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Abstract The objective of this work is to implement a

pseudo-forward equation which is called PFE to transform

data (similarity attribute) to model parameters (porosity) in

a gas reservoir in the F3 block of North Sea. This equation

which is an experimental model has unknown constants in

its structure; hence, a least square solution is applied to find

the best constants. The results derived from solved equa-

tions show that the errors on measured data are mapped

into the errors of estimated constants; hence, Tikhonov

regularization is used to improve the estimated parameters.

The results are compared with a conventional method such

as cross plotting between acoustic impedance and porosity

values to validate the PFE model. When the testing dataset

in sand units was used, the correlation coefficient between

two variables (actual and predicted values) was obtained as

0.720 and 0.476 for PFE model and cross-plotting analysis,

respectively. Therefore, the testing dataset validates rela-

tively well the PFE optimized by Tikhonov regularization

in sand units of a gas reservoir. The obtained results indi-

cate that PFE could provide initial information about

sandstone reservoirs. It could estimate reservoir porosity

distribution approximately and it highlights bright spots

and fault structures such as gas chimneys and salt edges.

Keywords Porosity � Seismic inversion � Tikhonov
regularization � Similarity

1 Introduction

Porosity is a ignificant criterion in characterizing a reser-

voir and in determining flow patterns in order to optimize

the production of a hydrocarbon field. Also, reliable esti-

mation of porosity is critical for evaluating hydrocarbon

accumulations in a basin and to map potential pressure

seals in order to reduce drilling risk in the wildcats.

Porosity is mostly measured in the laboratory on the cored

rocks recovered from the reservoir or could be determined

by well-test data. As the well testing and coring methods

are expensive and time consuming, all wells in a typical oil

or gas field are logged using various tools to measure

petrophysical parameters such as porosity and density.

However, the spatial distribution of porosity between wells

is a very important concern in oil industry (Bhatt and Helle

2002; Tiab and Donaldson 2004). Seismic measurements

are often used to delineate the structure of reservoir bodies,

but are not often used to estimate the spatial distribution of

reservoir and rock properties. In other words, it is very

difficult to estimate the porosity directly from seismic data.

Inversion was used to improve the prediction of reservoir

properties from the 3D seismic. These predictions should

become more accurate as wells are added. The past studies

showed that inversion of seismic data into acoustic impe-

dance (AI) is widely used in hydrocarbon exploration to

estimate petrophysical properties. The acoustic impedance

is commonly used for porosity estimation, mostly based on

an empirical relationship between acoustic impedance and

porosity. However, the relationship differs from area to

area because the compaction model varies both laterally

and vertically. Thus, in many cases, in a large area,

porosity cannot be estimated directly from the acoustic

impedance using a single transform function (Anderson

1996). For this reason, Schultz et al. (1994) proposed the
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idea of using multiple seismic attributes to estimate log

properties away from well control. After that, various data

integration techniques such as neural networks were used

to derive petrophysical properties directly from seismic

attributes. The use of artificial neural networks (ANN) in

geophysical inverse problems is a relatively recent devel-

opment and offers many advantages when dealing with the

nonlinearity inherent in such applications (Baddari et al.

2009). ANN has been used to predict core properties from

well logs (Lim 2005), well log to well log transformations,

and seismic properties have been used to predict lithology

(Singh et al. 2007; Walls et al. 2000; Calderon and Cas-

tagna 2007; Joel et al. 2002), sonic logs and shale content

(Liu and Liu 1998), shale stringers in a heavy oil reservoir

(Tonn 2002), spontaneous potential (Banchs and Miche-

lena 2002), permeability (Lim 2005; Helle et al. 2001), and

porosity (Leite and Vidal 2011; Artun and Mohaghegh

2011; Singh et al. 2007; Calderon and Castagna 2007; Joel

et al. 2002; Pramanik et al. 2004; Daniel et al. 2001; Kevin

and Curtis 2004; Leiphart and Hart 2001; Russell et al.

1997). Multivariate linear regression (MLR), another

technique, is a simple extension of the well-known uni-

variate case. In these circumstances, log properties are

estimated from a linearly weighted sum of a number of

seismic attributes. This was first demonstrated to yield

accurate results by Russell et al. (1997). Although all of

these works may show significant advantages compared to

impedance-based methods, they have not presented a

specific mathematical equation to describe the relationship

between attributes and petrophysical properties. To solve

this issue, this research attempts to propose a nonlinear

mathematical equation to describe the relationship between

a seismic attribute (similarity) and the porosity value in a

sandstone reservoir. There are several advantages of this

mathematical model over the conventional inversion

methods: it predicts porosity log rather than acoustic

impedance; it uses seismic attribute (similarity) rather than

the conventional post-stack volume. It relies on a simple

forward model and knowledge of the seismic wavelet is not

required that may enhance resolution. In fact, this model

which transforms the similarity attribute of a sandstone

reservoir to a porosity value is called the pseudo-forward

equation (PFE) in this paper. The structure of PFE is

implemented based on the dataset of the gas reservoir of

the F3 block in the North Sea. This reservoir consists of

sand and shale layers, in which shale units are sandwiched

between the sand layers. Therefore, the role of PFE in both

rock types will be investigated. The initial parameters of

PFE are unknown and should be derived from data. This

study will use the algebra technique to solve the nonlinear

model and finally the quality of the implemented model

will be studied. A typical feature of inverse problems is

that they are ill-posed and a unique solution may not exist

and small errors in the data may cause prohibitively large

variations in the estimations of the quantity sought. To

overcome these difficulties one has to regularize the orig-

inal problem, that is, the original problem has to be

replaced by a nearby well-posed problem in order to obtain

a stable solution. One of the best known and most used

regularization methods is Tikhonov regularization. This

work will illustrate how Tikhonov regularization could

optimize the PFE acceptably in the North Sea reservoir and

ultimately the optimized PFE will be employed in the F3

reservoir to estimate the porosity distribution of the various

seismic sections and finally the quality of the implemented

model will be compared with results of a conventional

method. As mentioned above, most previous studies have

used AI to predict porosity. Therefore, cross-plot analysis

between AI and porosity derived from density logs is

performed to find a regression fit between two datasets.

Given a linear relationship provided by regression fit,

spatial distribution of porosity is estimated in the F3 block.

Thus, the comparison between developed models provides

a simple means of testing whether the model is imple-

mented correctly.

2 Geological setting

This research is facilitated by having F3 block data from

dGB Earth Sciences. The F3 block is located in the

northeastern part of the Dutch sector of the North Sea.

During the Cenozoic era, much of this region was a ther-

mally subsiding epicontinental basin, most of which was

confined by landmasses (Sørensen et al. 1997). During the

Neogene, sedimentation rates exceeded the subsidence

rate, and consequently shallowing of the basin occurred. A

large fluvio-deltaic system dominated the basin, draining

the Fennoscandian High and the Baltic Shield. The Ceno-

zoic succession could be subdivided into two main pack-

ages, separated by the Mid-Miocene Unconformity

(Fig. 1).

The lower package consists mainly of relatively fine-

grained gradational Paleogene sediments (Steeghs et al.

2000), whereas the package above consists of coarser

grained Neogene sediments with much more complex

geometries. Most of the above package is a progradational

deltaic sequence that could be subdivided into three units,

corresponding to three phases of delta evolution (Fig. 1).

The dominant direction of progradation is toward the west-

southwest and is expressed as sigmoid lineaments (clino-

forms) in the dip section (Tigrek 1988). Unit 2, containing

a conspicuous clinoform package, was chosen as the target

zone for gas accumulation, and forms the delta fore set

with a coarsening upward sequence. Its age is estimated as

Early Pliocene. The coarse sediments are attributed to a
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regression caused by the Neogene uplift of Scandinavia in

the Pliocene (Gregersen 1997).

3 Dataset

A 3D seismic survey in F3 block covering an area of

approximately 16 9 23 km2 has become publicly available

and is provided by a monograph of Aminzadeh and Groot

(2006). The data volumeconsists of 646 inlines and 947cross-

lines. The line spacing is 25 m for both inlines and cross-lines,

and the sample rate is 1 ms. A standard seismic data pro-

cessing sequencewas applied to the data.Data from fourwells

in the area are available, in particular well logs in true vertical

depths, including sonic and gamma ray logs. Density logs

were reconstructed from the sonic logs using neural network

techniques by dGBEarth Sciences. The density logswere also

used to calculate porosity logs for all wells. Figure 2 is a

seismic cross section of the studyarea that shows existingwell

locations (F06-1, F02-1, F03-2, F03-4).

In Fig. 2 gamma ray logs are displayed in every well and

one could separate the various shale and sand layers in F3

reservoir. The study area in this paper is the upper package

where coarser grained Neogene sediments with much more

complex geometries are located (450–1200 ms). In this

zone, the presence of a laminated shale and sand sequence is

proved especially in well No. F03-4. On the opposite side,

the sand layers are the main lithology present in well F03-2.

These sand and shale sequences constitute commercial gas-

bearing reservoirs and exhibit an approximate time range of

700–1000 ms. A basic rule for gamma ray log interpretation

is that lower values correlate with sandy layers and higher

values correlate with the shale-rich layers (Luthi 2001).

According to Fig. 2, there are two types of sediments that

could be clearly distinguished from the plots: shale-rich

sediments with generally higher gamma ray values ([70

API) that mostly belong to the upper and lower target zone

(units 1 and 3) and sand-rich sediments with generally low

gamma ray values (\70 API) that mostly belong to the

middle part of target zone (unit 2). To get better results in

the target zone, this research divides the dataset of F3

reservoir into two parts: shale-rich sediments data with

gamma ray values more than 70 API and sand-rich sedi-

ments data with gamma ray values less than 70 API.

4 Pre-processing

In this work, our objective is to find an operator, possibly

nonlinear, which could predict porosity from seismic data.

In fact, this paper chooses to apply not the seismic data

itself, but attributes of the seismic data. The reason for this

choice is that many of attributes are nonlinear; thus, the

predictive power of the method is increased. The next

reason is that there is often advantage in breaking down the

input data into component parts. It means that when the

Base Quaternary

Unit 3

Unit 2

Unit 1
Mid Miocene

Fine-grained sediments

Base Tertiary

Unconformity Concordance

Fig. 1 Sketch of the Neogene fluvio-deltaic system in the south of the North Sea (modified after Steeghs et al. 2000)
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raw seismic trace is divided into several mathematical

functions (attributes), one could study the behavior of

every attribute in contrast to the petrophysical properties

and if there is a well-determined linear correlation between

seismic attributes and reservoir properties, they will be

considered in analysis to predict the unknown properties.

Hundreds of seismic attributes have been developed but

only some of them are well enough understood to be

quantitative, and many are redundant. Also, a seismic trace

is the result of complicated interrelationships between bed

thickness, porosity, fluid saturation, lithological bound-

aries, and other rock properties (Kevin and Curtis 2004;

Satinder and Kurt 2008). In the present research, the

authors have considered statistically the behavior of more

than 15 attributes in four wells and they have found that

similarity is the fundamental attribute which shows more

correlation than other attributes. A detailed list of the

attributes used and their statistical parameters besides the

correlation coefficients of the extracted attributes are given

in Table 1.

According to Table 1, the similarity attribute is con-

sidered to be the optimal one to predict porosity as the

output in linearity and nonlinearity mode. In practice, it is

not too frequent to have greater correlation than 50 %–

60 % between seismic attributes and well log data, so this

work is satisfied with F3 data to find linear or nonlinear

relationships between two sets of input and output data.

Acoustic impedance is another seismic attribute that is

widely used to estimate porosity distribution of reservoir

rocks. Given the acoustic impedance attribute in the

inversion procedure, the simplest method to derive the

appropriate relationship between porosity and AI is to cross

F02-1 F06-1
400 600

F03-2 F03-4 1200

0.5

1

1.5

Z 7 104
API API

7 7 7104 104 104
API API

Unit 2

Unit 1

Unit 3

Unit 1

Unit 2

Unit 3

Unit 1

Unit 2

Unit 3

Cross-line

Fig. 2 The seismic section driven from original seismic data (inline 425) and it shows the location of wells and presents the gamma ray logs in

every well

Table 1 The list of used attributes and their correlation coefficients with porosity values

Studied attributes Number of points Minimum Maximum Average Standard deviation Correlation coefficient Sig.a

Energy 927 425,250 16,411,000 4,163,775 3,456,700.9 -0.23 0.000

Envelope 927 139.5344 8602.5 2411.765 1748.5479 -0.26 0.000

Spectral decomposition 927 304.8516 13,142 4835.486 2861.6049 -0.307 0.000

Similarity 927 0.6861 0.9488 0.871362 0.0608897 -0.45 0.000

a Sig statistical significance of the result. The result is significant if it is smaller than 5 %
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plot between two datasets. Assuming a linear relationship

between porosity and AI, a straight line may be fitted by

regression in Fig. 3. In Fig. 3a, the target log property

(porosity) is plotted against AI attribute using OpendTect

software. The cross correlation and the mean-squared

prediction error are 47 % and 6.35e-6, respectively. From

the linear regression fit, the distribution of porosity in the

reservoir in inline-228 is estimated (Fig. 3b). In this

research, the candidate attributes such as energy, envelope,

spectral decomposition, and similarity are used to predict

spatial distribution of porosity in the North Sea reservoir

using an experimental model which is constructed using an

algebraic technique, and then the results are compared with

conventional method of cross-plot analysis (Fig. 3a).

5 Pseudo-forward modeling

The development of a mathematical model that is able to

predict petrophysical properties should be performed based

on the physical concepts. These equations (the so-called

forward model) are often formulated using fundamental

seismic factors of the Earth such as wave velocity, density,

etc. Unlike the conventional procedure, this work intends to

extract an empirical model that is weakly supported by

experimental data. Although it is possible to introduce a

model from seismic data, the terms in the equation are

empirical and any functional connection to physical con-

cepts is not entirely justified. Therefore, because of empir-

ical nature of the proposed model, the developed model is

called pseudo-forward equation (PFE), in this work. As

described before, some seismic attributes were chosen for

prediction of spatial distribution of porosity. This paper has

designed various mathematical structures based on the

aforementioned attributes, but they have shown different

degrees of accuracy. Implicitly, it has been assumed that

multi-attribute functions are more valid than single-attribute

ones over the target zone. Improvements have focused on

accuracy enhancement, shorter equations, and improved

representation of the sand and shale regions. Finally, in all

these situations, various mixture models were developed

that exhibit varied behavior in contrast to sand and shale

layers. The ultimate empirical function is a single-attribute

equation based on the similarity attribute. Similarity is a

form of ‘‘coherency’’ that expresses how much two or more

trace segments look alike. The coherency attribute is a

measure of lateral changes in acoustic impedance caused by

variations in structure, stratigraphy, lithology, porosity, and

fluid content. The first coherency algorithm based on cor-

relation was proposed by Bahorich and Farmer (1995) and

then it was completed by Marfurt et al. (1998). For attributes

expressing coherence, it is generally true that they are

suitable for the indication of sudden changes between

neighboring channel sections. They are extremely good for

the detection of faults, fractured zones, or boundaries related

to lithological changes. There are several types of coherence

attributes. The best known one is the so-called coherency

cube, while recently developed methods are semblance-type

procedures, eigen structure or variance-based coherence,

and coherence based on the calculation of least squares

(Eichkitz et al. 2012). The so-called similarity attribute

characteristic for the coherence, used by this research, is a

simple one and can be calculated quickly. Its value between

two channel sections could be given by (OpendTect dGB

Plugins User Documentation 2012)

simðx; yÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

xi � yið Þ2
s

ffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

x2i

s

þ
ffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

y2i

s ; ð1Þ

where simðx; yÞ is the value of similarity between x and y

vectors containing N number of data. N could be defined

by a time gate. The numerator is the Euclidean distance in
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Fig. 3 a Cross plot between the target log (porosity) and the seismic

attribute (AI); b Distribution of porosity estimated using the

relationship established between porosity and AI
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the N dimension of vectors x and y, and the denominator is

the sum of the vectors’ lengths. In various research (San-

tosh et al. 2013), the similarity attribute map is applied to

enhance the fault structures and clear salt edges. To

implement the PFE on F3 block, the similarity attribute of

three wells (F06-1, F02-1, F03-2) besides the porosity

values from density logs are used to construct the structure

of PFE and well F03-4 is selected to evaluate the perfor-

mance of PFE. The PFE model is introduced as

Y ¼ aþ bs lnðsÞ þ c

lnðsÞ ; ð2Þ

where Y is denoted as porosity and s is the similarity

attribute. The constants of a, b, and c are fundamental

parameters that depend on behavior of porosity in the

reservoir. Equation 2 is proposed as an empirical model

which could fit approximately to the dataset in the F3

block. Note that a forward model has a physical concept to

analyze in inversion modeling but because of empirical

nature of the proposed model, in this work, Eq. (2) is called

the pseudo-forward equation (PFE). According to the

above, this study should solve the pseudo-forward equation

and estimate the optimized constants for a reliable pre-

diction and finally verify the fit between predicted and

observed data. To solve the pseudo-forward equation, a

linear algebraic approach is developed to invert the pseudo-

forward equation.

6 Inverse modeling

This research is faced with the situation that a quantity

(similarity) is measured at the surface of the Earth and the

aim is to know porosity of the rocks beneath the place where

we made the measurements. For each set of measurements

(similarity), a PFE is presented which approximately relates

it to the porosity. The PFE is a nonlinear function which

needs optimal constants to predict the porosity distribution

in a reservoir. The nature of these constants originates the

nature of the reservoir. Inverse theory is a method to infer

the unknown physical property (porosity) from measure-

ments (similarity). To solve the PFE first, it is represented in

the form of an operator equation:

d ¼ Gm; ð3Þ

where d is the vector of predictions (porosity), m is the

vector of the unknown parameters of the model (a; b; c),

and G is the theoretical function or the linear operator

which makes it possible to calculate d (porosity) from an

earth model defined by the m parameters (a; b; c). G is the

theory that predicts the porosity distribution in a reservoir

from the model parameters m. This theory is based on

seismic attributes. Mathematically, Gm is a functional, a

rule that unambiguously assigns a single real number to an

element of a vector space. Now let us introduce the

nomenclature of Eq. (3) more accurately. In these notes,

vectors will be denoted by bold lowercase letters, and

matrices will be denoted by bold uppercase letters. Suppose

there exist N measurements (similarity) in a field then there

are N values for the corresponding porosity data and we are

trying to determine the values of three model parameters

(a; b; c). Our nomenclature for data and model parameters

will be

Data: d ¼ ½d1; d2; d3; . . .; dN �T;
di ¼ ðPorosity value)i i ¼ 1; 2; 3; . . .;N

Model parameters: m ¼ ½a; b; c�T;
ða; b; cÞ = constants of PFE;

ð4Þ

where d and m are N and three-dimensional column vec-

tors, respectively, and T denotes transpose.

The model, or relationship between d and m, could

implement in elements of G matrix. Then, the equation of

PFE can be written as

d1 ¼ aþ bs1 lnðs1Þ þ
c

ln(s1Þ
d2 ¼ aþ bs2 lnðs2Þ þ

c

ln(s2Þ
..
.

dN ¼ aþ bsN lnðsNÞ þ
c

lnðsNÞ

ð5Þ

Getting the PFE equation set up in matrix notation is

essential before we can invert the system. Hence, the above

statements are written as

d1

d2

..

.

dN

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

1

1

..

.

1

s1 lnðs1Þ
s2 lnðs2Þ

..

.

sN lnðsNÞ

1= lnðs1Þ
1= lnðs2Þ

..

.

1= lnðsNÞ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

a

b

c

2

4

3

5: ð6Þ

Then d and m are N � 1 and 3� 1 column vectors,

respectively, and G is an N � 3 matrix with constant

coefficients. The logical next step is to invert Eq. (6) for an

estimate of the model parameters mest as

mest ¼ ðGÞ�1d: ð7Þ

This inverse problem reverses the process of predicting

the values of porosities. It tries to invert the operator G to

get an estimate of the model. A most common vector

concerned is the data error or misfit vector which plays an

essential role in the development of inverse methods

(Menke 1989). If dpre is calculated by

Pet. Sci. (2015) 12:428–442 433

123



dpre ¼ Gmest: ð8Þ

The misfit vector (data error vector) will be provided by

Data error vector: e ¼ dobs � dpre: ð9Þ

The dimension of the error vector e is N � 1. The total

misfit E between observed (dobs) and predicted data (dpre)

is considered as

E ¼ eTe ¼ ½ e1 e2 . . . eN �

e1
e2

..

.

eN

2

6

6

6

4

3

7

7

7

5

¼
X

N

i¼1

e2i : ð10Þ

The term E is a way to quantify the misfit between

predicted and observed data. The solutions which imple-

mented based on the misfit vector give rise to least squares

solutions (Menke 1989). In the next stage, the least square

procedure will be used to find a best fit model of PFE to the

F3 block dataset and the corresponding codes were written

in the Matlab environment.

6.1 Least square solution

The solution of an inverse problem consists of giving the

best solution for the model from the inversion of Eq. (5).

This relation is valid when the number of the equations is

equal to the number of parameters of the model. In this case,

the G matrix will be a square matrix which could be

invertible if the determinant of the matrix is different from

zero. In order to implement the PFE model with sufficient

generality, the available data are divided into three subsets.

The first subset is the training set derived from three wells

(F02-1, F06-1, F03-2), which is used to estimate the model

coefficients. The second subset is the validation set derived

from the same wells. This set of data which is not applied

during the development of the PFE model is used to validate

the model. The third subset is the testing set derived from

testing well (F03-4); this well which is not used during the

development of the PFE model, is applied to obtain the

overall accuracy of the PFE model. To get better model

parameters for PFE, this work divided the training and

validation sets into two groups: sand dataset (gamma ray

\70 API) and shale dataset (gamma ray[70 API); hence,

the PFE is solved in the form of two different datasets:

d ¼ Gm; sand dataset

ð268� 1Þð268� 3Þð3� 1Þ
d ¼ Gm; shale dataset

ð215� 1Þð215� 3Þð3� 1Þ

ð11Þ

The least square procedure is to take the partial

derivative of E with respect to each element in m and set

the resulting equations to zero. This will produce a system

of three equations that can be manipulated in such a way

that, in general, leads to a solution for the three elements of

m.

In summary, the least squares solution for m is given by

mLS ¼ ½GTG��1GTd: ð12Þ

ThemLS above is the solution that minimizes E, the total

misfit. It is noted that there exists mLS when the matrix

GTG has a mathematical inverse (Menke 1989). Mathe-

matically, the GTG has an inverse when the determinant of

the matrix is different from zero and it is not zero for both

datasets (sand and shale). The Eq. (12) is calculated for

both datasets as follows:

We note that the least square solutions 0:4253 0:4780½
0:0080�TSAND and 0:5211 0:7619 0:0115½ �TSHALE do not

fit the data exactly and are ones that minimize the misfit

vector. Now one can calculate the minimized E as follows:

ESAND ¼ eTe ¼ 0:0091

ESHALE ¼ eTe ¼ 0:0616:

ð14Þ

mLS
SAND

¼
0:5435 2:3385 0:0276
2:3385 10:4406 0:1158
0:0276 0:1158 0:0014

2

4

3

5

1

�0:1819
�4:3743

1

�17:50
�4:5963

� � �
� � �
� � �

1

�0:0897
�10:1013

2

4

3

5

0:3003
0:3008

..

.

0:3070

2

6

6

4

3

7

7

5

¼
0:4253
0:4780
0:0080

2

4

3

5

ð3� 3Þ ð3� 268Þ ð268� 1Þ

mLS
SHALE

¼
2:1986 8:8751 0:1386
8:8751 36:3829 0:5509
0:1386 0:5509 0:0089

2

4

3

5

1

�0:0981
�9:1346

1

�0:1028
�8:6643

� � �
� � �
� � �

1

�0:1964
�3:9539

2

4

3

5

0:3468
0:3514

..

.

0:2996

2

6

6

4

3

7

7

5

¼
0:5211
0:7619
0:0115

2

4

3

5

ð3� 3Þ ð3� 215Þ ð215� 1Þ
ð13Þ
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In the next section, the accuracy and qualification of the

responses obtained from the least square method are

addressed; however, Eq. (14) has provided a measurement

for validating the results. Before considering the next

section, Eq. (14) shows that the least square solution of

PFE for the sand dataset has more validity than for the

shale dataset. Nevertheless, this viewpoint may tend to

obscure an important aspect of the inverse problems.

Namely, the nature of the problem depends more on the

relationship between the data and model parameters than

on the data or model parameters themselves. Therefore, it

is essential that the qualification of the PFE itself is

investigated in the following.

7 Assessment of the quality of PFE model

The PFE model is solved by a least square technique for

two different layers:

PorositySAND ¼ 0:4253þ 0:4780s lnðsÞ þ 0:0080

lnðsÞ
PorositySHALE ¼ 0:5211þ 0:7619s lnðsÞ þ 0:0115

lnðsÞ :
ð15Þ

Equation (15) is expected to estimate approximately the

porosity of sand and shale layers of a reservoir using the

similarity attribute. But the prediction power of these

proposed equations should be discussed. The predictive

performance of solved PFEs on validation set is illustrated

in Fig. 4.

Figure 4 indicates obviously that PFE fitted the sand

dataset with acceptable accuracy but shale data could not

satisfy the PFE to estimate porosity values. The correlation

coefficient reflects a model’s ability to predict the output.

In statistics, it indicates how well data points fit a statistical

model—sometimes simply a line or curve. It is a statistic

used in the context of statistical models whose main pur-

pose is either the prediction of future outcomes or the

testing of hypotheses, on the basis of other related infor-

mation. It provides a measure of how well observed out-

comes are replicated by the model, as the proportion of

total variation of outcomes explained by the model. A

correlation coefficient of 1 indicates that the regression line

perfectly fits the data (Steel and Torrie 1960). The corre-

lation coefficient of PFE-SAND validates well the predic-

tive power of this experimental equation (0.938); therefore,

based on this evidence it should estimate the sand data of

well F03-4 (test well) acceptably. According to the result

of Fig. 4b, the structure of PFE cannot reliably estimate

porosity of shale sediments; therefore, this paper just

studies the PFE-SAND equation, and the purpose of PFE is

the PFE-SAND in the following. To evaluate the solved

PFE, 250 points of well F03-4 in reservoir with gamma ray

lower than 70 API are extracted. This well has not been

applied in implementation of the structure of PFE. Figure 5

illustrates the response of PFE to the test dataset.

According to Fig. 5, there is a main issue in the solved

PFE and it is obvious that this experimental equation could

not be successful in the prediction of the porosity values in

a sandstone zone. The authors believe that the main reason

of this issue is related to the nature of the inversion process;

it means that the inverse problem does not have a unique

response and it is known as an ill-posed problem. This is

because the noise in the measured data affects the quality

of the PFE. Any errors (noise) in the data will be mapped

into errors in the estimates of the model parameters. For

this reason, a model covariance matrix ½covm� needs to be

defined by assuming that ½cov d� ¼ IN , that is, all the data

variances are equal to 1 and the covariances are all 0

(uncorrelated data errors) (Menke 1989).
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If

G�1
g ¼ ½GTG��1GT; ð16Þ

then

½covm� ¼ G�1
g ½cov d�½G�1

g �T

¼ G�1
g ½G�1

g �T
: ð17Þ

The Eq. (17) is very helpful for getting a sense of the

basic stability of PFE. The mean of the stability is what the

expected noise is in the solution. In fact, ½covm� is a

function of the forward problem as expressed in G, and not

a function of the actual data. Therefore, it could show the

capability of the PFE equation to accept the noise in the

data and it is not necessary to know ½cov d� basically

(Menke 1989). This research just wants to have a quick

look at stability; hence, it is assumed that

½cov d� ¼ I: ð18Þ

The diagonal terms of ½covm� are the variances of

model parameters and the off-diagonal terms are the

covariances. The ½1; 1� entry in ½covm� is r2a, the variance

for a. Correspondingly, the standard deviation of the error

for a is ra. Therefore, the perfect model should have a

diagonal of zero in ½covm� matrix. Then the solution of

PFE is, however, essentially meaningless if the diagonal

entries of the corresponding covariance matrix are close to

zero. To see this, consider the covariance matrix ½covm�
for PFE:

½covm� ¼ G�1
g ½G�1

g �T ¼ ½GTG��1GT½½GTG��1GT�T

¼
0:5435 2:3385 0:0276
2:3385 10:4406 0:1158
0:0276 0:1158 0:0014:

2

4

3

5 ð19Þ

The above covariance matrix is a measure of how

uncorrelated noise with unit variance in the data is mapped

into uncertainties in the estimated model parameters. It

means, in the inverse problem of PFE, every solution could

be expressed as

a ¼ 0:4253; r2a ¼ 0:5435; ra ¼ 0:7372

! a ¼ 0:4253� 0:7372

b ¼ 0:4780; r2b ¼ 10:4406; rb ¼ 3:2312

! b ¼ 0:4780� 3:2312

c ¼ 0:0080; r2c ¼ 0:0014; rc ¼ 0:0374

! c ¼ 0:0080� 0:0374:

ð20Þ

According to the above equations, these are very large

variances for a; b; and c, which indicate that the solution,

while fitting the data using the least square solution, is very

unstable, or sensitive to noise in the data. Therefore, the

solved PFE for sand dataset [Eq. (15)] could not be relied

upon for prediction of porosity distribution as it is observed

in Fig. 5. This work tries to improve the stability of PFE

using the Tikhonov approach in the next part.

8 Improving the stability of PFE model using
the Tikhonov approach

In 1902, Jacques Hadamard indicated the notion of a well-

posed problem. A well-posed problem in the sense of

Hadamard is a problem that fulfills the following three

conditions:

(1) The solution exists.

(2) The solution is unique.

(3) The solution depends continuously on the problem

data.

If any of these conditions is not realized, the problem

becomes ill-posed. Note that both the first and second

conditions deal with the feasibility of the problem, and the

last condition relates to the possible implementation of a

stable numerical procedure for its resolution. The solution

of a problem is always based on some data, typically

obtained from experimentation. If the solution does not

depend ‘‘smoothly’’ on the problem data, small variations

on the data could create huge variations on the solutions,

resulting in strong instability which is not acceptable.

When solving ill-posed problems, the concept of regular-

ization immediately appears. Regularization is used to

well-pose a problem that is ill-posed. Historically, the so-

called Tikhonov regularization is one of the oldest and

most well-known techniques for stabilization (Wiener

1942). To apply Tikhonov regularization for optimizing the

PFE problem, the following minimization problem should

be considered (Tikhonov and Arsenin 1977):

min d�Gmk k2þe2 mk k2; ð21Þ

where e2 is a parameter that controls the influence of the

regularization term. Using the above statement the fol-

lowing Tikhonov solution is proved:
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mTikh ¼ GTGþ e2I
� ��1

GTd: ð22Þ

Care must be taken as it depends on the parameter e2;
the choice of this parameter highly influences the estimated

m. In practice, parameter e2 is determined by trial and

error, with the attendant trade-off between resolution and

stability. There are several heuristic ways to proceed in

order to select e2 (Wabha 1990; Hansen 1992; Hilgendorf

1997), but the criterion described below is based on a

balance between total variance of PFE and model resolu-

tion. It is a convenient graphical tool for displaying the

trade-off between the size of a regularized solution and its

fit to the given data, as the regularization parameter varies.

In this research, to have a better solution for the PFE

model, various total variances derived from different e2 are
illustrated in a graph. The total variance is defined as the

trace of the model covariance matrix, given by

Total variance ¼ trace [cov m�
¼ r2 trace GTGþ e2I

� ��1
n o

: ð23Þ

In the next step, we considered a plot of the total vari-

ance from Eq. (23) as a function of e2.
The total variance decreases, as expected, when the

regularization parameter is increased. For e2 ¼ 0; the total

variance of PFE is maximum and finally the PFE does not

have sufficient stability; it means this point is the least

square solution as discussed before. According to Fig. 6,

the best regularization parameter should be selected for

minimum total variance. But just using this graph, it is hard

to choose the most appropriate value for e2, because in

order to select the best regularization parameter, it is

important to achieve an acceptable balance between sta-

bility and accuracy of the solution by tuning carefully the

regularization parameter. For this reason, the plots for total

variance and trace (R) could help to choose the best one.

The model resolution matrix is given by

R ¼ GTGþ e2I
� ��1

GTG: ð24Þ

The model resolution matrix R measures the ability of

the inverse operator to uniquely determine the estimated

model parameters.

Figure 7 indicates that for e2 ¼ 0; the PFE constants are

determined perfectly. Comparing the plots of total variance

and the trace of the model resolution matrix shows that as

e2 increases, stability improves (total variance decreases)

while resolution degrades. This is an inevitable trade-off. It

seems that the most suitable value of the regularizing

parameter e2 is determined by selecting one intermediate

point on the corner of the trace (R) and total variance plots

(e2 ¼ 0:5). Such a point, indicated with a rectangle point in

Fig. 7, is supposed to provide, in terms of accuracy and

regularity, the value of the parameter corresponding to the

most balanced perturbed solution of the inverse problem.

As stated in the previous sections, the optimized solution

of PFE inverse problem could be calculated as

mTikh ¼ GTGþ 0:5 I
� ��1

GTd ¼
0:3075
�0:0211
0:0020

2

4

3

5 ð25Þ

½covm�Tikh ¼ ½GTGþ 0:5 I��1GT½½GTGþ 0:5 I��1GT�T

¼
0:0301 0:0518 0:0021
0:0518 0:2493 0:0024
0:0021 0:0024 0:0002

2

4

3

5

ð26Þ

aTikh ¼ 0:3075; r2a ¼ 0:0301; ra ¼ 0:1734

! aTikh ¼ 0:3075� 0:1734

bTikh ¼ �0:0211; r2b ¼ 0:2493; rb ¼ 0:4992

! bTikh ¼ �0:0211� 0:4992

cTikh ¼ 0:0020; r2c ¼ 0:0002; rc ¼ 0:0141

! cTikh ¼ 0:0020� 0:0141

ð27Þ
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PorosityTikh ¼ 0:3075� 0:0211s lnðsÞ þ 0:0020

lnðsÞ : ð28Þ

Equation (27) presents the optimized constants and their

variances. Variances are improved considerably by

Tikhonov regularization compared with Eq. (20); in the

following, to gain a better sense about prediction power of

optimized PFE, the testing set is applied again in order to

evaluate the new PFE [Eq. (28)].

The comparison between Figs. 5 and 8a indicates that

Tikhonov regularization has increased the predictive per-

formance of PFE and the optimized PFE could be an

indicator that there is a considerable nonlinear relation

between porosity values and similarity attribute. As the

testing set is exactly the same, the cross correlation

between actual porosity derived from the density log and

the estimated one is around 47 % using a linear regression

model (Fig. 8b), while the same increased to 72 % when

the PFE model is used (Fig. 8a). Based on cross validation

results, it seems that the developed PFE model could

estimate porosity distribution of sand units of a reservoir

with an acceptable quality. Although in shale units of

reservoir, the results of the PFE model are not significant

compared to the regression analysis.

According to the illustrated results in Fig. 9, it is found

that the developed PFE model shows an inverse correlation

faced with the shale units, while regression model could be

adapted in shale sediments better than in sand ones.

However, the PFE is not evaluated well with respect to the

shale units, but it could be considered for sandstone

reservoirs because it could obtain initial information about

reservoirs. Also, further studies are needed absolutely to

explore other aspects of this experimental equation. For

example, this research was done with assumption of

½cov d� ¼ I to obtain the model resolution matrix or the

authors did not consider prior information in solving the

PFE. Therefore, more research especially probabilistic

approach should be applied to develop this model.

9 Reservoir characterization using PFE
and regression analysis

In the following section, the authors attempt to apply the

optimized PFE in various cross sections of the F3 block as

an estimator and compare the illustrated outputs of the PFE

with cross-plot analysis between AI and porosity.
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Two cross sections are illustrated in inlines 228 and 339

of F3 block which provide the porosity distributions of the

reservoir using the optimized PFE model (Fig. 10a, c) and

regression equation (Fig. 10b, d). These outputs provided

in time range of 400–1150 ms indicate porosity distribu-

tion of only the upper package which is described in the

geological setting part. In this package, three sedimentary

units (units 1, 2, and 3) are identified. The boundary

between the units is plotted in Figs. 11 and 12 provided by

PFE model in inlines 244 and 442, respectively.

10 Discussion

In the previous sections, the PFE was introduced as a

nonlinear mathematical model to have ability to estimate

porosity. This model in a nonlinear mode is dependent on

the similarity attribute. At first, this model was fitted on the

implementing set using a least square solution and evalu-

ated with a different well. The initial results showed that

the PFE needed a different method to regularize. Then

Tikhonov regularization method was employed and

optimized PFE could present the results relatively well in

sand units, while when a conventional cross-plotting

method between AI and porosity is used, the accuracy of

results declined in sand units. In addition to address the

cross correlation of the developed models, the illustration

of the spatial distribution of porosity predicted by both

models is interpreted in the target zone. In order to better

differentiate the differences between PFE and cross-plot

analysis results, the outputs of both models are presented in

the same sections in Fig. 10. In Fig. 10c, d, it is evident

that the unit 2 has a higher porosity value than other units

(1 and 3) and does not exhibit any significant variations

except close to a vertical discontinuity which is known as a

gas chimney anomaly. The presence of gas chimneys has

been interpreted as hydrocarbon leakage pathways, and

mapping of such chimneys by neural network techniques

has been established as an exploration tool. Wells drilled

inside gas chimneys typically have higher pore fluid pres-

sure, higher mud gas readings, higher mud gas wetness,

more hydrocarbon shows, lower velocities, and higher

temperatures than wells drilled outside gas chimneys

(Løseth et al. 2008). Gas chimney and fault volumes
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extracted from 3-D seismic data were rapidly becoming

valuable tools for exploration and field development. In

Fig. 10a, b, the PFE model could detect this anomaly

which marks transition between the salt dome located in

unit 1 (Zechstein) and near surface gas pockets in Fig. 12.

The red polygon illustrated in Fig. 11 shows the possible

areas of this occurrence. The reason for this behavior of

optimized PFE is that its intrinsic properties originate from

the nature of similarity. The similarity attribute enhances

the fault structures and salt edges. Gas chimneys are a kind

of fault structure whose similarity and amplitude attributes

are usually used to detect these properties. In gas reser-

voirs, they identify the pathway of hydrocarbon migration

and when the target of study is the determination of opti-

mum drilling points, these structures could be an indicator

to show the probable location of hydrocarbon accumula-

tion. Also, in Figs. 10a and 12, a salt structure, the Zech-

stein salt dome, is identified by PFE in unit 1 and studying

these structures is very important because they are traps for

accumulation of hydrocarbon. In addition to the patterns

already defined in the PFE map, another anomaly could be

found at about 530 ms in the map. In fact, F3 block con-

tains a bright spot at about 530 ms possibly due to the

presence of a gas pocket. Chopra and Marfurt (2007)

demonstrate that reflections from gas-charged reservoir

rocks showed much larger amplitudes than reflections from

adjacent oil- or water-saturated zones. These are often

known as bright spots. In the output of the PFE model

(Fig. 10a), the bright spot is identified with a black arrow.

In PFE results, multiple layers of shale and sand sediments

are observed; however, it is proved that the PFE could not

match the shale dataset (Figs. 11, 12). Because the PFE

model was developed only using the dataset of sand sedi-

ments, this might allow it to tune more appropriately in the

sand units than shale layers. However, despite the inaccu-

racy of the PFE model in the shale units, it seems that there

is enough evidence of superiority in the results of PFE, and

the observations suggest that the PFE model has performed

well within the gas-bearing sand reservoir of the F3 block.

Various seismic anomalies such as chimneys, faults, frac-

tures, salt, bright spot, and sand bodies could be high-

lighted using the PFE technique that analyzes data with

combinations of similarity attribute and PFE could present

initial information about reservoir which is important for

determination of optimum points for drilling operations.

11 Conclusions

This work provides a comparative analysis between a

developed empirical model and conventional cross plotting

to characterize a North Sea reservoir in term of porosity.

The empirical model designed in a nonlinear mode has

three unknown constants which were optimized using

Tikhonov regularization based on the dataset taken from

sand units. This method is different from the cross-plotting

method, as it predicts porosity rather than acoustic impe-

dance. This method did not succeed in matching the PFE

on the shale dataset; therefore, this research concentrated

on the behavior of the PFE on the sand dataset. A Tikhonov

regularization parameter could improve the predictive

power of the PFE and PFE validated with correlation

coefficient equal to 0.72 for the testing set, while the same

coefficient was only 0.47 for cross-plot analysis. But the

developed models show a paradoxical behavior in shale

units and it is evident that a single transform function such

as PFE cannot be applied for estimation of petrophysical

properties in various lithologies. The point that is signifi-

cant in the seismic sections obtained by PFE is its capa-

bility in enhancing the gas chimneys. The reason for this

behavior of PFE is that its intrinsic properties originate

from the nature of similarity. The similarity attribute

enhances the fault structures and salt edges. Unit 2, which
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is known as one of the main gas reservoirs of F3 block,

shows higher porosity compared to the units 1 and 3 by

PFE. According to the observations in the outputs of PFE,

the ability to detect the geological structures such as faults

(gas chimney), folds (salt dome), and bright spots besides

porosity estimation of sandstone reservoirs could be a

guideline to select the drilling points. The Tikhonov reg-

ularization approach showed that the bias represents a

potentially significant component of the uncertainty in the

results of calculations of inverse problem of PFE. Since the

bias depends on something which is unknown for

researchers, it will be necessary to use a priori information

in order to estimate it. In this research, ½cov d� is an

important priori information assumed equal to the identity

matrix while it could be considered with more accuracy. In

the future work, determining ½cov d� should be investigated

and a probabilistic technique is proposed to apply to

develop the PFE model with further predictive power. On

the other hand, the physical base of PFE should be studied;

if the physical relationship between porosity and similarity

is investigated, probably the structure of PFE could be

optimized.
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