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Abstract In this study, the forecasting capabilities of a

new class of nonlinear econometric models, namely, the

LSTAR-LST-GARCH-RBF and MLP models are evalu-

ated. The models are utilized to model and to forecast the

daily returns of crude oil prices. Many financial time series

are subjected to leptokurtic distribution, heavy tails, and

nonlinear conditional volatility. This characteristic feature

leads to deterioration in the forecast capabilities of tradi-

tional models such as the ARCH and GARCH models.

According to the empirical findings, the oil prices and their

daily returns could be classified as possessing nonlinearity

in the conditional mean and conditional variance processes.

Several model groups are evaluated: (i) the models pro-

posed in the first group are the LSTAR-LST-GARCH

models that are augmented with fractional integration and

asymmetric power terms (FIGARCH, APGARCH, and

FIAPGARCH); (ii) the models proposed in the second

group are the LSTAR-LST-GARCH models further aug-

mented with MLP and RBF type neural networks. The

models are compared in terms of MSE, RMSE, and MAE

criteria for in-sample and out-of-sample forecast capabili-

ties. The results show that the LSTAR based and neural

network augmented models provide important gains over

the single-regime baseline GARCH models, followed by

the LSTAR-LST-GARCH type models in terms of mod-

eling and forecasting volatility in crude oil prices.

Keywords Volatility � Petrol prices � ARCH � STAR �
Neural networks � LSTAR-LST-GARCH family

1 Introduction

The volatility of crude oil prices has received much

attention recently because the crude oil is the most strategic

and the most traded commodity in the world. Crude oil is

traded internationally by many different players such as the

oil producing nations, oil companies, individual refineries,

oil importing nations, and speculators. Although crude oil

price is basically determined by its supply and demand

(Hagen 1994; Stevens 1995), it is also under the influence

of many irregular events like stock levels, economic

growth, political aspects, political instability, the decisions

implemented by OPEC, and further psychological expec-

tations of traders (Yu et al. 2008).

The volatility of oil prices is accepted to have important

effects on economic activity. The fluctuations of the

commodity market prices depend on the rise-and-fall of the

oil price so that any sudden increase or decrease in oil

prices cause economic slowdown and price fluctuations in

other commodity prices. As a result, crude oil price fore-

casting is a very important field of research, and model-

ing/forecasting oil prices is hindered by its intrinsic

difficulties such as the high volatility (Wang et al. 2005).

As the crude oil spot price series are usually considered as

a nonlinear and nonstationary time series, which is inter-

actively affected by many factors, predicting crude oil

price accurately is rather challenging (Yu et al. 2008).

Oil prices may not always adjust instantaneously to new

information, on the other hand, low liquidity and infrequent

trading in imperfect markets could lead to a delay in

response to new information (McMillan and Speight 2006;
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Monoyios and Sarno 2002; Lee et al. 2008). In this per-

spective, there is a significant literature focusing on

improving the capabilities of econometric models to model

oil prices. A fraction of the studies investigate the path

followed by the oil prices by utilizing various GARCH

models. In addition, many studies focus on the economic

factors that have had strong impacts on the increasing

volatility especially for the periods with regime changes.

One point to be taken into consideration is the fact that

regime changes caused by many economic factors decrease

the forecast capabilities of the single-regime models dras-

tically. Furthermore, economic factors have important

effects on the business cycles by disturbing the processes

followed by economic time series. As an example, the 1st

and 2nd oil shocks in 1974 and 1979 had significant

impacts on the performances of the econometric models.

Consequently the traditional volatility models which do

not take into consideration the regime switching charac-

teristics of the factors such as oil shocks became obsolete

in modeling volatility in petrol prices.

In this paper, the volatility in oil prices is aimed to be

investigated. In accordancewith this purpose, the oil priceswill

be modeled by improving both the conditional mean and the

conditional variance with nonlinear time series and neural

network models to achieve possible gains in forecasting and

modeling capabilities. The business cycles in the economies

reveal different dynamics under different regimes so that a

traditional GARCHmodel becomes insufficient once volatility

is encountered. The motive behind the usage of LSTAR

structure (one of the nonlinear time series modeling) is to

improving forecasting and modeling power of the GARCH

models for policy purposes. In addition to the expectation of

augmenting the GARCH models with LSTAR models, aug-

menting thesemodelswithMLPandRBF typeneural networks

would likely to bring increase in the forecasting capabilities.

With this respect, our study aims to incorporate regime

switching and neural networkswithGARCHmodels.With this

purpose, GARCH structure will be incorporated with LSTAR

and multi-layer perceptron (MLP) and radial basis function

(RBF) models. These three approaches consider the charac-

teristics of oil prices which exhibit strong regime changes in

addition to nonlinear volatility. Accordingly, at the first step,

ST-GARCH models will be extended to LSTAR-LST-

GARCH. Afterwards, by incorporating fractional integration

and asymmetric power properties, four models will be evalu-

ated: the LSTAR-LST-GARCH, LSTAR-LST-FIGARCH,

LSTAR-LST-APGARCH, and LSTAR-LST-FIAPGARCH.

At the second step, models will be augmented with RBF and

MLP type neural networks. Hence, the LSTAR type, nonlin-

earity is introduced in the conditional mean and conditional

variance processes of neural networks models to obtain the

LSTAR-LST-GARCH-MLPandLSTAR-LST-GARCH-RBF

models. Similarly, models are augmented with asymmetric

power terms and fractional integration. As a result, at the sec-

ond step, MLP and RBF neural networks are introduced to

obtain LSTAR-LST-GARCH-MLP and LSTAR-LST-

GARCH-RBF models. Following the asymmetric power and

fractional integration augmentations, models are denoted as

LSTAR-LST-GARCH-MLP and LSTAR-LST-GARCH-

RBF, LSTAR-LST-APGARCH-MLP and LSTAR-LST-

APGARCH-RBF, LSTAR-LST-FIGARCH-MLP and

LSTAR-LST-FIGARCH-RBF, and LSTAR-LST-FIAP-

GARCH-MLP and LSTAR-LST-FIAPGARCH-RBFmodels.

A literature review is given in Part 2. Econometric

methodology is given in Part 3 where both the newly

proposed LSTAR-LST-GARCH family and neural net-

work-based LSTAR-LST-GARCH-NN family of models

are evaluated. Empirical application to oil prices is given in

Part 4 and concludes in Part 5.

2 Literature review

Hamilton (1983, 1985) are among the early studies that

drew attention on the relationship between energy prices

and showed that oil prices have important effects on the

economy. Barone et al. (1998) suggested a semi-parametric

modeling technique for oil price forecasting. Further,

Alvarez et al. (2008) showed in their research that the

random walk-type behavior in energy futures prices, thus

the autocorrelation in oil prices diminishes over time.

Adrangi et al. (2001) tested the presence of low-dimen-

sional chaotic structure in crude oil, heating oil, and

unleaded gasoline futures prices with their sample starting

by the early 1980s. In their study, they pointed at chaotic

structure and high persistence in the series investigated and

concluded that chaotic structure and high persistence in the

data would create strong implications for regulators and

short-term trading strategies. Ewing and Maliq (2013)

employs univariate and bivariate GARCH models to

examine the volatility of gold and oil futures and showed

that incorporating structural breaks is important for

empirical analysis focusing on oil prices.

Ye et al. (2002, 2005, 2006) defined an econometric

model for evaluating WTI prices by using variables such as

the OECD petroleum inventory levels, relative inventories,

and high and low-inventory variables. Lanza et al. (2005)

analyzed crude oil and oil products’ prices by using error

correction models.

Further, many papers demonstrated that the prediction

performance might be very poor if the traditional statistical

and econometric models such as linear regressions are

employed (Weigend and Gershenfeld 1994). The main

reason behind is the phenomenon that the traditional sta-

tistical and econometric models are built on linear

assumptions, which, as a result, fail to capture the
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nonlinear patterns hidden in the crude oil price series (Yu

et al. 2008). It is the fact that the oil prices may not

always adjust instantaneously to the newly available

information. Low liquidity and infrequent trading that

occur under imperfect markets could cause to delays in

response, following the availability of new information

(McMillan and Speight 2006; Monoyios and Sarno 2002;

Lee et al. 2008).

To overcome the difficulty in terms of forecast accuracy

encountered in forecasting crude oil prices, Abramson and

Finizza (1991) study is among the early studies that fol-

lowed the neural network approach to model the crude oil

market. Elsharkawy (1998) showed that radial basis func-

tion type neural network model had better forecast accu-

racy than the conventional methods in terms of predicting

the oil formation volume factor, solution gas–oil ratio, oil

viscosity, saturated oil density, under-saturated oil com-

pressibility, and evolved gas gravity. Kaboudan (2001)

showed that though both neural networks and genetic

programming proved better results compared to the random

walk to model oil prices, genetic programing provided

superior results than the neural networks. Similarly, Mir-

mirani and Li (2004) showed that genetic algorithms and

ANN models provided better results in forecasting oil

prices. Tang and Hammoudeh (2002) derived a conclusion

that shows the importance of both nonlinearity and

heteroscedasticity in oil prices. They showed that by taking

the GARCH effects into consideration, a nonlinear

regression model with GARCH-type errors provide sig-

nificant gains in modeling OPEC oil prices. Malliaris and

Malliaris (2005) showed that the nonlinear models derived

by the neural network provided superior forecasting in the

majority of different oil types; namely for crude oil, heat-

ing oil, gasoline, and natural gas; with propane, the neural

network gave the least accurate prediction. Yu et al. (2007)

followed neural network modeling methods to forecast

crude oil prices and showed that NN models provide sig-

nificant gains in terms of different error criteria. Yu et al.

(2007, 2008) proposed an efficient EMD-based neural

network ensemble learning algorithm that uses feed-for-

ward neural networks for modeling and forecasting world

crude oil spot prices. Qunli et al. (2009) used radial basis

functions (RBF) and showed that a RBF type neural net-

work that benefits from wavelet transformations provided

better results than the linear approaches in modeling

monthly crude oil prices. Alizadeh and Mafinezhad (2010)

used neural network models that utilized a predefined crisis

variable to model and forecast Brent petrol prices and

showed that the model is capable in forecasting both in

normal and critical conditions. Bildirici and Ersin (2013)

modeled the oil prices with newly introduced LST-LST-

GARCH-MLP models.

3 Econometric methodology

Econometric modeling of volatility in the autoregressive

conditional heteroscedasticity (ARCH) specification of

conditional volatility gained significance especially fol-

lowing the important paper of Engle (1982). Further, the

model is extended to generalized ARCH (GARCH) model

by Bollerslev (1986), a model which has found many sig-

nificant applications to capture the distributional aspects

such as volatility clustering, heavy tails or excess kurtosis,

and non-normal distribution. Additionally, the asymmetric

power GARCH (APGARCH) model developed by Ding

et al. (1983) further augments the model with power

transformations without simple squared shocks and con-

ditional variances as in the traditional GARCH models.

Further, Baillie et al. (1996) and Bollerslev and Mikkelsen

(1996) proposed the fractionally integrated GARCH

(FIGARCH) model that encounters for the short-run

dynamics of the conditional mean process modeled fol-

lowing ARMA process in the standard GARCH model. An

important finding shown by Baillie et al. (1996) is that

financial macroeconomic time series are subject to long

memory characteristics such that volatility shows strong

persistency. Chung (1999) and Conrad and Haag (2006)

showed that the long-run persistence decays with hyper-

bolic rates. Tse and Tsui (1997) followed by Tse (1998)

propose a combination of the FIGARCH and APGARCH

model and the obtained FIAPGARCH model incorporates

fractional integration with asymmetric power terms to

capture the above-mentioned distributional aspects in

financial time series.

Further, one of the expectations is that by integrating

fractional integration with GARCH models, certain

improvements in terms of forecasting accuracy and

volatility modeling of oil prices could be achieved. Addi-

tionally, augmenting GARCH models with asymmetric

power terms to obtain APGARCH models and merging

fractional integration with APGARCH models to obtain

FIAPGARCH models provide improvements in terms of

volatility modeling. Considering the aspects such as

intervention in oil prices and sudden changes in prices,

FIGARCH and FIAPGARCH models provide important

tools to analyze the finite persistence in oil prices though

the models maintain assuming single-regime architectures

without taking regime switches or regime transitions.

3.1 LSTAR type nonlinearity in the conditional

mean and variance

To model nonlinearity in GARCH processes, Franses and

van Dijk (2000) evaluated the smooth transition GARCH

(ST-GARCH), where regime changes are governed with
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transition functions similar to the modeling and evaluation

techniques of STAR models for the conditional mean

processes developed by Terasvirta (1994). Lundberg and

Terasvirta (1998) developed the STAR-ST-GARCH model

that allows nonlinearity in both the conditional mean and

the conditional variance processes of a time series. Chan

and McAleer (2002, 2003) evaluated the statistical prop-

erties in context of estimation of STAR-GARCH models.

In the study, we will allow models to follow STAR type

nonlinearity both in the conditional mean and the condi-

tional variance which are evaluated under LSTAR-LST-

GARCH architecture. LSTAR-LST-GARCH models are

LSTAR-LST-GARCH, LSTAR-LST-FIGARCH, LSTAR-

LST-APGARCH, and LSTAR-LST-FIAPGARCH models

and possess both ST-GARCH (Lundberg and Terasvirta

1998) and STAR-GARCH characteristics since both the

conditional mean and the conditional variance are allowed

to follow STAR type nonlinearity. ST-GARCH model

shares similarities but have differences with the GJR-

GARCH (Glosten et al. 1993) and TGARCH (Zakoian

1994) models in terms of the transition function since ST-

GARCH models allow smooth transition functions instead

of threshold function in defining regime changes.

Further, the artificial neural network ARCH process

(ANN-GARCH) developed by Donaldson and Kamstra

(1997) augments the GJR model with multi-layer percep-

tron-based neural network architecture with logistic

squashing functions to capture nonlinearity by utilizing the

universal approximation property (Cybenko 1989) of ANN

models. In pursuit of these concepts, many papers devel-

oped neural network models. Lai and Wong (2001) con-

tributed to the nonlinear time series modeling methodology

by making use of single-layer neural networks; further,

modeling of NN models for estimation and prediction for

time series has important contributions governed by Wei-

gend et al. (1991), Weigend and Gershenfeld (1994), White

(1992), Hutchinson et al. (1994), Gencay and Liu (1997),

Gencay and Stengos (1997, 1998) and Refenes et al. (1997)

which contributed to financial analysis and stock market

returns estimation, to pattern recognition and optimization.

Dutta and Shekhar (1998) provided applications of neural

networks for bond ratings. NN modeling methodology is

applied successfully by Wang et al. (2005) for forecasting

the value of a stock index. Bildirici and Ersin (2009)

modeled NN-GARCH family models to forecast daily

stock returns for short- and long-run horizons and they

showed that GARCH models under NN architecture pro-

vide significant forecasting performance.

3.1.1 LSTAR-LST-GARCH model

Chan and McAleer (2002) discussed the STAR-GARCH

model that has STAR type nonlinearity in the conditional

mean process. Franses and van Dijk (2000) discuss the

STAR-STGARCH model that allows STAR type nonlin-

earity in both the conditional mean and the conditional

variance and is developed based on the Terasvirta (1994)

type LSTAR model with logistic transition function gov-

erning the dynamics of the transition between different

regimes. In the paper, the LSTAR-LST-GARCH model

will be extended to RBF type neural networks in addition

to MLP type variants proposed in Bildirici and Ersin

(2013).

At the first stage, the conditional mean process, yt, is

assumed to follow a LSTAR(p) process with two regimes

as,

yt ¼ h1;0 þ
Xr

i¼1

h1;iyt�i

 !
� 1� H et�1; c; nð Þð Þ

þ h2;0 þ
Xr

i¼1

h2iyt�i

 !
� H et�1; c; nð Þ þ et: ð1Þ

The conditional variance follows a smooth transition

LST-GARCH process,

r2t ¼ w1;0 þ
Xp

p¼1

a1;pe
2
t�p þ

Xq

q¼1

b1;qr
2
t�q

 !

� 1� H et�1; c; nð Þð Þ

þ w2;0 þ
Xp

p¼1

a2;pe
2
t�p þ

Xq

q¼1

b2;qr
2
t�q

 !

� H et�1; c; nð Þ; ð2Þ

where, the transition between regimes is defined with a

logistic function,

H et�1; c; nð Þ ¼ 1

1þ e�c et�1�nð Þ : ð3Þ

In the LSTAR-LST-GARCH model given in Eq.’s (1) and

(2) with the transition function Eq. (3), the speed of transition

function is determinedby the estimate of the c parameter and the

n is the threshold parameter. The logistic functionH et�1; c; nð Þ
is a twice differentiable continuous function bounded between

[0, 1] lower and upper bounds for different values of the tran-

sition variable et�1 and its distance to the threshold n (see Bil-

dirici andErsin 2013). The transition is observed to be relatively

slow for low values of c, though the transition between regimes

speeds up as c takes larger values. The ARCH and GARCH

parameter estimates a1;p, b1;q approach to a2;p, b2;q depending
on the transition between regimes defined with H et�1; c; nð Þ.
The stability condition, aþ bð Þ\1, could vary for different

values taken by the H et�1; c; nð Þ: as H et�1; c; nð Þ ! 1 for

et�1 [ n innovations larger than the threshold, based on the

regime dynamics the stability structure of themodel approaches

a1;p þ b1;q
� �

! a2;p þ b2;q
� �

. Further, for positive et�1 [ n,

as et�1 ! þ values,H :ð Þ ! 1;while, for negativevalues of the
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transition variable and as long as et�1\n, et�1 ! � negative

largevalues, transition function approachesH :ð Þ ! 0 zero.The

speed of transition is determined by the parameter c and the

above-mentioned characteristics of transition between volatility

dynamics of the two regimes are highly influenced by the values

taken by et�1, n and c. The inflection point for the transition

function occurs atH et�1; c; nð Þ ¼ 1=2 if the transition function

is equal to the threshold parameter, et�1 ¼ nwhere the stability

condition holds if a1;p þ a2;p
� �

þ b1;q þ b2;q
� �� �

=2
� �

\1.

Additionally, for very large values of the transition variable

c ! 1; and H(.) transition function behaves like the identity

function that gives sudden shifts between two regimes, i.e., for

c ¼ 1 and et�1\n,H(.) = 0 and, for et�1 [ n,H(.) = 1.As a

result, the ST-GARCH process reduces to the TAR-TGARCH

model for very large values of c. Further, if c ¼ 0, transition

functionbecomesH(.) = 0.5, andhence theprocess reduces to a

single-regime AR-GARCH(p, q) process.

3.1.2 LSTAR-LST-FIGARCH model

Fractionally Integrated GARCH (FIGARCH(1, d, 1))

model is developed under these findings by Bollersev and

Mikkelsen (1996) and Baillie et al. (1996) as an extension

of the GARCH model to account for long memory. In this

section, we will first evaluate fractional integration in a

GARCH setting to evaluate long memory in conditional

variance. Afterwards, smooth transition type nonlinearity

setting will be introduced to the evaluated FIGARCH and

FIAPGARCH models. The LSTAR-LST-FIGARCH model

generalizes the LSTAR-LST-GARCH type nonlinearity to

account for long memory in the conditional variance

process,

1� biLð Þr2t ¼ x1 þ 1� b1Lð Þ � 1� /1Lð Þ 1� Lð Þd;1
� ��

� et�1j j � h1et�1ð Þ2
�
1� H et�1; c; nð Þð Þ

þ x2 þ 1� b2Lð Þ � 1� /2Lð Þ 1� Lð Þd;2
� ��

� et�1j j � h2et�1ð Þ2
�
H et�1; c; nð Þð Þ

ð4Þ

with the transition function defined in Eq. (3). The range of

the cluster of the volatility depends on the transition

function and changes between H et�1; c; nð Þ ¼ 0 and

H et�1; c; nð Þ ¼ 1. Further, c is the speed of transition

parameter and c[ 0 ensures that the transition between the

regimes follows a nonlinear sigmoid type transition in

modeling the dynamics of the conditional volatility. The

constant term takes on values between u ¼ x= 1� að Þ and
u ¼ x= 1� bð Þ based upon whether the conditional

volatility is the regime dictated by H :ð Þ ¼ 0 and H :ð Þ ¼ 1.

Similar to the ST-GARCH model, the constant term ranges

between the extreme regimes, the level of conditional

volatility will change in different regimes (For ST-FIG-

ARCH models, readers are referred to Kılıç (2011) and

Bildirici and Ersin (2013).

3.1.3 LSTAR-LST-APGARCH model

The Asymmetric Power GARCH (APGARCH) model is

developed by Ding et al. (1983). The model is based on

different power transformations without simple squared

shocks and conditional variances as in the traditional

GARCH models. The STAR-ST-APGARCH model pos-

sesses nonlinear dynamics with smooth transition functions

to allow different asymmetric power terms in two regimes

with the following conditional variance process,

rd;it ¼ x0;1 þ
Xp

p¼1

ap;1 et�p;1

�� ��� cp;1et�p;1

� �d;1
 

þ
Xq

q¼1

bq;1r
d;1
t�q;1

!
� 1� H et�1; c; nð Þð Þ

þ x0;2 þ
Xp

p¼1

ap;2 et�p;2

�� ��� cp;2et�p;2

� �d;2
 

þ
Xq

q¼1

bq;2r
d;2
t�q;2ÞH et�1; c; nð Þ: ð5Þ

Similarly, the transition function is defined by Eq. (3) to

obtain the LSTAR-LST-APGARCH model. Accordingly,

the obtained model possesses such dynamics that both the

conditional mean and the conditional variance follows

nonlinear dynamics restricted to have two regimes between

which the transition is defined by a smooth and continu-

ously differentiable logistic function. The obtained model

is defined as the logistic smooth transition asymmetric

power GARCH model in which d represents the asym-

metric power parameter to be estimated by nonlinear least

squares or maximum likelihood methods as in the

APGARCH methodology of Conrad et al. (2010). The

estimation of the threshold parameter n and the c parameter

that defines the speed of transition is conducted through a

grid search following the Terasvirta (1994).

3.1.4 LSTAR-LST-FIAPGARCH model

Following the LST-FIGARCH model structure, smooth

transition fractionally integrated asymmetric power

GARCH model denoted as LST-FIAPGARCH which is

obtained by allowing the smooth transition type nonlin-

earity between two FIAPGARCH processes in two regimes

as,
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1� biLð Þrd;it ¼ x0;1 þ 1� b1Lð Þ� 1�/1Lð Þ 1� Lð Þd;1
� ��

� et�1j j � h1et�1ð Þd;1
�
� 1� H et�1;c;nð Þð Þð Þ

þ x0;2 þ 1� b2Lð Þ� 1�/2Lð Þð
�

� left 1� Lð Þd;2
�

et�1j j � h2et�1ð Þd;2Þ

� H et�1;c;nð Þð Þ: ð6Þ

As previously, the transition function H :ð Þ is defined as

a logistic function bounded between 0 and 1. The obtained

model is defined as the logistic smooth transition frac-

tionally integrated asymmetric power GARCH(LST-

FIAPGARCH) model in which d represents the asymmetric

power parameter to be estimated (Conrad et al. 2010;

Bildirici and Ersin 2013).

3.2 Neural network models, nonlinear GARCH

models, and ANN augmented GARCH models

3.2.1 Neural networks: an overview

Artificial neural networks models (ANN) are functional

models that provide well-known approximation properties

applied in many fields such as finance, medicine, and

engineering. In economics and business literature, the early

studies could be given as Tam and Kiang (1992), Do and

Grudnitski (1992) which used neural networks for banking

failure detection and residential property appraisals. Frei-

sleben (1992) and Refenes et al. (1997) utilized ANN

models for stock prediction. Hutchinson et al. (1994)

showed that the learning networks could be used efficiently

for pricing and hedging in securities markets. Studies such

as Gencay and Stengos (1997, 1998), Gencay and Liu

(1997), Kanas (2003), Kanas and Yannopoulos (2001),

Shively (2003) and Bildirici and Ersin (2009) applied ANN

models to stock market return forecasting and financial

analysis.

The MLP model is evaluated as an important class of

neural network models. MLP consists of a set of sensory

units based on three layers, while a common application of

such ANN model possesses mostly a single hidden layer.

Hence, a MLP consists of the input layer, one or more

hidden layers and an output layer.

Estimation in the LSTAR-LST-GARCH-MLP and

LSTAR-LST-GARCH-RBF models is conducted with

conjugant gradient-based backpropagation algorithm. The

learning and model selection processes are gathered to

improve forecast accuracy. During the learning process,

weight decay is conducted to further improve the model

eliminating the insignificant coefficients (Weigend et al.

1991; Bartlett 1997; Krogh and Hertz 1995). For details

regarding weight decay in learning process, an

investigation is given by Gupta and Lam (1998). The

algorithm cooperation and early stopping for NN-GARCH

processes are given in Bildirici and Ersin (2009). The

algorithm used in the study could be taken as estimating

neural network models with LSTAR type nonlinear struc-

tures with different number of neurons in the hidden layer,

this means estimating models with different architecture

variations. Once the optimum architecture is selected, the

model is re-estimated with early stopping and weight decay

k times. To save CPU time, k is preferred as 20 in the study.

Further, the number of neurons is allowed to vary ranging

from 2 to 20 considering the sample size. Neurons are

constrained as being logistic activation functions, which

have similar transition properties as the LSTAR models in

the hidden layer. The output layer is restricted to have

linear functions. The models estimated are utilized for out-

of-sample forecasting. Each model architecture is esti-

mated k = 20 times, and because there are eight different

neural network-based model architecture to be estimated in

the study, the total number of estimated models is 160;

whereas, the selected 8 models (based on the lowest MSE

error criteria) will be reported in the study. The method-

ology is as follows. Model estimation is gathered through

utilizing backpropagation algorithm and the parameters are

updated with respect to a quadratic loss function; whereas,

the weights are iteratively calculated with weight decay

method to achieve the lowest error. Alternative methods

include Genetic Algorithms (Goldberg 1989) and second-

order derivative-based optimization algorithms such as

Conjugate Gradient Descent, Quasi-Newton, Quick Prop-

agation, Delta-Bar-Delta, and Levenberg–Marquardt,

which are fast and effective algorithms but may be subject

to over-fitting (see Patterson 1996; Haykin 1994; Fausett

1994). In the study, we followed a two-step methodology.

At the first step, all models were trained over a given

training sample vis-à-vis checking for generalization

accuracy in the light of MSE criteria in test sample. The

approach is repeated for estimating each model for 100

times with different number of sigmoid activation func-

tions in the hidden layer. To obtain parsimony, best model

is further selected with respect to the AIC information

criterion (see Faraway and Chatfield 1998). For estimating

NN-GARCH models with early stopping combined with

algorithm corporation, readers can refer to Bildirici and

Ersin (2009).

The models below represent the architectures to be

evaluated in the analysis for estimating the daily petrol

prices in the application section. Each model possesses

LSTAR type nonlinear structure in the conditional mean

and conditional variance processes. The models are opti-

mized to forecast the conditional variance of the petrol

prices. Therefore, the LSTAR-LST-GARCH-MLP and
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LSTAR-LST-GARCH-RBF structures of these models will

be introduced as follows.

3.2.2 LSTAR-LST-GARCH-MLP model

Following Bildirici and Ersin (2013), a MLP neural net-

work model hints a similar architecture with a logistic

smooth transition GARCH (LST-GARCH) process. A lo-

gistic smooth transition GARCH neural network model is a

LSTAR-LST-GARCH model with MLP type neural net-

works in each regime,

r2t ¼ x0;1 þ
Xp

p¼1

ap;1e
2
t�p þ

Xq

q¼1

bq;1r
2
t�q

 

þ
Xh

h¼1

n1;hw1 z1;hk1;h
� �

!
1� H et�1; c; nð Þð Þ

þ x0;2 þ
Xp

p¼1

ap;2e
2
t�p þ

Xq

q¼1

bq;2r
2
t�q

 

þ
Xh

h¼1

n2;hw2 z2;hk2;h
� �

!
H et�1; c; nð Þ; ð7Þ

where, n is the threshold, c is the parameter that defines the

speed of transition in the logistic transition function,

H et�1; c; nð Þ ¼ 1

1þ e�c et�1�nð Þ : ð8Þ

MLP neural networks that possesses h hidden neurons in

each i = 1, 2 regimes are,

wi zi;hki;h
� �

¼ 1

1þ exp � ki;h þ
Pd

d¼1

Ph

h¼1

kh;d;izt�d;i;h

	 
� �� � ;

ð9Þ

where wi zi;h; ki;h
� �

is a log-sigmoid activation function.

The inputs are are normalized and are defined as follows:

zt�d ¼ et�d � E eð Þ½ �
. ffiffiffiffiffiffiffiffiffiffiffi

E e2ð Þ
p

; ð10Þ

1

2
kh;d;i � uniform �1;þ1½ �: ð11Þ

The LSTAR-LST-GARCH-MLP model given in

Eqs. (7)–(11) is a neural network augmented version of the

LSTAR-LST-GARCH model given in Eq. (2).

The model proposed above will be augmented with

asymmetric power term in the conditional variance to

obtain LSTAR-LST-APGARCH-MLP model.

3.2.3 LSTAR-LST-APGARCH-MLP model

By augmenting the LSTAR-LST-GARCH-MLP model

with asymmetric power terms, the LSTAR-LST-

APGARCH-MLP model is obtained. This model is a two-

regime nonlinear model where both the conditional mean

and the conditional variance follow a nonlinear process in

the fashion of Terasvirta (1994) LSTAR model. The model

also benefits from the well-known generalization properties

of neural networks in the fashion of Cybenko (1989). The

LSTAR-LST-APGARCH-MLP model allows smooth

transition between two regimes of the conditional variance

defined as a LST-APGARCH process with neural network

augmentations as follows:

rd;it ¼ x0;1 þ
Xp

p¼1

ap;1 et�p;1

�� ��� hp;1et�p

� �d;1
 

þ
Xq

q¼1

bq;1r
d;1
t�q;1 þ

Xh

h¼1

nh;1w1 z1;hk1;h
� �

!
1� H et�1; c; nð Þð Þ

þ x0;2 þ
Xp

p¼1

ap;2 et�p;2

�� ��� hp;2et�p

� �d;2
 

þ
Xq

q¼1

bq;2r
d;2
t�q;2 þ

Xh

h¼1

nh;2w2 z2;hk2;h
� �

!
H et�1; c; nð Þ:

ð12Þ

Accordingly, Eq. (12) is a hybrid model consisting of

two regime LSTAR process in the conditional mean with

residuals following a nonlinear neural network model for

the conditional variance with multi-layer perceptrons in

each regime of the conditional variance process. For the

estimation and the statistical properties of the model,

readers are referred to Bildirici and Ersin (2009, 2013) and

to the neural network section of this paper.

3.2.4 LSTAR-LST-FIGARCH-MLP model

LSTAR-LST-FIGARCH-MLP model is a fractionally

integrated volatility model augmented with two regime

MLP neural networks in the conditional variance,

1�biLð Þr2t ¼
 
x0;1þ 1�b1Lð Þ� 1�/1Lð Þ 1�Lð Þd;1

� �

� et�1j j�h1et�1ð Þ2þ
Xh

h¼1

nh;1w1 z1;hk1;h
� �

!

� 1�H et�1;c;nð Þð Þþ x0;2þ 1�b2Lð Þð
�

� 1�/2Lð Þ 1�Lð Þd;2
�

et�1j j�h2et�1ð Þ2

þ
Xh

h¼1

nh;2w2 z2;hk2;h
� �

!
H et�1;c;nð Þð Þ: ð13Þ

It should be noted that the LSTAR-LST-FIGARCH-

MLP model reduces to LSTAR-LST-GARCH-MLP fol-

lowing the application of the restriction on the fractional

integration parameter d = 0.
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3.2.5 LSTAR-LST-FIAPGARCH-MLP model

The model is defined as follows:

1� bLð Þrd;it ¼ x0;1 þ 1� b1Lð Þ � 1� /1Lð Þ 1� Lð Þd;1
� � 

� et�1j j � h1et�1ð Þd;1þ
Xh

h¼1

nh;1w1 z1;hk1;h
� �

!

� 1� H et�1; c; nð Þð Þþ
�
x0;2 þ

�
1� b2Lð Þ

� 1� /2Lð Þ 1� Lð Þd;2
�

et�1j j � h2et�1ð Þd;2

þ
Xh

h¼1

nh;2w2 z2;hk2;h
� �

!
H et�1; c; nð Þ:

ð14Þ

The model assumes regime-dependent asymmetry based

on d ið Þ, where i = 1, 2 for the two regime structure. By

applying d = 0 restriction, Eq. (14) reduces to LSTAR-

LST-APGARCH-MLP and additional restriction on the

asymmetry parameters d ið Þ ¼ 2, leads the model further

reduce to LSTAR-LST-GARCH-MLP.

In fact, asymmetry is also introduced in the model through

the ARCH terms. As a typical, the ARCH term is written as,

et�1j j � hiet�1ð Þd;i in each i = 1, 2 regimes. To reduce the

APGARCHprocess to baselineGARCH, one need also specify

the ARCH term in a way to eliminate the deviations from the

absolute innovations et�1j j=0 to obtain �hiet�1ð Þd;i. Further by
restricting the model as hi ¼ ð�1Þ so that hi et�1ð Þd;i followed
byd ¼ 2, theAPGARCHmodel reduces to aGARCHprocess.

One possibility is that, for modeling time series, it is possible to

obtain different types ofGARCHprocesses in each regime, i.e.,

a time series could follow a GARCH process in one regime,

while following anAPGARCHor FIAPGARCHprocess in the

second regime. The study restricts the models to follow the

same type of GARCH processes for simplicity. On the other

hand, the fractional integration parameters are regime specific

and allow different dynamics to be modeled simultaneously.

The parameter d could be estimated as less than 0.5 in regime 1

and more than 0.5 in regime 2, suggesting different long

memory dynamics and stationarity processes in each regime

occurring below and above the threshold, n. As a result,

assuming same GARCH structure in two regimes produce

interesting findings and an approach that allows regime-wise

comparative analysis (See Bildirici and Ersin 2013).

3.3 RBF neural network augmentations

of the nonlinear GARCH models

The RBF neural network is represented as a composition of

three layers of nodes; first, the input layer that feeds the

input data to each of the nodes in the second or hidden

layer; the second layer that differs from other neural net-

works in that each node represents a data cluster which is

centered at a particular point and has a given radius and in

the third layer, consisting of one node (Bishop 1995).

Wright (2003) discusses the radial basis function interpo-

lation and shows the developments in RBF networks. Liu and

Zhang (2010) combined RBF neural networkmodels with the

Markov switching model to merge Markov switching Neural

Networkmodel based onRBFmodels. RBFneural network in

their models are trained to generate both time series forecasts

and certainty factors. Santos et al. (2010) developed a RBF-

GARCH model that possesses a modeling structure that

assumes a RBF type neural network in the conditional mean,

where the residuals followaGARCHprocess. Further,Coelho

and Santos (2011) extended their RBF-GARCHapproach and

provided an application to Spanish energy pool prices and

showed that RBF-GARCH approach provided significant

improvement in future forecasts. It should be noted that, their

approach is similar in one way to the STAR-GARCH

approach of Chan and McAleer (2003) that assumes STAR

type nonlinearity in the conditional mean process only.

However, one important fact is thatRBF-GARCHapproaches

of Santos et al. (2010) and Coelho and Santos (2011) benefit

from different NN learning algorithms.

Our approach is differentiated than the above-mentioned

studies in three ways. First, similar to the MLP-based models

given in this paper, the proposed LSTAR-LST-GARCH-RBF

models utilize neural network architectures in the conditional

variance processes. It should be noted that heteroscedasticity is

a strong factor that diminishes the forecast capabilities of the

model. Second, models are estimated with neural network

learning algorithms and the estimation of the models benefits

from algorithm cooperation weight decay and early stopping.

Third, ourmodels followSTAR type division of the regression

space both in the conditional mean and in the conditional

variance with an expectation that this approach provides

improvement in the modeling and forecasting capabilities as

will be evaluated in Sect. 4.

3.3.1 LSTAR-LST-GARCH-RBF model

LSTAR-LST-GARCH-RBF model is defined as follows:

r2t ¼ x0;1 þ
Xp

p¼1

ap;1e
2
t�p þ

Xq

q¼1

bq;1r
2
t�q

 

þ
Xh

h¼1

n1;h/1 zt � l1k kð Þ
!

1� H et�1; c; nð Þð Þ

þ x0;2 þ
Xp

p¼1

ap;2e
2
t�p þ

Xq

q¼1

bq;2r
2
t�q

 

þ
Xh

h¼1

n2;h/1 zt � l2k kð Þ
!
H et�1; c; nð Þ: ð15Þ
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A Gaussian basis function for the hidden units given as

/ðxÞ for x = 1, 2,…, X, where the activation function is

defined as Gaussian function,

/ðxÞ ¼ exp
� x� lj
�� ��2

2q2

 !
ð16Þ

with p defining the width of each function. zt is a vector of

lagged explanatory variables, a þ b\1 is essential to

ensure stationarity. Networks of this type can generate any

real-valued output, but in their applications where they

have a priori knowledge of the range of the desired outputs,

it is computationally more efficient to apply some nonlin-

ear transfer function to the outputs to reflect that knowl-

edge. The conditional variance is subject to smooth

transition based on the logistic function,

H et�1; c; nð Þ ¼ 1
�

1þ e�c et�1�nð Þ� �
, where the speed of

transition is given by c. For the two regime model, i = 1, 2,

the inputs are subject to,

zt�d ¼ et�d � E eð Þ½ �
. ffiffiffiffiffiffiffiffiffiffiffi

E e2ð Þ
p

ð17Þ

1

2
kh;d;i �Uniform �1;þ1½ �: ð18Þ

3.3.2 LSTAR-LST-APGARCH-RBF model

Radial basis functions are three layer neural network

models with linear output functions and nonlinear activa-

tion functions defined as Gaussian functions in hidden layer

utilized to the inputs in light of modeling a radial function

of the distance between the inputs and calculated value in

the hidden unit. The output unit produces a linear combi-

nation of the basis functions to provide a mapping between

the input and output vectors.

rd;it ¼ x0;1þ
Xp

p¼1

ap;1 et�p;1

�� ���hp;1et�p

� �d;1þ
Xq

q¼1

bq;1r
d;1
t�q;1

 

þ
Xh

h¼1

nh;1/1 zt�l1k kð Þ
!

1�H et�1;c;nð Þð Þ

þ x0;2þ
Xp

p¼1

ap;2 et�p;2

�� ���hp;2et�p

� �d;2
 

þ
Xq

q¼1

bq;2r
d;2
t�q;2þ

Xh

h¼1

nh;2/2 zt�l1k kð Þ
!
H et�1;c;nð Þ;

ð19Þ

where, i = 1, 2 is the number of regimes. Similar to the

LSTAR-LST-APGARCH-MLP model, the LSTAR-LST-

APGARCH-RBF model nests several models. Equa-

tion (19) reduces to the LSTAR-LST-GARCH-RBF model

if the power term d ¼ 2 and hp;i ¼ 0, to the LSTAR-

GARCH-RBF model for hp;i ¼ 0, and to the LSTAR-GJR-

RBF model if d ¼ 2 and 0� hp;i � 1 restrictions are

allowed. The model may be shown as LSTAR-TGARCH-

RBF model if d ¼ 1 and 0� hp;i � 1.

3.3.3 LSTAR-LST-FIAPGARCH-RBF model

LSTAR-LST-FIAPGARCH-RBF model is defined as

follows:

1�bLð Þrd;it ¼
�
x0;1þ 1�b1Lð Þ� 1�/1Lð Þ 1�Lð Þd;1

� �

� et�1j j�h1et�1ð Þd;1þ
Xh

h¼1

nh;1/1 zt�l1k kð Þ
�

� 1�H et�1;c;nð Þð Þþ
�
x0;2þ

�
1�b2Lð Þ

� 1�/2Lð Þ 1�Lð Þd;2
�

et�1j j�h2et�1ð Þd;2

þ
Xh

h¼1

nh;2/2 zt�l2k kð Þ
�
H et�1;c;nð Þ;

ð20Þ

where, h is neurons defined with Gaussian function as in

Eq. (16). The LSTAR-LST-FIAPGARCH-RBF model is a

variant of the LSTAR-LST-APGARCH-RBF model with

fractional integration. To obtain the model with short

memory characteristics, d ¼ 0 restriction on the fractional

integration parameter should be imposed. As a result, the

model reduces to LSTAR-APGARCH-RBF model. Addi-

tionally, by applying d ¼ 0 with the restrictions discussed

above, models with no fractional integration discussed

above could be easily achieved. In addition to d = 0

restriction, Eq. (20) reduces to LSTAR-LST-GARCH-RBF

with the restriction on the asymmetry parameters d ið Þ ¼ 2

after eliminating the deviations from the absolute innova-

tions with et�1j j ¼ 0 and hi ¼ �1ð Þ:

4 Econometric results

4.1 Data

In order to test forecasting performance of the above-

mentioned models, Brent crude oil spot prices were used

for oil price volatility. We take the daily data from January

20, 1986 to January 30, 2013, excluding public holidays,

data are converted into daily returns by taking first differ-

enced logarithms as y = ln(Pt/Pt-1). In the process of

model estimation, the sample is divided between training,

test, and out-of-sample (forecasting) samples with the

percentages of 80 %, 10 %, and 10 %, respectively. The

descriptive statistics are reported in Table 1 below.

Accordingly, the daily return series are subject to
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leptokurtic distribution with the kurtosis statistic being

17.74 and skewness statistic calculated as -0.76. Jarque–

Berra and Shapiro–Wilk tests suggest that the null

hypothesis of normal distribution for daily returns can be

rejected at the 5 % significance level. Further, the ARCH-

type heteroscedasticity cannot be rejected for the daily

returns series.

4.2 Econometric results: model evaluation

At the first stage, the GARCH family models were taken as

baseline models and are estimated for evaluation purposes.

Results are given in Table 2. The models given in the table

have different characteristics to be evaluated: namely,

fractional integration, asymmetric power, and fractionally

integrated asymmetric power models, namely, GARCH,

APGARCH, FIGARCH, and FIAPGARCH models. By

hybridization of two groups of nonlinear models, we

obtained STAR-ST-GARCH models that allow for STAR

type nonlinearity in both the conditional mean and

variance.

The LSTAR-LST-GARCH models are reported in

Table 3. The results show significant improvements of

LSTAR-LST-GARCH models over their single-regime

variants reported in Table 2. The log-likelihood statistics

are also high as AIC and SIC criteria report similar con-

clusions for the in-sample results.1 Models have similar

performances in the in-sample modeling. Further, models

will be evaluated for out-of-sample forecasting capabilities

with MSE, MAE, and RMSE statistics.

After allowing the GARCH processes to follow LST type

nonlinearity, the dynamics are strikingly different in the light

of the estimated parameters. In the LSTAR-LST-FIGARCH

model, d parameters are estimated as 0.437 and 0.822 for

regime 1 and 2, respectively, suggesting strong persistence in

the second regime. For the LSTAR-LST-FIAPGARCH, after

the inclusion of the asymmetric power terms, the d parame-

ters are estimated as 0.44 and 0.45. The results also suggest

that different conclusions could be derived due to the para-

metric specification of the analyzed GARCH models in

addition to possible neglected nonlinearity.

The RBF and MLP type neural network augmented

versions of the models will be analyzed. The model

architectures of the proposed ANN models and their

Table 1 Descriptives of Brent crude oil daily returns, January 20th, 1986 to January 30th, 2013

Mean Median Max Min SD Skewness Kurtosis JB SW ARCH

8.13e-05 0.000320 0.08317 -0.176495 0.011105 -0.759616 17.742 63300.56 [0.0000] 0.91201 [0.000] 77.86521 [0.0000]

JB and the SW are the Jarque–Berra and Shapiro–Wilk normality tests

ARCH test is the ARCH-type heteroscedasticity test in the residuals of the AR(1) model selected by SIC information criterium. The probability

values for the reported tests are given in brackets

Table 2 GARCH family results

1. GARCH 2. APGARCH 3. FIGARCH 4. FIAPGARCH

Cst(M) 0.000120 (0.00010935) 0.0002159** (0.000061) 0.0002579*** (0.00008093) 0.0002549*** (0.00008215)

Cst(V) 0.012561*** (0.0039790) 0.619456* (0.33203) 1.097080* (0.56766) 5.319243* (3.0849)

d-Figarch – – 0.474443*** (0.053529) 0.438994*** (0.042718)

ARCH 0.096773*** (0.018932) 0.077441*** (0.0087413) 0.219596*** (0.067838) 0.238516*** (0.071217)

GARCH 0.898413*** (0.017768) 0.929974*** (0.0082689) 0.590660*** (0.095018) 0.577437*** (0.089258)

APARCH (Gamma1) – 0.166567*** (0.060379) – 0.089858* (0.058840)

APARCH (Delta) – 1.125234*** (0.10841) – 1.764091*** (0.081130)

LogL 22,372.768 22,625.828 22,583.532 22,589.793

AIC -6.466831 -6.539123 -6.527185 -6.528416

SIC -6.462875 -6.532200 -6.521251 -6.620504

JB 3203.4 5381.8 2987.5 3821.6

Kurtosis 6.2693 7.2522 6.1596 6.5782

Standard errors are given in parentheses

*, **, and *** denote 10 %, 5 %, and 1 % significance levels

LogL is the Log-likelihood statistic. AIC and SIC denote the Akaike and Schwarz information criteria

1 Models have similar performances in the in-sample modeling. For

model performances, the models will be evaluated in terms of out-of-

sample forecasting statistics.
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training results are reported in Table 4 in terms of

MSE and q correlation statistics for the training and test

samples.

Among the LSTAR-GARCH-NN models, the training

and test MSE errors are calculated comparatively lower for

the LSTAR-LST-GARCH-MLP models. Training MSE

statistics for the LSTAR-LST-GARCH-RBF, LSTAR-

LST-APGARCH-RBF, LSTAR-LST-FIGARCH-RBF, and

LSTAR-LST-FIAPGARCH-RBF models are 0.001789,

0.000974, 0.001446, and 0.001423, respectively. On the

other hand, the MSE statistics calculated for their MLP

variants are 0.000989, 0.0007660, 0.000946, and 0.001122,

respectively.

Radial Basis Function augmented versions of the

LSTAR-LST-GARCH family models provided small

deviation from the results obtained for their MLP variants

in terms of training performances. As a typical, the highest

training q is obtained as 0.93 for the LSTAR-LST-

APGARCH-RBF and is higher than 3 out of 4 MLP-based

models. Among the MLP-based models, q statistic is

calculated as 0.95 for the LSTAR-LST-APGARCH-MLP.

Overall, the MLP- and RBF-based models provide

improvement over the GARCH and LSTAR-LST-GARCH

two regime variants. The results at this stage showed a

general improvement of the RBF- and MLP-based models

over the LSTAR-LST-GARCH models. To obtain con-

clusions, the out-of-sample forecasting capabilities of the

models should be evaluated. One-step-ahead forecast

results are given in Table 5.

The one-step-ahead forecast RMSE is the lowest for the

LSTAR-LST-APGARCH-MLP (RMSE = 0.00000091651

514) followed by the LSTAR-LST-FIGARCH-MLP (RM

SE = 0.00000118743421), LSTAR-LST-FIAPGARCH-

MLP (RMSE = 0.00000399624824), and LSTAR-LST-

GARCH-MLP (RMSE = 0.00000474763099) models.

Compared to the LSTAR-LST-GARCH models, the mod-

els provided significant improvement. Overall result is that,

LSTAR-LST-GARCH-MLP models provided the highest

one-step-ahead forecast accuracy followed by the LSTAR-

LST-GARCH-RBF models.

Models are evaluated for their generalization capa-

bilities in the larger out-of-sample horizons in terms of

the MSE, RMSE, and MAE criteria. Results are given in

Table 6 for a total of 16 models. The forecast horizon is

selected as 2, 10, and 40 days ahead to evaluate the

models’ performances in longer horizons.

Table 4 Neural networks augmented LSTAR-LST-GARCH-MLP and RBF models: architecture and training results

MLP-based ANN models and architectures

Training statistics 1. LSTAR-LST-

GARCH-

MLP(5:2:2:6:1)

2. LSTAR-LST-

APGARCH-

MLP(5:2:2:11:1)

3. LSTAR-LST-

FIGARCH-

MLP(5:2:2:8:1)

4. LSTAR-LST-

FIAPGARCH-

MLP(5:2:2:4:1)

Training q 0.928664 0.951848 0.908285 0.905530

Test q 0.946714 0.952677 0.917540 0.912975

Training MSE 0.001284 0.0007911 0.001035 0.001139

TEST MSE 0.000989 0.0007660 0.000946 0.001122

Training algorithm (convergence) BFGS (10) BFGS (12) BFGS (22) BFGS (24)

RBF-based ANN models and architectures

Learning results 1. LSTAR-LST-

GARCH-RBF

(5:2:2:28:1)

2. LSTAR-LST-

APGARCH-RBF

(5:2:2:26:1)

3. LSTAR-LST-

FIGARCH-RBF

(5:2:2:30:1)

4. LSTAR-LST-

FIAPGARCH-RBF

(5:2:2:27:1)

Training q 0.877056 0.930455 0.862266 0.879122

Test q 0.902086 0.939193 0.870629 0.887971

Training MSE 0.002152 0.001129 0.001516 0.001437

TEST MSE 0.001789 0.000974 0.001446 0.001423

Training algorithm (convergence) RBFT RBFT RBFT RBFT

q denotes Pearson’s correlation statistic calculated for the targets and forecasts. MSE represents training and test sample mean squared errors.

BFGS is the Broyden–Fletcher–Goldfarb–Shanno nonlinear optimization algorithm. The epoch shows the step number the algorithm converged

All models are restricted to have logistic activation functions in the hidden layer and identity activation functions in the output layers. Model

architectures are given in parenthesis. As a typical, LSTAR-GARCH-MLP(5:2:2:6:1) model is a nonlinear model with 5 input variables in the

input layer modeled as a 2 regime LSTAR process in the conditional mean with 2 regimes following LST-GARCH conditional variance

processes passing through 6 neurons to the output layer connected to the output layer to produce 1 output
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In Table 6, models with the lowest RMSE, is denoted in

bold within each model group for the above-mentioned

out-of-sample forecast horizons. As a typical, for two days

ahead, within the single regime GARCH type models, the

lowest RMSE error is achieved with the FIGARCH model.

At the second part, where the LSTAR-LST augmented two

regime variants are evaluated, the lowest RMSE is

achieved with the LSTAR-LST-GARCH model. Further,

among the MLP neural networks augmented LSTAR-LST-

GARCH-MLP models, the lowest RMSE is obtained with

the LSTAR-LST-GARCH-MLP model. Additionally,

among the RBF neural networks augmented variants, the

lowest RMSE is achieved by the LSTAR-LST-GARCH-

RBF model. Therefore, the models denoted with a RMSE

value in bold represent the lowest RMSE achieved

‘‘within’’ the relevant model group only that consists of 4

different models only. Furthermore, a total of 16 different

models, the baseline GARCH, their LSTAR-LST aug-

mented two regime variants, the neural networks arhitec-

ture and learning algorithm augmented models (i.e. RBF

and MLP based 8 models) are ranked starting from the 1st

towards the 4th model in terms of RMSE again. The

models that take the 1st, 2nd, 3rd and 4th places are

denoted accordingly. Following this procedure, ‘‘the best

4’’ are reported seperately for 3 different forecast horizons

i.e. for 2, 10, and 40 days to evaluate the estimated models

for their forecast capabilities and to determine if the

improvements exist not only in short horizons such as the 2

days ahead forecasts, but also in longer horizons.

The models in the first column have the GARC1H

architecture in common followed by its nonlinear LSTAR

and MLP, RBF augmentations. A significant decrease in

RMSE, MAE, and MSE criteria is achieved as we move

from single-regime GARCH model to LSTAR-LST-

GARCH, LSTAR-LST-GARCH-MLP, and LSTAR-LST-

GARCH-RBF. The RMSE reported for GARCH model is

0.000027 and 0.0000047 for the LSTAR-LST-GARCH,

showing a 82.6 % decrease in the RMSE compared to the

baseline GARCH for 2 days ahead forecasts. For the MLP

augmented LSTAR-LST-GARCH-MLP, the RMSE is

calculated as 0.00000134 which shows a 95 % decrease

compared to the single-regime GARCH model. Hence, the

LSTAR-GARCH model without neural networks provides

improvement over the baseline GARCH for 2 days ahead.

The LSTAR-GARCH-RBF model has a RMSE =

0.000005003, and performs almost equal to the LSTAR-

LST-GARCH model.

For the baseline GARCH, RMSE = 0.0000519 and

0.000051 for 10 and 40 days ahead forecasts, while for the

LSTAR-LST-GARCH, the RMSE statistics are calculated

as 0.0000504 and 0.0000497. Accordingly, LSTAR-LST-

GARCH performs better compared to the baseline

GARCH, however, the improvement is limited. The results

show that the predictive gains from the LSTAR-LST-

GARCH suffer for longer horizons in the out-of-sample

forecasts.

The LSTAR-LST-GARCH-RBF and MLP models aim

at augmenting the forecasting capabilities of the LSTAR-

LST-GARCH in long forecast horizons. For 10 days ahead,

the RMSE is calculated as 0.0000016 for the LSTAR-LST-

GARCH-MLP and is 0.0000047 for the LSTAR-LST-

GARCH-RBF models. For 40 days ahead, the LSTAR-

Table 5 One-step-ahead forecast results

1. LSTAR-LST-GARCH-

MLP(5:2:2:6:1)

2. LSTAR-LST-APGARCH-

MLP(5:2:2:11:1)

3. LSTAR-LST-FIGARCH-

MLP(5:2:2:8:1)

4. LSTAR- LST-FIAPGARCH-

MLP(5:2:2:4:1)

MSE 0.00000000002254 0.00000000000084 0.00000000000141 0.00000000001597

MAE 0.00000332503469 0.00000069276605 0.00000093842087 0.00000301391256

MRSE 0.01202169456515 0.00035311744060 0.00074167725712 0.00942662726642

MRAE 0.07334809470262 0.01433928143676 0.02207744574166 0.07055172460999

q 0.93236330386609 0.99869776882616 0.99667226091915 0.90707791817108

RMSE 0.00000474763099 0.00000091651514 0.00000118743421 0.00000399624824

1. LSTAR-LST-

GARCH-RBF(5:2:2:28:1)

2. LSTAR-LST-

APGARCH-RBF (5:2:2:26:1)

3. LSTAR-LST-

FIGARCH-RBF (5:2:2:30:1)

4. LSTAR-LST-

FIAPGARCH-RBF (5:2:2:27:1)

MSE 0.00000000003826 0.00000000002264 0.00000000002363 0.00000000002017

MAE 0.00000467340330 0.00000364627551 0.00000367533719 0.00000346294812

MRSE 0.01807061475042 0.01117553124815 0.01527277725031 0.01142473379382

MRAE 0.09949911206105 0.07941845168250 0.08899030858628 0.07972759121250

q 0.88209622896126 0.93220341293641 0.86380964347867 0.88099209829884

RMSE 0.00000618546684 0.00000475815090 0.00000486106984 0.00000449110231

MSE mean squared error, MAE, mean absolute error, MRSE mean relative absolute error, MRAE mean relative absolute error, RMSE root mean

squared error. q shows the Pearson’s correlation coefficient
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Table 6 Out-of-sample forecast statistics

GARCH APGARCH FIGARCH FIAPGARCH

2 days

RMSE 0.00002665333000 0.00002516346558 0.00002442130218 0.00002661578479

MAE 0.00002603000000 0.00002454000000 0.00002377000000 0.00002602000000

MSE 0.00000000071040 0.00000000063320 0.00000000059640 0.00000000070840

LSTAR-LST-GARCH LSTAR-LST-APGARCH LSTAR-LST-FIGARCH LSTAR-LST-FIAPGARCH

2 days

RMSE 0.00000470106371 (3rd) 0.00000752329715 0.00002251888097 0.00002191506331

MAE 0.00001306620000 0.00001233097000 0.00004970591220 0.00006855640160

MSE 0.00000000002210 0.00000000005660 0.00000000050710 0.00000000048027

LSTAR-LST-GARCH-MLP LSTAR-LST-APGARCH-MLP LSTAR-LST-FIGARCH-MLP LSTAR-LST-FIAPGARCH-MLP

2 days

RMSE 0.00000134164079 (1st) 0.00000237907545 (2nd) 0.00000622334315 0.00000671043963

MAE 0.00000130964370 0.00000226002346 0.00000557109994 0.00000618080882

MSE 0.00000000000180 0.00000000000566 0.00000000003873 0.00000000004503

LSTAR-LST-GARCH-RBF LSTAR-LST-APGARCH-RBF LSTAR-LST-FIGARCH-RBF LSTAR-LST-FIAPGARCH-RBF

2 days

RMSE 0.00000500299910 (4th) 0.00000966488489 0.00000600999168 0.00000666933280

MAE 0.00000480348034 0.00000951497399 0.00000600977507 0.00000666288849

MSE 0.00000000002503 0.00000000009341 0.00000000003612 0.00000000004448

GARCH APGARCH FIGARCH FIAPGARCH

10 days

RMSE 0.00005195190083 0.00005236410985 0.00005220153254 0.00005235456045

MAE 0.00004212000000 0.00004099000000 0.00004127000000 0.00004116000000

MSE 0.00000000269900 0.00000000274200 0.00000000272500 0.00000000274100

LSTAR-LST-GARCH LSTAR-LST-APGARCH LSTAR-LST-FIGARCH LSTAR-LST-FIAPGARCH

10 days

RMSE 0.00005047771786 0.00011618950039 0.00002413917977 0.00005954829972

MAE 0.00003265000000 0.00011570000000 0.00002169000000 0.00004441000000

MSE 0.00000000254800 0.00000001350000 0.00000000058270 0.00000000354600

LSTAR-LST-GARCH-MLP LSTAR-LST-APGARCH-MLP LSTAR-LST-FIGARCH-MLP LSTAR-LST-FIAPGARCH-MLP

10 days

RMSE 0.00000162788206 (1st) 0.00000544242593 (4th) 0.00000561515806 0.00000611800621

MAE 0.00000157805413 0.00000442900285 0.00000462606822 0.00000508919208

MSE 0.00000000000265 0.00000000002962 0.00000000003153 0.00000000003743

LSTAR-LST-GARCH-RBF LSTAR-LST-APGARCH-RBF LSTAR-LST-FIGARCH-RBF LSTAR-LST-FIAPGARCH-RBF

10 days

RMSE 0.00000470850295 (2nd) 0.00000558121850 0.00000477388730 (3rd) 0.00000682129020

MAE 0.00000335796420 0.00000448305125 0.00000391396811 0.00000610994458

MSE 0.00000000002217 0.00000000003115 0.00000000002279 0.00000000004653
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LST-GARCH-RBF has a RMSE of 0.0000051, while the

RMSE for the LSTAR-LST-GARCH-MLP is 0.0000024

and is almost halve of that obtained for LSTAR-LST-

GARCH and its RBF variant. The results show that RBF-

based model failed to provide significant improvements

over the LSTAR-LST-GARCH, though MLP-based variant

had the lowest RMSE, MSE, and MAE statistics. However,

at this stage, the conclusions only show that by keeping the

GARCH architecture constant, the MLP model showed

significant forecast accuracy gains over the models in the

first column. Note that, the models with FIGARCH,

APGARCH, and FIAPGARCH architectures provided

different results.

If an overlook is to be presented, as the forecast horizon

is enlargened to 10 and 40 days ahead, the results provide a

drastic improvement in longer horizons for the MLP-based

models followed by the RBF-based variants. For compar-

ative purposes, the models in each row model group are

evaluated among themselves and the model with the lowest

RMSE and MSE statistics is denoted in bold for 2, 10, and

40 days ahead forecasts. Additionally, the models are

ranked according to the RMSE statistics from lowest to

highest to simplify the evaluation. For 2 days ahead, the

FIGARCH model has the best forecast accuracy among the

single-regime GARCH models (RMSE = 0.0000244).

Among the two regime models, the LSTAR-LST-GARCH

model has the best forecast capability

(RMSE = 0.0000047). Among the MLP-based models, the

LSTAR-LST-GARCH-MLP model has the highest forecast

accuracy (RMSE = 0.00000134). Among the RBF-based

variants, the LSTAR-LST-GARCH-RBF model has the

best forecast accuracy (RMSE = 0.0000050). For 10 days

ahead, the GARCH, the LSTAR-LST-FIGARCH, the

LSTAR-LST-GARCH-MLP, and the LSTAR-LST-

GARCH-RBF are the models with the lowest RMSE (and

lowest MSE) among their own model group. For 40 days

ahead, the FIAPGARCH, the LSTAR-LST-FIGARCH, the

LSTAR-LST-GARCH-MLP, and the LSTAR-LST-

APGARCH-RBF have the lowest RMSE statistics among

their own model group. For different horizons, as the

horizon moves from 2 to 40 days ahead MLP-based models

showed significant improvement followed by the RBF-

Table 6 continued

GARCH APGARCH FIGARCH FIAPGARCH

40 days

RMSE 0.00005116639522 0.00004876474136 0.00005105878964 0.00004737087713

MAE 0.00004242000000 0.00003854000000 0.00004182000000 0.00003692000000

MSE 0.00000000261800 0.00000000237800 0.00000000260700 0.00000000224400

LSTAR-LST-GARCH LSTAR-LST-APGARCH LSTAR-LST-FIGARCH LSTAR-LST-FIAPGARCH

40 days

RMSE 0.00004972926704 0.00014869431731 0.00013345411196 0.00013667479651

MAE 0.00003266120910 0.00014800000000 0.00008539000000 0.00010590000000

MSE 0.00000000247300 0.00000002211000 0.00000001781000 0.00000001868000

LSTAR-LST-GARCH-MLP LSTAR-LST-APGARCH-MLP LSTAR-LST-FIGARCH-MLP LSTAR-LST-FIAPGARCH-MLP

40 days

RMSE 0.00000243926218 (1st) 0.00000425440948 (2nd) 0.00000442605920 (3rd) 0.00000475078941

MAE 0.00000190278855 0.00000340258977 0.00000370453230 0.00000387005690

MSE 0.00000000000595 0.00000000001810 0.00000000001959 0.00000000002257

LSTAR-LST-GARCH-RBF LSTAR-LST-APGARCH-RBF LSTAR-LST-FIGARCH-RBF LSTAR-LST-FIAPGARCH-RBF

40 days

RMSE 0.00000511370707 0.00000449332839 (4th) 0.00000565420198 0.00000606217783

MAE 0.00000394412289 0.00000375403891 0.00000460309756 0.00000507094872

MSE 0.00000000002615 0.00000000002019 0.00000000003197 0.00000000003675

Statistics are defined as follows. RMSE root mean squared error, MAE mean absolute error. Models are ordered from the lowest error criteria (for

both RMSE and MAE) to the highest

The rank of each model is given in () brackets. Models are evaluated in terms of their capability in forecasting the conditional mean and variance

separately
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based GARCH models. For simplicity, the first 4 models

are to be reported. For 2 days ahead, the LSTAR-LST-

GARCH-MLP is the 1st, while the LSTAR-LST-

APGARCH-MLP is the 2nd, the LSTAR-LST-GARCH is

the 3rd, and the LSTAR-LST-GARCH-RBF is the 4th. For

10 days ahead forecasts, the LSTAR-LST-GARCH-MLP

is the 1st, the LSTAR-LST-GARCH-RBF is the 2nd, the

LSTAR-LST-GARCH-RBF is the 3rd and the LSTAR-

LST-APGARCH-MLP model is the 4th. For 40 days

ahead, among 16 models estimated, the LSTAR-LST-

GARCH-MLP takes the 1st place with the lowest RMSE

(0.0000024), followed by the LSTAR-LST-APGARCH-

MLP taking the 2nd place (RMSE = 0.00000425).

LSTAR-LST-FIGARCH-MLP takes the 3rd place

(RMSE = 0.000004426) and the LSTAR-LST-

APGARCH-RBF model is the 4th model (RMSE =

0.00000449).

Results supported the following conclusions for mod-

eling and forecasting volatility in crude oil prices: (i) The

nonlinear volatility models with STAR type nonlinearity

namely, LSTAR-LST-GARCH family provided significant

gains in terms of in-sample (one-step-ahead) forecasting

accuracy and these models provided significant improve-

ment over their single-regime GARCH variants. Further,

for short horizons, the LSTAR-LST-GARCH family pro-

vided significant forecasting gains over their single-regime

variants. (ii) RBF- and MLP-based neural networks aug-

mentations of the LSTAR-LST-GARCH family models

provided improved modeling capabilities for the crude oil

prices that are subject to nonlinearity, asymmetry, and

leptokurtic distribution. (iii) LSTAR-LST-GARCH-MLP

and LSTAR-LST-GARCH-RBF showed gains in forecast

capabilities which concentrate especially on the out-of-

sample forecasting. Among the RBF and MLP augmented

LSTAR-LST-GARCH family, the MLP-based models

augmented the forecast accuracy of the LSTAR-LST-

GARCH models followed by the RBF models. Addition-

ally, the fractional integration and asymmetric power terms

increased the forecast accuracy separately, though still the

GARCH- and APGARCH-based MLP and RBF models

provide satisfactory results, while the FIAPGARCH spec-

ification provided comparatively low gains in terms of

forecast capabilities. It should be noted that the results are

gathered for the daily Brent oil data set and cannot be

generalized to all financial time series. Since certain

financial time series such as the stock index returns possess

strong asymmetric power effects and fractional integration,

the LSTAR-LST-FIAPGARCH and its MLP/RBF variants

may provide improved forecasting capabilities and there-

fore to obtain generalized results, the models should be

evaluated for different financial time series in the devel-

oped and developing markets. The overall result of the

empirical analysis suggests that nonlinear augmentations of

GARCH models for forecasting crude oil prices with the

neural network architectures and nonlinear econometric

techniques provide gains for the researchers and policy

makers that aim at evaluating the paths followed by oil

price time series.

4.3 Policy implications

The petrol price is an important variable for explaining

business cycles and economic growth. As a result, petrol

prices exhibits a large volatility not only through the

channels of supply and demand, but also through political

factors in addition to OPEC decisions. Volatility in petrol

prices has strong impacts on economic variables such as

economic growth, industrial production, and employment

decisions in labor markets, not to mention its effect on the

current account deficits and financial markets through

various channels, since crude oil is also a financial com-

modity traded in spot and future markets. The results

obtained in the study through the LSTAR-LST-GARCH-

RBF and MLP models showed that, the adjustment process

in oil prices do not occur instantaneously to new infor-

mation. As shown by McMillan and Speight (2006) and

Monoyios and Sarno (2002), low liquidity and infrequent

trading in imperfect markets cause delays in the adjustment

process after new information in financial markets. The

results coincided with the fact that, increases in volatility

are generally short lived; however, due to the persistence in

oil prices, these effects may lead to long-lived effects in

terms of persistence. The positive and large fractional

coefficient estimates, in addition to large estimates of

asymmetric power terms in both regimes justify the fact

that shocks have relatively persistence effects; hence,

within a political perspective, the governments should

evaluate the oil prices and global factors very cautiously

and simultaneously, policy makers should keep the inter-

ventions at the modest levels to avoid large fluctuations in

petrol prices. Further, the long memory characteristics

accelerate the expected temporary effects of these shocks,

thus the persistency might increase the impacts of the oil

shocks. Therefore, policy interventions should be kept at

very modest levels to avoid large fluctuations.

If the results are to be summarized, the oil price pos-

sesses important characteristics such as nonlinearity,

asymmetry, and transition effects, in addition to its frac-

tionally integrated persistence effects. The policy maker

and the researcher should evaluate the policies to be

applied with great care. However, the nonlinear volatility

models that incorporate fractional integration and power

terms capture the data generating process more effectively;

therefore, might be utilized important tools for policies. On

the other hand, within a political perspective, the policies

focusing on stabilization of volatility of this crucial
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commodity may have destabilizing effects on the produc-

tion and on the financial markets. Since crude oil prices are

interlinked to various financial assets, this result translates

itself to different derivatives and the economy, and this

destabilization effect is largely under the influence of

persistence in oil prices and also in the external shocks that

oil prices are subject to. As a result, policies possible

destabilizing effects without taking persistence into

account result in additional effects in various markets.

Secondly, the estimation sample in the study corresponded

to a period with large oil shocks and economic crises

periods. On the other hand, following the general

methodology, the out-of-sample results are obtained for a

period corresponding to year 2014, a relatively stable

period. The forecasting practice in the paper showed sig-

nificant gains in terms of forecast accuracy. On the other

hand, through incorporating nonlinearity in the GARCH

processes, the performance of these models would improve

under unexpected changes in oil prices. Further, the uti-

lization of the nonlinear models helps the policy maker by

evaluating threshold characteristics of these models. As a

result, the nonlinear models that incorporate neural net-

works’ forecast capabilities with nonlinear econometric

techniques are to be considered as tools for the investors

and policy makers. However, the evaluation of the esti-

mates provided by nonlinear models should always be

evaluated with caution not to mention many external fac-

tors that lead to fluctuations and sudden/sharp changes in

oil prices.

5 Conclusion

The study aimed at evaluating a new group of nonlinear

models that combine the forecasting capabilities of MLP

and RBF type neural networks with GARCH type volatility

models and that augment LSTAR type nonlinear econo-

metric time series models proposed by Luukkonnen et al.

(1988) and Terasvirta (1994). The proposed LSTAR-LST-

GARCH-MLP and LSTAR-LST-GARCH-RBF family

models aim at modeling not only the conditional mean

processes but also the conditional variance simultaneously

with STAR type nonlinearity, allowing the transition

between the regimes to be captured with logistic transition

functions. Accordingly, at the first stage, crude oil prices

were modeled with baseline GARCH models with frac-

tional integration and asymmetric power terms. At the

second stage, LSTAR type nonlinear architecture was

introduced to the baseline models to obtain the LSTAR-

LST-GARCH models. At the third stage, LSTAR-LST-

GARCH models were augmented with RBF and MLP

neural networks to improve the modeling and forecasting

capabilities of the researcher aiming at forecasting crude

oil prices. Accordingly, the models were compared in

terms of MSE, RMSE, and MAE error criteria for in-

sample and out-of-sample forecasts. The results showed

that the LSTAR based and neural network augmented

models provided significant gains in terms of modeling the

daily returns of oil prices when compared with the results

of the baseline GARCH family models. The results also

showed that the LSTAR-LST-GARCH-RBF and LSTAR-

LST-GARCH-MLP models provided significant gains in

modeling petrol prices and in forecasting out-of-sample oil

price returns. Following the findings of the paper, the

future studies should aim at modeling different financial

series that are subject to nonlinearity and volatility to test

the forecasting capabilities of neural network algorithms

and architectures.

The crude oil daily returns are evaluated as a result of

their characteristics which could be classified as possessing

strong nonlinearity, volatility defined with excess kurtosis.

The nonlinearity inherited in crude oil prices has strong

implications for regulators and short-term trading strate-

gies. The oil prices possess important characteristics such

as nonlinearity, asymmetry, transition effects, fractionally

integrated, and persistence effects that should lead the

policy maker and the researcher to evaluate the policies to

be applied with great care; hence, the nonlinear volatility

models that incorporate fractional integration and power

terms capture the data generating process more effectively,

therefore, provide important tools for policy makers.
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