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Abstract Simulation of reservoir flow processes at the

finest scale is computationally expensive and in some cases

impractical. Consequently, upscaling of several fine-scale

grid blocks into fewer coarse-scale grids has become an

integral part of reservoir simulation for most reservoirs.

This is because as the number of grid blocks increases, the

number of flow equations increases and this increases, in

large proportion, the time required for solving flow prob-

lems. Although we can adopt parallel computation to share

the load, a large number of grid blocks still pose significant

computational challenges. Thus, upscaling acts as a bridge

between the reservoir scale and the simulation scale.

However as the upscaling ratio is increased, the accuracy

of the numerical simulation is reduced; hence, there is a

need to keep a balance between the two. In this work, we

present a sensitivity-based upscaling technique that is

applicable during history matching. This method involves

partial homogenization of the reservoir model based on the

model reduction pattern obtained from analysis of the

sensitivity matrix. The technique is based on wavelet

transformation and reduction of the data and model spaces

as presented in the 2Dwp–wk approach. In the 2Dwp–wk

approach, a set of wavelets of measured data is first

selected and then a reduced model space composed of

important wavelets is gradually built during the first few

iterations of nonlinear regression. The building of the

reduced model space is done by thresholding the full

wavelet sensitivity matrix. The pattern of permeability

distribution in the reservoir resulting from the thresholding

of the full wavelet sensitivity matrix is used to determine

the neighboring grids that are upscaled. In essence,

neighboring grid blocks having the same permeability

values due to model space reduction are combined into a

single grid block in the simulation model, thus integrating

upscaling with wavelet multiscale inverse modeling. We

apply the method to estimate the parameters of two syn-

thetic reservoirs. The history matching results obtained

using this sensitivity-based upscaling are in very close

agreement with the match provided by fine-scale inverse

analysis. The reliability of the technique is evaluated using

various scenarios and almost all the cases considered have

shown very good results. The technique speeds up the

history matching process without seriously compromising

the accuracy of the estimates.

Keywords Upscaling � Inverse analysis � History
matching � Sensitivity � Wavelets

1 Introduction

Upscaling is the process of reducing a large number of the

fine-scale grid blocks to a smaller number of coarse-scale

grid blocks. This is required because it is often impractical

to perform simulation at finest scale of the reservoir.

Therefore, upscaling is one of the most important compo-

nents of reservoir simulation. The last few decades have

seen significant advancements in upscaling which include

development of single-phase and multiphase upscaling as

well as upscaling in the near wellbore and away from

wellbore regions. Single-phase upscaling involves the

& Saad Mehmood

mehmood.saad@hotmail.com

1 United Energy Pakistan, Bahria Complex-1, M.T. Khan

Road, Karachi 74000, Sindh, Pakistan

2 Department of Petroleum Engineering, King Fahd University

of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Edited by Yan-Hua Sun

123

Pet. Sci. (2016) 13:517–531

DOI 10.1007/s12182-016-0107-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-016-0107-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12182-016-0107-4&amp;domain=pdf


upscaling of permeability distribution only. The technique

is simple and can be used for structurally complex reser-

voirs but it neglects the multiphase flow effects (Durlofsky

1991; Ringrose 2007). In multiphase flow upscaling, rela-

tive permeability curves are also upscaled in addition to

absolute permeability upscaling. This approach is compu-

tationally expensive and as such its use is limited to simple

reservoir models (Ekrann and Dale 1992; Ringrose 2007).

One method of upscaling involves averaging the

parameters and imputing the averaged values directly into

the simulation flow grid. Most of the averaging techniques

(arithmetic, harmonic, geometric, power law, pressure

solver) are only appropriate under the circumstances of

perfectly layered or heterogeneous distributions that are

perfectly random and seldom observed in realistic reservoir

descriptions. Another method of upscaling is an averaging

technique that first computes the lower and upper bounds

of the effective properties, based on geology, and then uses

a new correlation and scaling technique to estimate the

effective properties for the upscaled grid (Li et al. 2001).

Purely local upscaling methods consider only those fine-

scale grids that are combined in the target coarse-scale grid

(Durlofsky 1991; King and Mansfield 1999). The hydraulic

conductivity upscaling method (Wen and Gómez-Hernán-

dez 1996) involves upscaling of hydraulic conductivities at

the scale of measurements to a coarser grid of block con-

ductivity tensors. The extended local procedure includes

few of the adjacent grids in the local problems (Gómez-

Hernández and Journel 1994; Wu et al. 2002). In global

upscaling methods, the flow solution utilized to calculate

the upscaled parameters is performed over the entire

domain (White and Horne 1987; Pickup et al. 1992; Holden

and Nielson 2000). This technique can provide high level

of accuracy, but it has a disadvantage of requiring global

fine-scale solutions.

An adaptive local–global procedure has also been pro-

posed for multiphase near-well problems (Nakashima

2009). Adaptive means that the actual boundary conditions

are applied for global coarse-scale simulations rather than

the generic set of boundary conditions. The adaptive local–

global upscaling technique involves global coarse-scale

simulation with initial estimates for wellblock parameters

which provides the coarse-block pressure and saturations.

The resultant pressure and saturation distributions are then

interpolated onto the local well model to obtain boundary

conditions for the near-well upscaling computations.

History matching has long been used to estimate reser-

voir parameters from dynamic production history data.

However, a limitation of this procedure is that it is often the

case that the information content of the production histories

is not enough to resolve the model parameters at the finest

scale. Thus, different methods of model space reduction

have been proposed in the literature to reduce the number

of model parameters to be estimated from the production

history, thereby reducing the non-uniqueness associated

with the inverse modeling. One such model reduction

method is the wavelet multiscale inverse analysis (Lu and

Horne 2000; Sahni and Horne 2005, 2006a, b; Awotunde

and Horne 2011a, b, 2012, 2013). The various methods of

model space reduction often automatically produce some

level of smoothening (homogenization) of the reservoir

model parameters such as grid block permeabilities. This

smoothening creates a scenario in which several adjacent

grid blocks have the same permeability values. However,

during such history matching procedures, forward simula-

tion runs are still performed at the finest scale (Lu and

Horne 2000; Sahni and Horne 2005; Awotunde and Horne

2012, 2013). In this way, a huge amount of time is spent on

forward simulations. Another permeability upscaling pro-

cedure using the fast marching method was implemented

by Sharifi and Kelkar (2014). The purpose of this work is to

utilize the pattern of smoothening in the permeability field

created by the model space reduction during history

matching, to upscale the forward simulation model with an

ultimate goal of reducing the total time required for history

matching.

We propose and evaluate an upscaling procedure based

on wavelet sensitivity thresholding. Sensitivity-based

thresholding has been reported in the literature to reduce

model parameter space during history matching (Sahni and

Horne 2006a, b; Awotunde and Horne 2012). Sensitivity

computation is required for computing the Hessian matrix

in the Gauss–Newton and LM algorithms (Gill et al. 1981;

Nocedal and Wright 2006; Griva et al. 2009). In addition, a

sensitivity matrix has been used to reduce the model space.

One of the features of such model reduction is the emer-

gence of several neighboring grids with similar values of

the reservoir model parameter. For example, in the 2Dwp–

wk approach presented in Awotunde and Horne (2013), the

thresholding of wavelet sensitivity matrix computed in

early iterations of the nonlinear regression is used to

determine the reduced model space.

The back-transformation of the model space coefficients

into the real permeability field would identify the regions

of homogeneity in the upscaled reservoir model. Combin-

ing the grid blocks based on the pattern obtained from the

model reduction would result in a coarse-scale unstructured

grid system. The method is expected to be more consistent

as it predetermines the areas of the reservoir with homo-

geneous permeability distribution based on sensitivity

analysis. To improve the accuracy of simulation results,

grid blocks having wells completed in them were not

combined with any neighboring grid blocks. Further, two

scenarios were tested; one in which all neighboring grid

blocks with equal permeabilities but without any well were

combined, and the second in which wellblocks and their
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neighbors were not combined. The second scenario was

done to improve the accuracy of the variables obtained

from the wells. If the neighbors of a wellblock are much

larger in size than the wellblock, the accuracy of variables

such as wellbore pressure and water cut may be

compromised.

To properly investigate the effectiveness of the sensi-

tivity-based upscaling approach, the methodology was

applied to history match data from two synthetic reservoir

models. The reliability of the technique was evaluated by

comparing the results of history matching performed using

coarse-scale forward simulations to those obtained from

history matching performed using a fine-scale forward

simulation model. In both, the history matching was used

to obtain a reduced model parameter space.

2 Reservoir parameter estimation

The process of determining the spatial distribution of

reservoir properties, particularly porosity and permeability,

is known as reservoir characterization. History matching is

the process of modifying the reservoir model by fitting

simulation results to actual field data. Originally, history

matching was done manually, then progress was made and

the industry shifted to automated history matching. Auto-

mated history matching often relies on nonlinear regression

of the observed dataset. Nonlinear regression comprises the

class of inverse analysis techniques used in minimizing the

l2—norm of errors between modeled data and the measured

data. In a nonlinear regression, the objective function is

often given by

U a~ð Þ ¼ 1

2n
d~cal � d~meas

�
�
�

�
�
�

2

2
; ð1Þ

where a~ is the vector of the unknown parameters (to be

estimated by optimization or nonlinear regression), d~cal is

the vector of modeled pressure data, d~meas is the vector of

measured data and n is a scaling factor. Most nonlinear

regression algorithms follow the Newton–Raphson

approach in which the parameters of the model are itera-

tively estimated by repeatedly finding an optimum direc-

tion (first-order optimality) and step-length with which to

move the current iterate. This is achieved by computing the

gradient g~ and the Hessian H (or its approximation) at each

iteration of the nonlinear regression. The optimum direc-

tion of descent da~, in the minimization algorithm, is then

computed from

Hda~¼ �g~ ð2Þ

and the subsequent iterate is

a~jþ1 ¼ a~j þ da~j; ð3Þ

where j represents the iteration index. In the standard

Newton–Raphson approach, the exact Hessian is computed

and used to calculate the direction of descent. Although the

Newton method gives fast convergence (fewer number of

iterations) relative to other gradient-based methods, the

computation of the Hessian matrix can be time-consuming

when the problem dimension is large. Also, a simple ana-

lytic expression for the first and/or second derivative of the

objective function may not be obtainable. Thus, an

approximation to the Hessian is often used and this forms

the basis of the different nonlinear regression algorithms

such as the steepest descent, the conjugate gradient, the

quasi-Newton methods, the Gauss–Newton approach, and

the Levenberg–Marquardt (LM) method (Levenberg 1944;

Marquardt 1963). For small- and medium-sized problems,

the LM approach is often the nonlinear regression tech-

nique of choice. Thus, we use the LM approach to estimate

the parameters of the well test problems considered and

compare its results to the results from the global opti-

mization techniques. In the LM approach, the Hessian

matrix is approximated by

H ¼ STSþ _kI; ð4Þ

where S is the sensitivity matrix computed from

S ¼ od~cal

oa~
; ð5Þ

and _k is a small positive number that ensures the algorithm

remains stable.

3 Reservoir simulator

The reservoir model is usually solved by a numerical

approach due to its complex nature. The fine-scale simu-

lator used in this work is a three-dimensional, oil–water,

black oil, finite-difference reservoir simulator. The

upscaling simulator is also purposely built for this work

using the same governing equations for the reservoir

model. Both simulators have a built-in functionality of

computing sensitivity of data to reservoir parameters using

the Adjoint-State approach.

3.1 Fine-scale simulator

A three-dimensional reservoir system with a total number

of M grid blocks is considered with the total number of

wells to be Nwell. The general residual equation can be

given as
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f~
nþ1

u~nþ1; u~n; v~; Dt; a~
� �

¼ 0~; ð6Þ

where f~ represents the vector of residual for flow equa-

tions; a~ is the reservoir parameters; vector v~ consists of

known reservoir properties and vector u~ contains state

variables and can be written as

u~¼ ½po;1; Sw;1; . . .; po;M; Sw;M; pwf;1; . . .; pwf;Nwell
�T; ð7Þ

where po is the pressure of the oil phase, Sw is the water

saturation, pwf is the wellbore pressure f~
nþ1

blk contains the

residual due to flow in and out of reservoir grid blocks and

is given as

f~
nþ1

blk ¼ f nþ1
w;1 ; f nþ1

o;1 ; f nþ1
w;2 ; f nþ1

o;2 ; . . .; f nþ1
w;M ; f nþ1

o;M

h iT

ð8Þ

whereas f~
nþ1

well represents the residual due to flow into or out

of the wells in the reservoir and can be presented as

f~
nþ1

well ¼ f nþ1
well;1; f

nþ1
well;2; . . .; f

nþ1
well;Nwell

h iT

: ð9Þ

f~
nþ1

blk and f~
nþ1

well both combine to form f~
nþ1

as

f~
nþ1 ¼

f~
nþ1

blk

f~
nþ1

well

2

4

3

5; ð10Þ

Now, Eq. (8) indicates that f~
nþ1

blk comprises the residuals

of the two phases existing in the reservoir system which

can be given as

f~w p~nþ1
o ; Snþ1

w ; p~nþ1
wf ; p~n

o; S
n
w; /~ini; Dt; k~

� �

¼ 0~; ð11Þ

and

f~
nþ1

o p~nþ1
o ; Snþ1

w ; p~nþ1
wf ; p~n

o; S
n
w; /~ini; Dt; k~

� �

¼ 0~: ð12Þ

whereas the well residual for f~
nþ1

well of Eq. (9) can be written

as

f~
nþ1

well p~nþ1
o ; Snþ1

w ; p~nþ1
wf ; p~n

o; S
n
w; /~ini; Dt; k~

� �

¼ 0~; ð13Þ
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1 2 3 4 5 6 
7 8 9 10 11 12 
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19 20 21 22 23 24 

25 26 27 28 29 30 
31 32 33 34 35 36 

Fig. 1 A reservoir system with some homogeneous patches

Table 1 Combination of fine-

scale grid blocks in the upscaled

system

Upscaled grid

blocks

Fine-scale grids

merged

Upscaled grid

blocks

Fine-scale grids

merged

1 1, 2, 7, 8 9 19, 25, 26, 31

2 3, 4 10 20

3 5, 11, 12 11 21 (well)

4 6 12 22

5 9, 10, 16 13 27

6 13, 14 14 28, 29, 34

7 15 15 32, 33

8 17, 18, 23, 24, 30 16 35, 36

1 2

4

5

3

6

7

A B

CD

EF

P1P2

Fig. 2 Example of an upscaled grid block

1

1 2 3 4 5 6
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Fig. 3 An unstructured grid system showing a large grid enveloping

a small grid
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where /~ini represents initial porosity distribution and k~

represents the permeability distribution in the reservoir in

all the residual equation presented above.

Consider the constraint of the total production rate,

f nþ1
well;i ¼

X

ph¼o;w

XNcomp

j

qwellph;j � qt;i ¼ 0: ð14Þ

In Eq. (14), qph,j
well represents the flow rate of the phases

(oil or water, denoted by ph) at the jth completion and it

can be defined as

qwellph;j ¼ knþ1
ph;j WIj pnþ1

ph;j � pnþ1
wf � cnþ1

ph;j Dzj
� �

ð15Þ

There is no pc (capillary pressure) in Eq. (15) because

pph represents both po and pw, so the capillary pressure will

be incorporated in pw in the case of the water phase.

The mobility ratio and specific gravity of any phase ph

at the completion j are represented by kph,j
n?1 and cph,j

n?1,

respectively, while WIj denotes the well index at the jth

completion. The Newton–Raphson iterative method is used

in order to solve the nonlinear system of equations at every

iteration; so we have at any iteration j,

Jnþ1;jdu~nþ1;j ¼ �f~
nþ1;j

; ð16Þ

where Jn?1,j is known as the Jacobian matrix and can be

written as

Jnþ1;j ¼ of~
nþ1;j

ou~nþ1;j : ð17Þ

the solution is then updated as

u~nþ1;jþ1 ¼ u~nþ1;j þ du~nþ1;j: ð18Þ

3.2 Upscaled simulator

The basic governing equations in the upscaled simulator

are the same as those used in the fine-scale simulator.

The principal difference is in the manner of calculating

the transmissibility between the upscaled grid blocks. The

central idea in this work involves the upscaling of the

reservoir grid blocks based on homogenization of the

system parameters. This would result in upscaled grid

blocks that have different structures. Also, the neigh-

boring grid blocks will not be structured as in the rect-

angular grid system. Thus, we need to find an appropriate

way of computing the transmissibility between the

interacting grid blocks. The detailed description of the

upscaling procedure and its calculations is presented in

Sect. 4.
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Fig. 4 Log permeability distribution and well locations for the

32 9 32 reservoir model
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Fig. 5 Production data from the fine-scale and upscale reservoir models for the 32 9 32 system. a Bottom-hole pressures. b Water cut

(Constraint 1)
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4 Upscaling based on homogenization of reservoir
model during history matching

This work involves upscaling of the reservoir system based

on the sensitivity of production data to model parameters.

Sensitivity computation is a part of some inverse analysis

methods such as the Gauss–Newton and the LM algo-

rithms. Sensitivities provide us information on the grid

block parameters that have similar effects on calculated

production data. During history matching and at any par-

ticular nonlinear iteration to estimate the unknown reser-

voir parameters (e.g., in the LM approach), adjacent grid

blocks that exhibit almost similar values of sensitivities are

considered as a homogenous patch and may then be

combined to form an upscaled grid block. The pattern of

upscaling is thus based on the pattern of homogenous

patches obtained through sensitivity analysis during history

matching. The adjacent grid blocks whose parameters (ln k)

have almost similar effects on the production data are

expected to have similar permeability trends and are

merged to form an upscaled grid block. The combination of

fine-scale grid blocks into larger ones, based on perme-

ability distribution, ultimately reduces the number of grid

blocks for simulation and this in turn reduces the required

computational resources. The upscaling of grid blocks with

similar permeability values is performed subject to one of

two different constraints. The first constraint involves

ensuring that grid blocks having wells in them (wellblocks)
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Fig. 6 Production data from the fine-scale and upscale reservoir models for the 32 9 32 system. a Bottom-hole pressures. b Water cut

(Constraint 2)
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Fig. 7 Match of production data for the 64 9 64 reservoir system (wavelet fraction 0.60, no upscaling performed during history matching).

a Bottom-hole pressures in producers. b Bottom-hole pressures in injectors
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are not combined with any other grid. The second con-

straint involves ensuring that any wellblock and the grid

blocks adjacent to it are not combined with one another or

with any other block in their neighborhood.

Figure 1 illustrates an example of a 6 9 6 reservoir

system with the implementation of the second constraint.

The figure shows that fine-scale grid blocks are combined

based on homogeneity of the system. The grid blocks

having the same color have the same permeability value;

therefore, these fine-scale grid blocks would be combined

to form the upscaled system. The transformation from fine-

scale to upscale grid blocks is explained using Table 1.

Table 1 shows the fine-scale grid blocks in the 6 9 6

reservoir system that are combined due to homogeneity to

form the upscaled system. Figure 1 and Table 1 also

illustrate that the grid block having a well in it (i.e., Grid

block 21) and the grids adjacent to this wellblock (Grid

blocks 15, 20, 22, and 27) are not combined with any other

grid block. However, because we combine the grid blocks

based on permeability distribution, the resulting upscaled

grid blocks do not necessarily form well-defined shapes,

resulting often in unstructured gridding systems. This is

observed in Fig. 1. This poses a challenge in the calcula-

tion of transmissibilities between any pairs of grid blocks.

The transmissibility is performed by first locating the

centroid of each upscaled grid block. Thus, the algorithm,

used to upscale the fine-scale system, based on the presence

of homogeneous patches is described below:
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Fig. 8 Match of production data for the 64 9 64 reservoir system (wavelet fraction 0.40, no upscaling performed during history matching).

a Bottom-hole pressures in producers. b Bottom-hole pressures in injectors
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Fig. 9 Match of production data for the 64 9 64 reservoir system (wavelet fraction 0.25, no upscaling performed during history matching).

a Bottom-hole pressures in producers. b Bottom-hole pressures in injectors
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(1) The fine-scale grid blocks are combined to form the

upscaled grid blocks based on the presence of

homogenous patches in the permeability distribution.

(2) The centroid of each upscaled grid block is

calculated.

(3) All adjacent grids to every upscaled grid block are

assembled and stored; to be used in transmissibility

calculations.

(4) At each simulation time step, the Newton–Raphson

iteration is performed.

(5) During each Newton-iteration of each simulation

time-step, the transmissibility between pairs of

upscaled grid blocks is calculated based on their

centroids.

(6) The procedure is repeated in each iteration, and each

time step.
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Fig. 10 Match to water cut in all producers for the 64 9 64 reservoir

system with no upscaling performed during history matching.
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5 Transmissibility and centroid calculations
for the upscaled system

Transmissibility is the property calculated at the interface

of the grid blocks. However, the properties used in its

calculation are known at the grid center. In a structured

gridding system in rectangular coordinates, the size of a

grid block and its center are appropriately defined.

However, in the type of upscaled system shown in Fig. 1,

the shape of the resulting upscaled grid blocks may not be

regular, and for calculating transmissibility we need to

define the centers of these grids. Thus, the centroids of

the upscaled grid blocks are evaluated and used for

transmissibility computation. In a two-dimensional sys-

tem, the faces of the resulting upscaled grid blocks are

polygons. Figure 2 shows one of such grid blocks. In

order to calculate the centroid of any object, its vertices

should be arranged in either the clockwise or counter-

clockwise direction. The first step is to define the vertices

of the new grid block. An algorithm is developed that

finds the vertices of an upscaled grid from all the vertices

of fine-scale grids contained in it. This is better
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Fig. 13 Log permeability distribution for the 64 9 64 reservoir system. a True. b Initial guess. c Estimate of wavelet fraction 0.60. d Estimate

of wavelet fraction 0.40. e Estimate of wavelet fraction 0.25 (no upscaling performed during history matching)

(a) (b)

Time, days
0 100 200 300 400 500 600 700 800 900 1000

B
ot

to
m

-h
ol

e 
pr

es
su

re
, p

si
g

3800

4000

4200

4400

4600

4800

5000

5200
Matched pwf Measured pwf

Time, days
0 100 200 300 400 500 600 700 800 900 1000

B
ot

to
m

-h
ol

e 
pr

es
su

re
, p

si
g

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000
Matched pinj Measured pinj

Fig. 14 Match of production data for the 64 9 64 reservoir system (wavelet fraction 0.60, upscaling performed during history matching).
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Pet. Sci. (2016) 13:517–531 525

123



understood from Fig. 2 in which vertices A, B, C, D, E,

and F are the vertices of an upscaled grid, and the

algorithm developed in this work finds these vertices.

Vertices P1, P2, etc. of the fine-scale grids are excluded

as these are not vertices of the upscaled grid. Once these

vertices have been found, they are arranged in a clock-

wise or counter-clockwise order.

A separate algorithm is written to arrange the vertices.

This algorithm is based on the structure of x- and y-

coordinates and it arranges the vertices in counter-clock-

wise order. Subsequently, the arranged points are used to

determine the centroid using the following equations:

Cx ¼
1

6A

Xn�1

i¼0

ðxi þ xiþ1Þðxiyiþ1 � xiþ1yiÞ ð19Þ

Cy ¼
1

6A

Xn�1

i¼0

ðyi þ yiþ1Þðxiyiþ1 � xiþ1yiÞ ð20Þ

where Cx is the x-coordinate of the centroid; Cy is the y-

coordinate of the centroid; A is the area of the polygon and

is given as

A ¼ 1

2

Xn�1

i¼0

ðxiyiþ1 � xiþ1yiÞ ð21Þ

6 Usefulness and limitations of the sensitivity-
based upscaling

The method proposed in this work can be performed only

when there is a sensitivity matrix to indicate the response

of the well data to changes in grid block parameters. Thus,

(a) (b)

Time, days
0 100 200 300 400 500 600 700 800 900 1000

B
ot

to
m

-h
ol

e 
pr

es
su

re
, p

si
g

3800

4000

4200

4400

4600

4800

5000

5200
Matched pwf Measured pwf

Time, days
0 100 200 300 400 500 600 700 800 900 1000

B
ot

to
m

-h
ol

e 
pr

es
su

re
, p

si
g

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000
Matched pinj Measured pinj

Fig. 15 Match of production data for the 64 9 64 reservoir system (wavelet fraction 0.40, upscaling performed during history matching).

a Bottom-hole pressures in producers. b Bottom-hole pressures in injectors
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Fig. 16 Match of production data for the 64 9 64 reservoir system (wavelet fraction 0.25, upscaling performed during history matching).

a Bottom-hole pressures in producers. b Bottom-hole pressures in injectors
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the method is useful during history matching only if the

method of history matching used involves the computation

of a sensitivity matrix at each iteration. For instance, if the

conjugate gradient method or the quasi-Newton method is

used, sensitivities are not computed and such sensitivity-

based upscaling of grid blocks is not possible. Also, we

observed that the method has a severe limitation in the

acceptable pattern of homogeneous patches. The problem

that arises here is that sensitivity-based upscaling often

results in unstructured grid blocks. In the case of such

unstructured gridding, the centroid of all grid blocks in the

new system must be located. To compute the centroid of a

block, all the vertices of the block must form a continuous

connection. That is, there must not be a void inside the

block. However, in certain cases of unstructured gridding,

cases arise in which one large grid block entirely envelopes

a smaller grid block so that the large grid block has an

opening within it and thus its centroid cannot be computed.

A scenario of this type is illustrated in Fig. 3. In this figure,

a large-grid formed by combining smaller blocks 14, 15,

16, 19, 20, 22, 25, 26, 27, and 28 (all shown in pink color)

envelops a smaller grid, block 21 (shown in green color). In

this case, the centroid of the larger grid cannot be com-

puted. This situation is more likely to occur when the

reduction in the model size is large. As a result, the model

reduction that was achieved in this work is limited by this

problem.

7 Comparison of fine-scale and upscale forward
simulation

First, we considered a 32 9 32 reservoir model with such

permeability distributions that result in some homogenous

regions in the reservoir. This reservoir (Fig. 4) has three

producers and three injectors. The reservoir was upscaled

based on the homogeneous patches indicated by its inher-

ent permeability distribution. Then a flow simulation was

performed on both the fine-scale and the upscaled reservoir

model. In upscaling the reservoir sample, the two con-

straints were imposed. The constraints are that all neigh-

boring grid blocks having equal permeability values are

allowed to be merged during upscaling except

(1) those having wells; and

(2) those having wells and their respective adjacent grid

blocks.

The fine-scale and upscaled simulators were run to

obtain bottom-hole pressure and water cut data, and the

match between the results from the upscaled reservoir

model and those from the fine-scale model was used to

determine which constraint produced better results. Fig-

ure 5 shows the bottom-hole pressure and water cut mat-

ches with Constraint 1, while Fig. 6 shows the matches

obtained with Constraint 2. We obtained very good mat-

ches of the bottom-hole pressure with both constraints, but

the water cut match was not good with any of the
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Fig. 17 Match to water cut in all producers for the 64 9 64 reservoir

system with upscaling of grid blocks during history matching.
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0.25
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constraints. However, the results from Constraint 2 were

better than those from Constraint 1. Therefore, we chose

only Constraint 2 for the history matching.

8 Example application of sensitivity-based
upscaling to inverse analysis

In this section, we present history matching results for a

reservoir model discretized into 64 9 64 grid blocks. The

64 9 64 reservoir has 16 producers and 16 injectors. Three

thresholding values were used separately to select the

wavelets that make up the model space. The upscaling

procedure used in the forward simulations was based on the

homogeneity-pattern created by thresholding the model

space using the wavelet sensitivity matrix. Furthermore,

history matching was performed for the upscaled model

(this work) and the fine-scale model (Awotunde 2010;

Awotunde and Horne 2012, 2013) and the results from both

systems were compared. We transformed the model space

into wavelets and then perform thresholding to reduce the

number of model parameters used for describing the sys-

tem. This is done to reduce the computation time and also

the non-uniqueness associated with the estimated results.

The three fractions used in thresholding the model space

are 0.60, 0.40, and 0.25. Each of these fractions determines

the number of wavelets of the parameters we retain for

history matching. The wavelet fraction of 0.60 indicates

that the problem dimension is reduced to 60 % of its

original size. That is 60 % of the total number of wavelets

(of reservoir parameters) are selected. Upon inversion, the

selected wavelets result in heterogeneous permeability

distribution with some homogeneous patches. These num-

ber and size of homogenous patches tend to increase as we

reduce the wavelet fraction.

8.1 Fine-scale inverse analysis

Fine-scale history matching was performed for the three

wavelet fractions as mentioned above. The match of bot-

tom-hole pressure (producers and injectors) for all the

fraction of wavelets considered are shown in Figs. 7, 8, and

9, respectively. The matches to the water cut for fractions

0.60, 0.40, and 0.25 are presented in Fig. 10.

Good matches are obtained to all pressure and water cut

histories, in all the cases considered. The trend of the

number of wavelet coefficients selected using each fraction

of 0.60, 0.40, and 0.25 is shown in Fig. 11. The fig-

ure shows that the number of wavelet coefficients increases
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in the early iterations and reaches the maximum preset

number of wavelets (based on wavelet fraction used). Fig-

ure 12 shows the reduction of error as the iteration proceeds.

The true permeability distribution, initial guess, and the final

distribution obtained for the three scenarios are shown in

Fig. 13. None of the estimates in Fig. 13c–e is close enough

to the true permeability map (Fig. 13b). However, the esti-

mate obtained from the fraction 0.60 gives a better repre-

sentation of the heterogeneity than the other estimates.

8.2 Upscaled inverse analysis

In this case, simulation models are upscaled based on the

analysis of sensitivity matrix at each iteration of the LM

algorithm. The matches obtained to measured pressure data

(producers and injectors), for the three fractions consid-

ered, are presented in Figs. 14, 15, and 16 while the mat-

ches to the water cut data are presented in Fig. 17. We

observe that the pressure histories are adequately matched.

However, matches obtained with data fractions of 0.60 and

0.40 are better than those obtained with 0.25. Similarly, the

matches to the water cut data for all fractions are accept-

able. The selection of wavelet coefficients for each fraction

is shown in Fig. 18 while the reductions in the mismatch

error for all the fractions are presented in Fig. 19. All the

fractions exhibit similar performances. Figure 20 shows

the true permeability, the initial guess, and the permeability

maps estimated from the three fractions. We observe that a

better estimate of the permeability map is obtained when a

0.60 fraction of all the model wavelets is used.

A summary of performance information from all the

cases is presented in Table 2. It represents that we have

total of 6144 production data points (pressure and water

cut), out of which only 496 have been selected for history

matching which gives a compression ratio of 12.92. It is a

64 9 64 grid system that results in 4096 reservoir param-

eter (permeability) values. As discussed earlier that as the

wavelet fraction is reduced the number of parameters
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Fig. 20 Log permeability distribution for the 64 9 64 reservoir system. a True. b Initial guess. c Estimate of wavelet fraction 0.60. d Estimate

of wavelet fraction 0.40. e Estimate of wavelet fraction 0.25 (upscaling performed during history matching)

Table 2 Important statistics for history matched 64 9 64 reservoir system

Details Fine-scale Upscale

Number of measured data 6144 6144

Number of wavelets of data 496 496

Compression ratio 12.92 12.92

Number of reservoir parameters 4096 4096

Fraction 0.60 0.40 0.25 0.60 0.40 0.25

Number of wavelets of parameters 1573–2545 942–1725 942–1144 1432–2520 1082–1650 942–1185
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considered is also reduced. Thus, a fraction of 0.60 has

maximum parameters of 2545 which reduce to 1144 in the

case of fraction 0.25. The parameters considered are almost

the same in both fine-scale and upscale history matching.

9 Conclusions

The following conclusions can be drawn from the results

obtained during this work:

(1) A good match is obtained for all the fine-scale history

matching cases, as it was established in earlier work

(Awotunde 2010; Awotunde and Horne 2012, 2013).

(2) During upscaling, combining the grid blocks that are

adjacent to the well grid blocks does not provide good

results. This is evident from the fact the Constraint 2

provides better results than Constraint 1. The upscal-

ing of grid blocks can be achieved by analyzing the

transformed sensitivity matrix and implemented dur-

ing the iterations of the LM algorithm.

(3) Sensitivity-based upscaling during history matching

provides reasonable results with a sufficient reduc-

tion in computation time as compared to the fine-

scale inverse analysis.

(4) It is observed that the results from all three fractions

(0.60, 0.40, and 0.25) are reasonably good. However,

results from 0.25 are beginning to show some slight

deviation from the true results, indicating that further

reduction may lead to larger deterioration in the

performance of the algorithms.

(5) The reduction of the simulation model size due to

sensitivity-based upscaling can be limited by the

emergence of an upscaled grid block that envelopes

a smaller grid block.
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