.3

1.0

0.2
0.1
0

Ti
m

e,
 s

Ti
m

e,
 s

Ti
m

e,
 s

Den, kg·m-3

Fig. 7 Uncertainty analysis graphs of P- and S-wave velocities and density for the logging data (red color indicates greater probability or smaller

uncertainty). a P-wave velocity, b S-wave velocity, c density

-5
-4
-3
-2
-1

4
3
2
1
0

5

CDP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.8

2.6

50 100 150 200 ×1011

Ti
m

e,
 s

-5
-4
-3
-2
-1

4
3
2
1
0

5

CDP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.8

2.6

50 100 150 200 ×1011

Ti
m

e,
 s

-5
-4
-3
-2
-1

4
3
2
1
0

5

CDP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.8

2.6

50 100 150 200 ×1011

Ti
m

e,
 s

(a) (c)(b)

Fig. 8 Angle-stack seismic profiles with three different angles. a 7� (3�–11�), b 15� (11�–19�), c 21� (19�–27�)

CDP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.8

2.6

50 100 150 200

6600
6400
6200
6000
5800
5600
5400

6800

5200
5000
4800

50 100 150 200
CDP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.8

2.6

3200

3100

3000

3300

2900

2800

50 100 150 200
CDP

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.8

2.6

2850

2800

2750

2900

2700

2650

2600

ρ, kg·m-3Vs, m·s-1Vp, m·s-1

Ti
m

e,
 s

Ti
m

e,
 s

Ti
m

e,
 s

(a) (b) (c)

Fig. 9 Inverted AVO parameter profiles using the improved MCMC method based on the exact Zoeppritz equation. a P-wave velocity profile,

b S-wave velocity profile, c density profile

Pet. Sci. (2017) 14:75–83 81

123



results based on the conventional MCMC method, where

both the black ellipses in Figs. 10 and 11 indicate the

location of the gas reservoir. We can see that both the

inversion results of the AVO parameters fit the logging

data well and they are consistent with the accuracy, but the

efficiency of the improved MCMC method and the con-

ventional MCMC method shows a great difference that the

former needs 10,000 iterations while the latter needs

1,00,000 iterations to receive the results with similar

accuracy. Similarly, the inversion results of P- and S-wave

velocities are better than those of the density due to the

limitation in the offset of the data.

4 Conclusions

An improved MCMC method, combining the AM algo-

rithm based on the global adaptive strategy and the DR

algorithm based on the local adaptive strategy, has been

proposed to invert the P- and S-wave velocities and the

density based on the exact Zoeppritz equation. The method

has the following characteristics:

1. Compared with the conventional MCMC method, the

improved MCMC method, combining the AM algo-

rithm based on the global adaptive strategy and the DR

algorithm based on the local adaptive strategy, can

adaptively update the proposal distribution and speed

up the convergence of Markov chains;

2. The method of nonlinear inversion based on the

improved MCMC algorithm using the exact Zoeppritz

equation is not only suitable for reservoirs with strong-

contrast interfaces and long-offset ranges but it is also

more stable, accurate, and anti-noise;

3. Based on the Bayesian framework and the fusion of a

priori constraint information such as logging data and

seismic data, the improved MCMC method further

reduces the non-uniqueness of the solutions and greatly

improves the stability of the inversion solutions.

Moreover, it can also estimate the uncertainty of the

results to assist us in risk assessment of reservoir

prediction.

Tests on logging data and seismic data demonstrate the

feasibility and robustness of the method, and in order to

invert more accurate density parameter, we will further

study this method based on long-offset seismic data.
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