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Abstract Gaussian beam migration (GBM) is an effec-

tive and robust depth seismic imaging method, which

overcomes the disadvantage of Kirchhoff migration in

imaging multiple arrivals and has no steep-dip limitation of

one-way wave equation migration. However, its imaging

quality depends on the initial beam parameters, which can

make the beam width increase and wave-front spread with

the propagation of the central ray, resulting in poor

migration accuracy at depth, especially for exploration

areas with complex geological structures. To address this

problem, we present an adaptive focused beam method for

shot-domain prestack depth migration. Using the infor-

mation of the input smooth velocity field, we first derive an

adaptive focused parameter, which makes a seismic beam

focused along the whole central ray to enhance the wave-

field construction accuracy in both the shallow and deep

regions. Then we introduce this parameter into the GBM,

which not only improves imaging quality of deep reflectors

but also makes the shallow small-scale geological struc-

tures well-defined. As well, using the amplitude-preserved

extrapolation operator and deconvolution imaging condi-

tion, the concept of amplitude-preserved imaging has been

included in our method. Typical numerical examples and

the field data processing results demonstrate the validity

and adaptability of our method.

Keywords Gaussian beam � Adaptive focused beam �
Amplitude-preserved migration � Depth imaging

1 Introduction

With the development of petroleum exploration, seismic

surveys have gradually extended into areas with complex

geological conditions, such as regions with continental

faulted basins and offshore salt deposits. This situation

presents new challenges for seismic imaging, which com-

pel us to explore a more efficient, accurate, and robust

migration method than the existing ones.

Over the past decades, dramatical progress has been

achieved in the field of prestack depth imaging. Ray-based

Kirchhoff migration has been developed from 2D to 3D

(Hubral et al. 1996; Epili and McMechan 1996; Sun et al.

2000), from single-arrival migration (including first arrival,

most energy arrival etc.) to multi-arrival migration

(Brandsberg-Dahl et al. 2001; Xu et al. 2001) and from

kinematic migration to true-amplitude migration (Schle-

icher et al. 1993; Albertin et al. 1999; Xu and Lambaré

2006). Due to its high efficiency and flexibility, Kirchhoff

migration is still the workhorse in practical applications,

especially for land seismic data. On the other hand, one-

way wave equation migration accuracy has also been

improved significantly using different numerical algo-

rithms, such as split-step Fourier, Fourier finite difference,

and generalized screen propagator (Stoffa et al. 1990;

Ristow and Rühl 1994; Chen and Ma 2006; Li et al. 2008;

Kaplan et al. 2010; Huang and Fehler 2000; Liu and Yin

2007; Zhu et al. 2009; De Hoop et al. 2000; Wu et al. 2001;

Le Rousseau and De Hoop 2003; Liu et al. 2012). Reverse

time migration based on two-way wave equations has

become more and more practical in actual projects as
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computer technology develops (Baysal et al. 1983), and

many geophysicists have provided lots of constructive

suggestions about the problems of time-consuming defects

and low frequency imaging noise (Fletcher et al. 2006;

Symes 2007; Chattopadhyay and McMechan 2008;

Abdelkhalek et al. 2009; Li et al. 2010).

Gaussian beam migration (GBM) is an elegant and

effective depth imaging method, which not only retains the

advantage of ray-based migration, such as flexibility and

efficiency, but also has an imaging accuracy comparable

with wave equation migration. Ever since the basic

framework of GBM was presented by Hill (1990, 2001), it

has been extended to irregular topographic conditions

(Gray 2005; Yue et al. 2012; Yang et al. 2014) and true-

amplitude migration (Gray and Bleistein 2009). In addi-

tion, many new seismic beam imaging methods have been

developed, such as fast beam migration (Gao et al. 2006,

2007), focused beam migration (Nowack 2008), and laser

beam migration (Xiao et al. 2014), which expand the

members of the beam migration family. Most of them,

however, are based on the GBM framework and use a

constant initial beam parameter, which makes a seismic

beam focused either at the initial position or at a certain

depth. Thus, the imaging accuracy varies along the central

ray, highest at the focus point and decreasing as moving

away from the focus point.

Aiming at this problem, Nowack (2009) has provided a

dynamically focused beam method, which improves the

deep imaging quality to some extent. Because this method

is achieved using a unified beam width for all the subsur-

face imaging points and performing many local slant stacks

and quadratic phase corrections for each beam, it does not

consider the effects of velocity variation on the beam width

and is very time-consuming. Hu and Stoffa (2009) have

implemented a modified GBM for low-fold seismic data

acquired sparsely, utilizing the instantaneous slowness of

the local plane wave. Derived from the Maslov wave

equation solution, Zhu (2009) also proposed a complex-ray

beam method for exploration areas with complex topog-

raphy. All methods mentioned above use the Fresnel zone

information to limit the seismic beam energy and improve

the imaging quality, which provides new options for beam

migration.

In this paper, we have proposed another way to optimize

the beam propagation shape and implemented an adaptive

focused beam migration method for common-shot data,

which could improve the shallow and deep imaging quality

simultaneously. Using the information of the input

smoothed velocity field, we derived an adaptive focused

parameter that makes a seismic beam focused at the whole

central ray, and then use it to construct a Green function in

the acoustic medium and to solve the seismic migration

problem. Unlike the dynamically focused beam method

proposed by Nowack, our method uses the single input-

trace imaging approach of classic Kirchhoff migration to

avoid repeating local slant stacks for a beam at different

imaging points, which is helpful to speed up the migration

process. However, compared with Hill’s GBM, there is a

tradeoff in computational efficiency, as now the number of

emergent beams increases. In addition, using the ampli-

tude-preserved extrapolation formula and deconvolution

imaging condition, we have included the concept of

amplitude-preserved imaging in our method. Typical

numerical examples and the field data processing results

demonstrate the feasibility and validity of the proposed

method.

2 Theory

2.1 Adaptive focused beam

Considering a Gaussian beam from Qðs0; 0Þ to Pðs; 0Þ in a

2D acoustic medium, its ray propagation matrix can be

written as

pðs; s0Þ ¼
q1ðsÞ q2ðsÞ
p1ðsÞ p2ðsÞ

� �
; ð1Þ

where ðs; nÞ are ray-centered coordinates as shown in

Fig. 1, ðp1ðsÞ; q1ðsÞÞ and ðp2ðsÞ; q2ðsÞÞ are two fundamen-

tal solutions of dynamic ray tracing equation system

(Červený et al. 1982).

If the beam focused at P and its beam width equals lðsÞ,
then the complex dynamic parameter at the initial position

can be calculated by

qðs0Þ
pðs0Þ

� �
¼ pðs; s0Þ�1 �ixref l

2ðsÞ
1

� �
; ð2Þ

here xref denotes the referenced frequency, i ¼
ffiffiffiffiffiffiffi
�1

p
and

lðsÞ takes the following form

lðsÞ ¼ 2pvðsÞ=xref ; ð3Þ

where vðsÞ is the velocity of central ray.

Further, using the relation

(s,n)
O(s0,0)

n
r

P(s, 0)

τ
r

Fig. 1 Ray-centered coordinate system
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e ¼ qðs0Þ=pðs0Þ; ð4Þ

We obtain a new initial beam parameter

eðsÞ ¼ �q2ðsÞ � ixref l
2ðsÞp2ðsÞ

q1ðsÞ þ ixref l2ðsÞp1ðsÞ
: ð5Þ

Unlike the Gaussian beam and focused beam, the initial

parameter in Eq. (5) is no longer a constant, but a function

of ray arc length. This choice makes the main energy of

the beams focus in the range of a wavelength along the

whole ray. For the convenience of discussion, we define

the beam determined by eðsÞ in Eq. (5) as the adaptive

focused beam.

Now we analyze the propagation property of the adap-

tive focused beam briefly. Considering an inhomogeneous

medium as shown in Fig. 2a, which includes a high-speed

layer and a low-speed layer in a constant-gradient velocity

background, the adaptive focused beam keeps a narrow

beam width and plane wave-front along the whole central

ray (see Fig. 2b). Besides, it has a small beam width at the

low-speed layer and large beam width at the high-speed

layer marked by the blue ellipses in Fig. 2b, which is

helpful to resolve the steep-dip reflectors and velocity

abnormal bodies in seismic imaging. For a Gaussian beam,

however, the beam width increases quickly and the wave-

front diffuses rapidly (see Fig. 2c), which result in inac-

curate travel-time and amplitude extrapolated from central

ray at deep parts, especially in a medium with strong lateral

velocity variation.

2.2 Green function represented with the adaptive

focused beam integral

With the initial parameter eðsÞ in Eq. (5), we can write the

expression of the adaptive focused beam in the frequency

domain as

Uðs; n;xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðs0ÞvðsÞ

eðsÞq1ðsÞ þ q2ðsÞ½ �vðs0Þ

s

� exp ix sðsÞ þ 1

2

eðsÞp1ðsÞ þ p2ðsÞ
eðsÞq1ðsÞ þ q2ðsÞ

n2
� �� �

:

ð6Þ

where x denotes the circular frequency, s is the travel-time

of central ray.

According to Müller (1984), Green’s function at pointM

shown in Fig. 3 can be approximately represented with an

integral over all the rays of beams, i.e.,

GðM;xÞ ¼
Z/0þp=2

/0�p=2

Uð/; sÞU/ðs; n;xÞd/; ð7Þ

where Uð/; sÞ is an integral weight coefficient for the

adaptive focused beam with emergence angle /.
If the weight coefficientUð/; sÞwas known, Eq. (7) could

be used to calculate the seismic wave-field at any point of the

medium. Now we determine the function Uð/; sÞ in a

homogenous medium with constant velocity v0. Denoting

Fð/Þ ¼ Uð/; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð/; s0ÞvðsÞ

eð/; sÞq1ðsÞ þ q2ðsÞ½ �vðs0Þ

s

f ð/Þ ¼ �i sðsÞ þ 1

2

eð/; sÞp1ðsÞ þ p2ðsÞ
eð/; sÞq1ðsÞ þ q2ðsÞ

n2
� �

:

ð8Þ

Equation (7) can be rewritten as

GðM;xÞ ¼
Z/0þp=2

/0�p=2

Fð/Þ exp �xf ð/Þ½ �d/: ð9Þ

In a homogeneous medium, we have (see Fig. 3)

sðsÞ ¼ r cosð/� /0Þ=v0; n ¼ r sinð/� /0Þ
q1 ¼ p2 ¼ 1; p1 ¼ 0; q2 ¼ v0r cosð/� /0Þ:

ð10Þ

0

1

2

3

4

5

D
ep

th
, k

m

Distance, km
0 1 2 3 4 5

0

1

2

3

4

5

D
ep

th
, k

m

Distance, km

1500

2000

2500

3000

3500

m/s

0 1 2 3 4 5
0

1

2

3

4

5

D
ep

th
, k

m

Distance, km
0 1 2 3 4 5

(a) (b) (c)

Fig. 2 The propagation of different seismic beams. a Velocity model, b adaptive focused beam, c Gaussian beam
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Inserting the latter expression in the Eq. (8), we obtain

Fð/Þ ¼Uð/; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð/; s0Þ

eð/; sÞþ v0r cosð/�/0Þ

s

f ð/Þ ¼�i r cosð/�/0Þ=v0þ
1

2

r2 sin2ð/�/0Þ
eð/; sÞþ v0r cosð/�/0Þ

� �
:

ð11Þ

In a smoothed medium, e/ ð/; sÞ can be expanded with

Taylor’s formula as follows

eð/; sÞ ¼ eð/0; sÞ þ e/ð/0; sÞð/� /0Þ; ð12Þ

where e/ð/0; sÞ denotes the partial derivative of eð/0; sÞ
with respect to /.

It is easy to see from Eq. (11) that the saddle point of

Eq. (9), defined by f/ð/Þ ¼ 0, is / ¼ /0. So we assume

that in the vicinity of /0, which contributes most to Eq. (9),

Uð/; sÞ can be replaced by Uð/0; sÞ. Then, the corre-

sponding approximation of Fð/Þ and f ð/Þ takes the form

Fð/Þ¼Uð/0;sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð/0;s0Þþe/ð/0;s0Þð/�/0Þ

eð/0;sÞþe/ð/0;sÞð/�/0Þþv0r

s

f ð/Þ¼�ir

v0
þ ir

2v0

eð/0;sÞð/�/0Þ2

eð/0;sÞþv0r
þv0re/ð/0;sÞð/�/0Þ3

eð/0;sÞþv0r½ �2

( )
:

ð13Þ

Under the far-field condition, the latter expressions can

be further reduced to

Fð/Þ ¼Uð/0; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð/0; s0Þþ e/ð/0; s0Þð/�/0Þ

v0r

s

f ð/Þ ¼�ir

v0
þ i

2v20
eð/0; sÞð/�/0Þ2þ e/ð/0; sÞð/�/0Þ3
h i

:

ð14Þ

Therefore, we obtain the approximate expression of

Green’s function represented by the adaptive focused beam

integral as

Gðr;/0Þ � Uð/0; sÞ
expðixr=v0Þffiffiffiffiffiffiffi

v0r
p H; ð15Þ

where

H ¼
Z/0þp=2

/0�p=2

d/ eð/0; sÞ þ e/ð/0; sÞð/� /0Þ
� �1=2

exp
ix

2v20
eð/0; sÞð/� /0Þ

2 þ e/ð/0; sÞð/� /0Þ
3

h i	 

:

ð16Þ

Comparing Eq. (15) with the leading term in the

expansion of Green’s function obtained by asymptotic ray

theory (ART):

G � exp ixr=v0 þ isgnðxÞp=4½ �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p xj jr=v

p ; ð17Þ

we obtain

Uð/0; sÞ ¼
v0 expðisgnðxÞp=4Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2p xj j

p
H

: ð18Þ

In order to simplify the integral of Eq. (16), here we

consider two extreme cases:

Case 1 e/ð/0; sÞ ¼ 0; eð/0; sÞ 6¼ 0

H ¼ v0

ffiffiffiffiffiffi
2p
ix

r
; Uð/0; sÞ ¼

i

4p
ð19Þ

Case 2 e/ð/0; sÞ 6¼ 0; eð/0; sÞ ¼ 0;

H ¼ 2

3
v0

ffiffiffiffiffiffi
2p
ix

r
; Uð/0; sÞ ¼

i

6p
ð20Þ

Case (1) means there is no variation of eð/; sÞ in the

neighborhood of /0, and the corresponding integral coef-

ficient is consistent with that proposed by Červený et al.

(1982). Case (2) means there is strong variation of eð/; sÞ
around /0, but the integral coefficient in this case is only

the 2/3 times of that of case (1), which means Uð/0; sÞ has
only a relatively mild dependence on the beam parameter

eð/; sÞ. Thus, it appears reasonable to use the results of

case (1), and we obtain the expression of Green’s function

represented by the adaptive focused beam integral

GðM;xÞ ¼ i

4p

Z/0þp=2

/0�p=2

U/ðs; n;xÞd/: ð21Þ

In order to demonstrate the validity of Eq. (21), we

compare it with the analytic Green’s function calculated

with ART in a homogeneous medium, where the velocity is

M

P

S

Ray Ω

r = SM

n = MP

Ф−Ф0

s = SP

Ray Ω0

Fig. 3 Green’s function constructed with adaptive focused beam

summation (referenced to Červený et al. 1982)

420 Pet. Sci. (2015) 12:417–427

123



2000 m/s and the reference frequency and the data fre-

quency are all 10 Hz. The results are shown in Fig. 4. It is

easy to see that both the real and imaginary parts of the

Green’s function calculated with the two methods are

similar for most distances, except the real part in the

shallow zone marked by the green arrow. One possible

explanation is that an adaptive focused beam appears a

plane wave at the initial point and its beam width is about a

wavelength, which is not consistent with the point source

wave-field calculated with Eq. (17). But the near-source

error can be neglected in practical seismic modeling and

imaging applications.

2.3 Adaptive focused beam migration formula

Nowack (2009) has used many local slant stacks and

quadratic phase corrections for every beam in the dynam-

ically focused beam migration, which is time-consuming

and complex in designing the implementation algorithm.

Here we adopt the single input-trace imaging approach of

classical Kirchhoff migration to implement the adaptive

focused migration. As a result, our method is more com-

puter intensive than Hill’s method, but it is more efficient

than Nowack’s method and can be accepted given the

current level of computer power for an accurate depth

image of subsurface geological structures.

The main point of our method is replacing the Green’s

function by its approximate form in terms of the adaptive

focused beam integral. From the latter section, we know

the Green’s function from x0 to x can be written as

Gðx; x0;xÞ ¼ i

4p

Z
d/Aðx; x0Þ exp ixTðx; x0Þ½ �: ð22Þ

Here Aðx; x0Þ and Tðx; x0Þ are the complex amplitude

and travel-time of the adaptive focused beam respectively,

and they have the following form

Aðx; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðx0ÞvðxÞ

eðxÞq1ðxÞ þ q2ðxÞ½ �vðx0Þ

s

Tðx; x0Þ ¼ sðx; x0Þþ 1

2

eðxÞp1ðxÞ þ p2ðxÞ
eðxÞq1ðxÞ þ q2ðxÞ

n2x;

ð23Þ

where eðxÞ is the adaptive focused beam parameter defined

in Eq. (5).

According to the true-amplitude GBM formula pre-

sented by Gray and Bleistein (2009), the up-going and

down-going wave-fields can be written as

PUðxP;xS;xÞ¼�2ix
Z

dr
cos/R

vR
G�ðxP;xR;xÞPUðxR;xS;xÞ

PDðxP;xS;xÞ¼�2ix
cos/S

vS
GðxP;xS;xÞ;

ð24Þ

where xS, xR; and xP are the Cartesian coordinates of

source, receiver, and imaging point, respectively, /S and

/R are the ray emergence angles from surface at source and

receiver (see Fig. 5), PUðxR; xS;xÞ is the recorded wave-

field, vS and vR are the velocity at source and receiver

separately, ‘‘*’’ denotes the complex conjugate.

Inserting Eq. (22) into Eq. (24) and using the decon-

volution imaging condition

RðxP; xSÞ ¼ 1

2p
cos/S

vS

Z
dxix

PUðxP; xS;xÞP�
DðxP; xS;xÞ

PDðxP; xS;xÞP�
DðxP; xS;xÞ

:

ð25Þ
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Fig. 4 Real (a) and imaginary (b) parts of Green’s function calculated with ART and adaptive focused beam methods
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We obtain the shot-domain adaptive focused beam

migration formula

RðxP; xSÞ ¼ �1

8p3
cos/S

vS

Z
dx

Z
dr

ix3

PDP
�
D

ZZ
d/Sd/R

� cos/S

vS
cos/R

vR
A�
SA

�
R exp �ixT�ð ÞPUðxR; xS;xÞ:

ð26Þ

To reduce the computational cost, Gray and Bleistein

(2009) used the stationary-phase approximation to simplify

the double integral about the emergence angles of source

and receiver. Here we adopt this accelerating strategy.

Denoting

/m ¼ /S þ /R

/h ¼ /R � /S;
ð27Þ

Equation (26) can be rewritten as

RðxP; xSÞ ¼ �1

16p3
cos/S

vS

Z
dx

Z
dr

ix3

PDP
�
D

ZZ
d/md/h

� cos/S

vS
cos/R

vR
A�
SA

�
R exp �ixT�ð ÞPUðxR; xS;xÞ:

ð28Þ

Further, using the stationary-phase approximation to

calculate the inner integral with respect to /h and the term

of source illumination PDP
�
D, we obtain the final adaptive

focused beam migration formula

RðxP; xSÞ ¼ �1

4p
ffiffiffiffiffiffi
2p

p
Z

dx
Z

dr
ffiffiffiffiffi
ix

p
x
Z

d/m exp �ixT�ð Þ

� cos/S

vS

� �2
cos/R

vR
A�
SA

�
R

ASj j2
T 00
S ð/

S
0Þ

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�00ð/h

0Þ
q PUðxR; xS;xÞ;

ð29Þ

where

T ¼ TðxP; xSÞ þ TðxP; xRÞ

T 00
S ð/

S
0Þ ¼

qðxSÞq2ðxPÞ
qðxPÞv2ðxSÞ

� �

T�00ð/h
0Þ ¼

qðxSÞq2ðxPÞ
qðxPÞv2ðxSÞ þ

qðxRÞq2ðxPÞ
qðxPÞv2ðxRÞ

� ��
;

ð30Þ

/h
0 is the stationary value, i.e., when /m is fixed, /h

0 min-

imizes the imaginary part of the total time T. /S
0 and /

R
0 are

the corresponding emergence angles of source and receiver

determined by Eq. (27).

3 Numerical examples

We present a hierarchy of numerical examples in this

section. First, we use a simple horizontal layered model to

test the amplitude-preserved property of the proposed

method. Then, we carry out two applications of this method

to the Marmousi dataset and the field data of a survey in

East China, respectively.

To show how the adaptive focused beam migration

works, we first apply it to a layered model in a medium

with constant velocity of 2000 m/s, which simulates

reflections from density contrasts as shown in Fig. 6a.

Three horizontal reflectors with identical reflection coeffi-

cients are placed at depths of 2000, 3000, and 4000 m. A

common-shot record shown in Fig. 6b, with a recording

aperture of 3750 m on either side of the source, is migrated

with our method, and the result is displayed in Fig. 6c. The

normalized migration amplitude of reflectors and distances

is shown in Fig. 7. Half-opening angles were limited to 50�
in the migration.

It is easy to see that the proposed method has eliminated

the influences of offset and images the reflectors accurately

(see Fig. 6c). On the other hand, the amplitude-preserved

extrapolation formula and deconvolution imaging condi-

tions have eliminated the reflection amplitude difference

caused by the different incident angles (see Fig. 7a) and

compensated the deep energy loss caused by geometric

spreading (see Fig. 7b), leading to the migration amplitude

being proportional to the vertical reflection coefficients in

effective aperture. Migration aperture truncation artifacts

marked by red arrows in Fig. 7a begin to interfere with the

amplitudes at the distance corresponding to half-opening

angles approaching 50�.
The second example is a synthetic dataset from the 2D

Marmousi model as shown in Fig. 8a. The model is about

9.2 km long and 3 km deep, and is characterized by strong

lateral velocity variations that cause complicated multi-

pathing of the seismic energy. Because the smoothed

velocity is required in ray-based migration for numerical
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Fig. 5 Scheme of adaptive focused beam migration

422 Pet. Sci. (2015) 12:417–427

123



stability in ray tracing, here we use a damped least squares

algorithm to smooth the velocity (see Fig. 8b), which

permits us to specify the degree of smoothing of the first-

and second-order derivatives of the velocity (Popov et al.

2010). The depth images migrated with the Kirchhoff

method and GBM with different initial widths l0, one-way
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wave equation migration and the proposed method are

shown in Fig. 9, where the migration aperture is about

5 km and frequency range is from 5 to 60 Hz.

In general, all four methods have imaged the three main

faults, pinch-outs, and the anticline at the bottom of the

model. The Kirchhoff result shows lots of swing noise in
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the central deep parts with large lateral velocity variation,

which blurs the steep-dip fault boundaries and the anticline

(marked by blue arrows and green rectangle in Fig. 9a).

Figure 9b–d shows the effects of the initial width on the

imaging quality of GBM. It is noticed that both the shallow

and the deep structures are blurred and destroyed in the

image with initial width l0 = 2kavg (see the blue arrows

and green rectangle in Fig. 9b). The reason is that the large

initial width of the Gaussian beam makes its travel-time

and amplitude extrapolation inaccurate in the vicinity of

the whole ray. The migrated result with initial width l0
= kavg (the parameter proposed by Hill) appears relatively

cleaner at depth, but small-scale geological structures in

the shallow part are not defined well (see the blue arrows in
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Fig. 9c). That is because the Gaussian window width used

in plane wave decomposition, which is calculated by the

initial beam width, is still larger than the scale of shallow

structures. Figure 9d shows good resolution in the shallow

zone with initial width l0 = 0.25kavg (marked by the blue

arrows in Fig. 9d), but low imaging accuracy at depth (see

the green rectangle in Fig. 9d), which is caused by the

beam width increasing rapidly when using a small initial

width and becoming excessively large at deeper parts of the

beam. The wave equation migration resolves the simple

structures well, but it is unable to image the steep-dip faults

accurately due to its one-way approximation (see the blue

arrows in Fig. 9e). Adaptive focused beam migration, on

the other hand, produces little migration noise (see the

green rectangle in Fig. 9c), and defines the steep-dip

structures clearly (see blue arrows in Fig. 9c). The reason

is that adaptive focused beam is narrow and stable in

propagation along the whole central ray, which is critical

for imaging the structures with strong lateral velocity

variations. It is worthy to note that our method also

resolves the shallow part small-scale structures accurately

(see the red ellipse in Fig. 9f). One possible explanation is

that without slant stack, it reduces the beam spacing to

trace spacing, which has the potential to improve the

shallow resolution. As shown in Fig. 10, the proposed

method has compensated the deep energy loss and makes

the peak amplitude of the events basically consistent with

the main reflection coefficient.

The computer run time of our method is about four

times of that of GBM, which is caused by the increased

beam number and the removal of local slant stack. Under

the current computer power levels, however, it is accept-

able for an accurate depth image.

The final example is from a 2D seismic survey in east

China, which covers a basin edge with complex geological

structures. As shown in Fig. 11a, the grid size of the

velocity model is 809 9 1525 with a CDP spacing of

12.5 m and a depth sample of 4 m. A single-shot record of

the field dataset processed with muting, traces-killing, and

band-pass filtering is shown in Fig. 11b. The data were

migrated using Kirchhoff migration, GBM, and our

method, and the migrated results are shown in Fig. 12.

Compared with Kirchhoff and GBM sections, the image

migrated with our method is in general cleaner and the

events are more continuous and better defined as indicated

by the red arrows both at the shallow and the deep parts,

which makes it more convenient for subsequent

interpretation.

4 Conclusions

Using the information of the input velocity field to control

the beams shape, we have developed an amplitude-pre-

served adaptive focused beam method for shot-domain

prestack depth migration. This method represents an

improvement over GBM while still retaining its advantages

over Kirchhoff and wave equation migration, and is more

robust in imaging geologically complex structures. The

example with the constant-velocity model shows that our

method can eliminate the effects of geometric spreading

and incident angles on the migrated amplitude, producing a

depth section with correct kinematic and dynamic infor-

mation. The second example demonstrates that the adap-

tive focused beam method is superior to Kirchhoff and

Gaussian beam methods in imaging steep-dip structures

and producing less swing noise and fewer migration arti-

facts. More importantly, it shows that our method has high
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shallow resolution, which is helpful to define the shallow

small-scale geological structures. The example of field data

processing further confirms the conclusions obtained from

the previous two examples and shows its potential in

practical applications. Thus, adaptive focused beam

migration provides a new robust and flexible tool for

seismic depth imaging in geologically complex areas.
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