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Abstract Down-hole tubular string buckling is the most

classic and complex part of tubular string mechanics in

well engineering. Studies of down-hole tubular string

buckling not only have theoretical significance in revealing

the buckling mechanism but also have prominent practical

value in design and control of tubular strings. In this

review, the basic principles and applicable scope of three

classic research methods (the beam-column model, buck-

ling differential equation, and energy method) are intro-

duced. The critical buckling loads and the post-buckling

behavior under different buckling modes in vertical,

inclined, horizontal, and curved wellbores from different

researchers are presented and compared. The current

understanding of the effects of torque, boundary condi-

tions, friction force, and connectors on down-hole tubular

string buckling is illustrated. Meanwhile, some unsolved

problems and controversial conclusions are discussed.

Future research should be focused on sophisticated

description of buckling behavior and the coupling effect of

multiple factors. In addition, active control of down-hole

tubular string buckling behavior needs some attention

urgently.

Keywords Down-hole tubular mechanics � Tubular string
buckling � Wellbore configuration � Boundary condition �
Friction force

1 Introduction

Tubular string buckling is an important issue in well

engineering. Buckling makes the initially straight tubular

string buckle into curved shapes, which is an important

reason for the well deviation problem. Buckling can also

increase both bending stress on the tubular string and the

contact force between the tubular string and the wellbore,

which may further lead to serious down-hole problems

such as tubular string failure, casing wear, hard slack off, or

even ‘‘lock up.’’ Down-hole tubular string buckling is

usually taken as analogous to the Euler buckling problem

for a rod with axial compressive forces on both ends. The

rod remains straight until the axial force exceeds a certain

value, namely the critical load. When the axial force is

larger than the critical value, the initial configuration

becomes unstable and the rod buckles into a laterally

deformed configuration. However, unlike the free post-

buckling deflection of the Euler rod, various external fac-

tors, such as the constraint of wellbore, tubular string

weight, torque, friction force, etc., make tubular string

buckling behavior more complex.

The first systematic research on tubular string buckling

was conducted by Lubinski (1950). His pioneering work

revealed the buckling mechanism of rotary drill strings in

vertical wellbores and gave the critical buckling condition

and post-buckling behavior of the drill string. Since then, a

lot of improvement has been made in theoretical models

and experiments. Many tubular string buckling models in

vertical, horizontal, inclined, and curved wellbores under

the action of torque, boundary condition, friction force,

connectors, etc. have been proposed, some of which have

been verified in later experiments and actual engineering

operations. Despite all these achievements, some problems

remain and need to be solved. For example, there is no
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accurate model so far to depict the transition process from

two-dimensional lateral buckling to three-dimensional

buckling in vertical wellbores. Different researchers derive

inconsistent results of critical helical buckling loads for

slightly inclined wellbores, for the transition process from

sinusoidal buckling to helical buckling is a rather complex

phenomenon and different researchers have adopted dif-

ferent assumptions. The studies of the effects of friction

force, connectors, etc. are not mature and lack in-depth and

systematic work.

In this paper, we review the progress in down-hole

tubular string buckling. Classical research methods about

down-hole tubular string buckling are presented. The

effects of wellbore configuration, torque, boundary condi-

tion, friction force, connectors on tubular string buckling

are discussed. Meanwhile, comments on some unsolved

problems and controversial conclusions are presented.

2 Research methods

2.1 Beam-column model

Because the lateral displacement of the tubular string in

wellbores is much smaller than the axial length, the linear

elastic theory based on a small displacement is satisfied.

The governing equation of tubular string buckling can be

expressed by linear differential equations with respect to

lateral displacements. When the tubular string does not

contact the borehole wall or is in contact with the well wall

at several single points, the distributed force on the down-

hole tubular string is equal to tubular string weight and the

governing equation for a inclined straight wellbore is

expressed as follows (Gao 2006; Gao and Liu 2013):
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where u and v are the lateral displacements along x and

y coordinates, respectively; z is the axial distance; F is the

axial compressive force at the bottom end; MT is the tor-

que; EI is the bending stiffness; q is the weight per unit

length of the down-hole tubular string; a is the hole angle.

The general solution of Eq. (1) can be expressed as the

linear combination of certain linearly independent func-

tions, namely

w ¼ GTXþ wg; ð2Þ

where w is the lateral displacement (u or v); X is the vector

of undetermined constants and G is the vector of linearly

independent power series with respect to the variable; wg is

the lateral displacement caused by lateral tubular string

weight (namely q sin a). With the general solution Eq. (2),

the differential equation problem for down-hole tubular

string buckling can be converted to an algebraic equation

problem, which significantly reduces the complexity of the

tubular string buckling problem.

The beam-column model has been applied to lateral

buckling of a drill string under a zero-torque condition in

vertical wellbores (a = 0 and MT = 0) (Lubinski 1950).

According to Lubinski’s analysis, a systemof linear equations

in the form ofMX ¼ 0 is obtained by substituting the general

solution Eq. (2) into boundary conditions at the top and bot-

tom ends of the drill string. The critical lateral buckling force

is obtained when X is not a zero vector, namely the determi-

nant of the coefficient matrixM is equal to zero.

Generally, the beam-column model is used to depict the

suspended section for the down-hole tubular string with

multiple connectors distributed discretely (Mitchell 1982,

2000, 2003a; Huang and Gao 2014a,b, 2015). The sus-

pended section between two adjacent connectors is usually

very short, so the axial force on every suspended section

can be approximately taken as a constant. Hence, the vector

G in Eq. (2) can be written in a simpler form (Timoshenko

and Gere 1963):

G ¼ 1 z sin
ffiffiffiffiffiffiffiffiffiffiffi
F=EI

p
� z

� �
cos

ffiffiffiffiffiffiffiffiffiffiffi
F=EI

p
� z

� �h iT
: ð3Þ

Every suspended section is depicted by the above gen-

eral solution and the terms including the lateral displace-

ment, tangent direction, bending moment, and tangent

shear force are all continuous at the connecting points

between every two adjacent suspended sections. Introduc-

ing the boundary conditions at the ends of the integral

tubular string, a system of nonlinear algebraic equations

can be obtained. In this way, the down-hole tubular string

buckling problem is transformed into the properties of the

solutions of the nonlinear algebraic equations.

2.2 Buckling differential equation

For most cases, the down-hole tubular string is in contin-

uous contact with the wellbore. The distributed force on the

tubular string is equal to the sum of tubular string weight

and the contact force between the tubular string and the

wellbore. By introducing the wellbore constraint equations

u ¼ rc cos h and v ¼ rc sin h, the governing equation is

transformed into the following differential equation form

(Gao 2006):
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and the contact force on the tubular string is calculated by

the the following equation:

N ¼ EIrc 4
d3h
dz3

dh
dz

þ 3
d2h
dz2

� �2

� dh
dz

� �4
" #

þ

MTrc
dh
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� �3

� d3h
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" #
þ Frc

dh
dz

� �2

þ q sin a cos h;

ð5Þ

where h is the angular displacement shown in Fig. 1; rc is

the radial clearance between the tubular string and the

wellbore; N is the compressive contact force on the tubular

string per unit length.

Different from the beam-column model expressed by

two variables u and v, there is only one variable h in the

buckling differential equation. However, it is difficult to

solve the buckling differential equation due to the existence

of nonlinear terms. If the friction force is introduced, the

axial force F is related to the contact force N, and the

complexity of the buckling differential equation is

increased a lot. Up to now, general analytical solutions for

the buckling differential equation Eq. (4) have not been

found. Sinusoidal buckling and helical buckling are con-

sidered to be two representative solutions for Eq. (4) at

present. It is generally accepted that a long tubular string

constrained in a wellbore goes through an initial straight

configuration, then sinusoidal buckling and later helical

buckling with an increase in the axial compressive force

from zero. These two buckling modes have been observed

in a lot of experiments.

Sinusoidal buckling means that the tubular string

behaves like a snaking curve along the lower side of the

inclined wellbore. The sinusoidal buckling solution is

usually expressed by

h ¼ A sin x � zð Þ; ð6Þ

where A is the amplitude and x is the angular velocity of

the angular displacement fluctuation. The critical load Fcrs

for the sinusoidal buckling can be obtained by analyzing

the stability of the approximate linear form of Eq. (4) (Gao

et al. 1998; Gao and Miska 2009). The relationship

between the amplitude A and the axial force F is calculated

by solving Eq. (4) with a perturbation method (Gao and

Miska 2009).

Helical buckling means that the down-hole tubular

string becomes a helix which spirals around the inner

surface of the wellbore. The helical buckling solution can

be expressed as follows:

h ¼ 2p
p
z or h ¼ 2p

p
zþ A sin

2p
p
z

� �
; ð7Þ

where p is the helix pitch; A is the fluctuation amplitude

caused by the tubular string weight. The analytical solution

for the parameter p ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EI=F

p
is deduced from Eq. (4)

for a weightless tubular string without torque (Mitchell

1988; Gao 2006). The parameter A is approximately solved

with the perturbation method by assuming A to be a small

term (Liu 1999; Gao and Miska 2010a). The critical load

Fcrh which converts the sinusoidal buckling to helical

buckling is obtained when the contact force N between the

tubular string and the high side of the inclined wellbore is

equal to zero (Liu 1999).

2.3 Energy method

The energy method is another effective tool for us to study

down-hole tubular string buckling problems. Compared to

approximate solutions Eqs. (6) and (7) directly from the

buckling differential equation, the buckling solutions from

the energy method can be assumed more freely to depict

the buckling configuration. Substituting approximate

solutions such as Eqs. (6) or (7) into the total potential

energy expression and calculating its minimum value, the

buckling solutions can be determined. Meanwhile, the

energy method is better used to calculate the critical

buckling load and to analyze the stability of the post-

buckling configuration.

For the suspended section on which the tubular string is

not in contact with the wellbore, the total potential energy

of the tubular string in inclined wellbores is expressed as

the function of lateral displacements (Gao 2006):
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For the continuous contact section on which the the

tubular string is in continuous contact with the wellbore,
Fig. 1 Down-hole tubular string buckling in a inclined straight

wellbore
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the total potential energy is expressed as the function of

angular displacement:

P ¼ 1

2
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dh
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þ d2h
dz2
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" #

� F
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�MT
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ð9Þ

where Ub is the elastic bending energy; XF is the virtual

work for axial force; XM is the virtual work for torque; and

Xq is the virtual work for tubular string weight.

To be specific, the amplitude A for sinusoidal buckling

is calculated by introducing h ¼ A sin x � zð Þ into the total

potential energy equation for the continuous section and

letting the total energy reach the minimum value oP
oA

¼ 0.

With the critical stability condition o2P
oA2 ¼ 0, the critical

load Fcrs is obtained (Liu 1999; Gao and Miska 2009),

which converts the initial straight configuration into sinu-

soidal buckling. Similar to the analysis in sinusoidal

buckling, the helical buckling pitch p for a weightless

tubular string is deduced by introducing h ¼ 2p
p
z into

Eq. (9) and letting oP
op

¼ 0 (Lubinski and Althouse 1962).

For a tubular string with weight, the helical buckling

solution is h ¼ 2p
p
zþ A sin 2p

p
z


 �
, which is more compli-

cated than that for the weightless tubular string, whereas

the solution process for the helical buckling fluctuation

amplitude A is similar. Different from the stability criterion

for sinusoidal buckling, the critical force Fcrs which con-

verts sinusoidal buckling to helical buckling is deduced by

letting DP ¼ 0, where DP means the difference of total

potential energy at the helical buckling and the initial

configuration stages (Chen et al. 1990; Wu 1992; Cunha

1995).

However, the above three research methods are usually

not isolated from each other. The combination of the three

methods can give a sophisticated description of the tubular

string deflection. For example, in the derivation of the

deflection curve on the transition section near the bound-

ary, the beam-column model is used to depict the sus-

pended section while the buckling differential equation to

depict the perturbed buckling section (Sorenson and

Cheatham 1986; Liu et al. 1999). Taking a down-hole

tubular string with two connectors on its two ends as

another example, the two portions of the tubular string near

the connectors are suspended, while the middle portion is

in continuous contact with the wellbore. Similar to the

analysis about boundary conditions, the suspended section

and the continuous contact section are, respectively,

depicted by the beam-column model and the bucking dif-

ferential equation. In addition, the relative angular

displacement between the two connectors is obtained when

the total potential energy of the down-hole tubular string

achieves the minimum value (Huang and Gao 2014b).

However, it is not an easy task for the simultaneous

applications of the three classic methods because of the

complicated solution process of the nonlinear algebraic

equation systems.

3 Effect of wellbore configuration

3.1 Vertical wellbore

The critical buckling load for a tubular string in a vertical

wellbore is an important issue. Lubinski (1950) studied the

two-dimensional lateral buckling problem with the beam-

column model and gave the critical buckling forces for the

lowest two modes of buckling solutions shown in Table 1.

When the axial force on the bottom of the tubular string

reaches the first critical force, the initially straight tubular

string becomes unstable and buckles into a two-dimen-

sional curve with only a first order vibration. The curved

configuration of the tubular string is believed to be one

important reason for well deviation. When the axial force

increases further and exceeds the second critical value, the

tubular string deflection curve is seen as a second order

vibration function and the tubular string tends to touch the

inner surface of the wellbore on both sides of the wellbore

axis. However, the tubular string does not sequentially

buckle in a higher order of two-dimensional lateral buck-

ling but becomes a three-dimensional curve with the

increase in the axial force. Lubinski and Althouse (1962)

assumed the three-dimensional curve to be a helix and

deduced the pitch–force relationship with the energy

method:

F ¼ 8p2EI
p2

: ð10Þ

Although Eq. (10) is derived for a weightless tubular

string, it is proved to be an effective approximation for a

tubular string with weight (Gao et al. 1996). The contact

force between the helically buckling tubular string and the

wellbore is equal to (Mitchell 1988)

N ¼ Fr2c
4EI

: ð11Þ

At first, the critical load which initiates helical buckling

in vertical wellbores is approximately considered to be 0

(F ¼ 0) for a tubular string with rather small bending

stiffness, such as tubing. As a result, the down-hole tubular

string deflection is divided into two parts with the neutral

point (F ¼ 0) as the dividing point: the initial straight

configuration above the dividing point and a full helix

446 Pet. Sci. (2015) 12:443–457
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depicted by Eq. (10) below the dividing point. Later, it was

realized that it is too conservative to take the neutral point

as the critical helical buckling force for the drill string. Wu

(1992) improved the calculation method for the critical

force between the three-dimensional sinusoidal buckling

and helical buckling in vertical wellbores with the energy

method shown in Table 1. In Wu’s analysis, the tubular

string buckles into a half-sine wave under the critical

sinusoidal buckling condition and into a pitch of helix

under the critical helical buckling condition.

Gao et al. (2002) and Gao (2006) pointed out that the

sinusoidal buckling is unstable but helical buckling is

stable in vertical wellbores with energy stability analysis

and deduced the critical helical buckling with the buckling

differential equation by letting the contact compressive

force be positive for a period of the helix. Although dif-

ferent methods are employed in Wu’s and Gao’s research,

their results for the critical helical buckling force are close

to each other.

Mitchell (1988) studied helical buckling by solving the

buckling differential equation numerically and proved that

Lubinski’s helical buckling model (Lubinski and Althouse

1962) was just an approximate result. Mitchell’s results

show that the pitch–force relationship expressed in

Eq. (10) becomes invalid to depict the tubular buckling

behavior near the neutral point because the tubular string

may be not in contact with the wellbore.

Previous studies indicate that a key but tough problem is

the depiction of the transition between the top suspended

section and the bottom helically buckled section. A com-

prehensive model should consider the two sections as a

whole: the top suspended section is depicted by the beam-

column model and the bottom continuous contact section is

depicted by the buckling differential equation. As a result,

the dividing point can be determined with continuity con-

ditions of axial displacement, slopes, bending moments and

shear contact force of the two sections. In addition, how the

two-dimensional lateral buckling turns to three-dimen-

sional helical buckling with an increase in axial force has

not been accurately described until now. A model for

depicting the whole transition process of buckling state

from initial vertical configuration, two-dimensional lateral

buckling to the final helical buckling should be proposed.

3.2 Straight inclined and horizontal wellbores

Different from the vertical wellbores, the tubular string

bucking behavior is greatly affected by the component of

the tubular string weight perpendicular to the wellbore axis.

If there is no axial force applied, the straight tubular string

lies on the lower side of the wellbore. With the axial

compression increasing to a certain value, the tubular string

moves up from the wellbore bottom and buckles into a

certain configuration. During this process, the axial force,

which makes the tubular string become unstable, contends

with other stable factors such as the wellbore constraint,

perpendicular weight component, and the bending stiffness

of the tubular string. That is to say, the buckling state is a

comprehensive function of the stable and unstable factors.

Paslay and Bogy (1964) first introduced a trigonometric

series to represent the buckling shape of the tubular string

and obtained the critical sinusoidal buckling load for a long

tubular string in an inclined wellbore with the energy

method:

Fcrs ¼
EIn2p2

L2
þ L2q sin a

n2p2rc
; ð12Þ

where L is the tubular length, n is the number of half-period

sinusoidal curves, q is the tubular string weight, and a is the
inclination angle of the wellbore, Fcrs is the critical sinu-

soidal buckling load. The minimum value of Eq. (12) is

obtained by letting np
L
¼ q sin a

EIrc


 �1
4

(Dawson 1984),

Fcrs ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIq sin a

rc

r
: ð13Þ

Equation (13) quantitatively depicts the critical state

under the combined effects of stable and unstable factors.

To simplify Paslay’s derivation, a sine function buckling

shape is assumed and then Eq. (13) can be directly deduced

with the energy method (Chen et al. 1990; Miska et al.

1996; Liu 1999), Gao et al. (1998) obtained an identical

solution with stability analyses on the approximate linear

form of the buckling equation. The theoretical results are

close to the Dellinger’s experiments (Dellinger et al. 1983),

and the fitting formulas for horizontal wellbores from the

experimental data are Fcrs ¼ 2:93EI0:479q0:522r�0:436.

Table 1 The critical buckling loads for vertical wellbores

Buckling mode Lateral buckling Sinusoidal buckling Helical buckling

Dimensionless force (
ffiffiffiffiffiffiffiffiffi
EIq23

p
) 1.94 and 3.75 (Lubinski 1950) 2.55 (Wu 1992) 0.00 (Lubinski and Althouse 1962)

5.55 (Wu 1992)

5.62 (Gao 2006)
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After the axial force exceeds the critical value, the

deflection curve of the tubular string can be approximately

expressed by Eq. (6), where A is the amplitude and x is the

angular velocity of the angular displacement fluctuation.

Different solving methods may lead to different solutions.

For example, Gao and Miska (2010a) obtained x ¼
q sin a
EIrc


 �1
4

, A ¼ 4

ffiffiffiffiffiffiffi
b�1
11

q
and b ¼ F

Fcrs
by solving the buckling

differential equation with the perturbation method, while

Gao (2006) obtained x ¼
ffiffiffiffiffiffi
F
2EI

q
and A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 b2�1ð Þ
12b2�1

r
with the

energy method. In fact, these two results are rather close to

each other when the axial force approaches the critical

sinusoidal buckling force (b � 1).

With an increase in the axial force, the sinusoidal

buckling configuration becomes unstable and then buckles

into a helical configuration. Unlike the distinct critical

point between the initial configuration and sinusoidal

buckling, there is no theoretical model to accurately rep-

resent the transition between these two completely differ-

ent buckling modes—sinusoidal buckling and helical

buckling. Different researchers proposed various assump-

tions about the transition process and derived different

forms for the critical buckling loads with the energy sta-

bility principle. The main transition processes are illus-

trated in Fig. 2 and the values of critical buckling loads are

given in Table 2.

Chen et al. (1990) first deduced the critical force to

cause helical buckling with the energy method and stated

that critical helical buckling load was
ffiffiffi
2

p
times the crit-

ical sinusoidal buckling load. In Chen’s research, the axial

force on the tubular string was assumed to be constant

during the process from the starting of sinusoidal buckling

to helical buckling. By assuming that the axial force

increases linearly from the start of sinusoidal buckling to

helical buckling, Wu (1992) refined Chen’s method and

pointed out that Chen’s result was an average value of the

critical sinusoidal and helical buckling loads. According

to Wu, the critical helical buckling load is 2
ffiffiffi
2

p
� 1 times

the critical sinusoidal buckling load. Miska et al. (1996)

assumed that the axial force increased linearly in the

entire loading process and found that the critical helical

buckling load was 2
ffiffiffi
2

p
times the critical sinusoidal

buckling load. Miska et al. (1996) also proved that the

sinusoidal buckling configuration became unstable

(b ¼ 1:875) before the tubular string changes to the

helical buckling configuration. Therefore, the tubular

string may be in a sinusoidal or helical buckling state

when the axial force satisfies 1:875\b\2
ffiffiffi
2

p
. Cunha

(1995) pointed out that there are two critical helical

buckling loads, where the lower limit value is equal to

Chen’s result and the upper limit is equal to Miska’s

result. The upper limit means the minimum axial force

causing helical buckling in the loading process, while the

lower limit refers to the minimum axial force to keep the

tubular string in the helical buckling stage for the

unloading process. Mitchell (1997) obtained similar

conclusions with the buckling differential equation. On

the basis of previous studies, Gao et al. (2002) summa-

rized the previous assumptions (Fig. 2) and considered

that the axial force increases linearly in the sinusoidal

buckling stage and then remains constant until the start of

helical buckling based on experimental results.

In addition, the tubular string is always pushed on the

inner surface of the wellbore whether in the sinusoidal or

helical buckling stage. That is to say, the upper limit of the

sinusoidal buckling is achieved when the contact force at

the wellbore bottom is zero and the lower limit of the

helical buckling is achieved when the contact force at the

wellbore top is zero. Gao et al. (1998) calculated the crit-

ical buckling loads and found that these two limits are

rather close to each other.

The differences among the results from different

researchers mainly arise from two aspects. Firstly, previous

buckling solutions are only approximate results with sim-

plified assumptions. The accurate buckling solutions under

sinusoidal buckling and helical buckling stages have not

been obtained with the buckling differential equation and

energy method. Secondly, a comprehensive description of

the transition from the sinusoidal buckling to helical

buckling has not been proposed due to the significant dif-

ference between these two buckling modes. The critical

point between the sinusoidal buckling and helical buckling

stages is usually assumed in theoretical analyses, but no

Fig. 2 The relationships between the axial force (F) and axial

compressive displacement (DL) in the loading process (Fcrs is the

critical sinusoidal buckling load, Fcrh is the critical helical buckling

load, DLcrs
* is the maximum axial compressive displacement at the end

of the sinusoidal buckling stage, and DLcrh is the minimum axial

compressive displacement at the start of the helical buckling stage)

448 Pet. Sci. (2015) 12:443–457
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distinct dividing point is found in experiments. Therefore,

sophisticated description of the buckling state transition

and accurate buckling solutions under these two buckling

modes still needs an in-depth research.

Previous studies assumed the radial deflection of the

tubular string was fixed on the borehole wall and derived

the pitch–force relationship (Eq. (10)) with the energy

method (Chen et al. 1990; Miska et al. 1996). Cheatham

(1984) removed the radial constraint from the wellbore in

the energy method and proposed another new pitch–force

relationship in the helical buckling stage:

F ¼ 4p2EI
p2

: ð14Þ

Cheatham pointed out that Eqs. (10) and (14) are,

respectively, applicable for the loading and unloading

processes. In the loading process, the pitch of the helix is

variable but the tubular string is constrained by the well-

bore. However, in the unloading process, the tubular string

tends to lose contact with the wellbore but the pitch of the

helix remains constant. Huang et al. (2015a) verified

Cheatham’s results from the view of the buckling differ-

ential equation and further pointed out that the contact

force reaches its maximum value when Eq. (10) is satisfied

and its minimum value when Eq. (14) is satisfied.

Gao et al. (1998) pointed out that the tubular string

weight has an turbulent effect on the helix configuration,

and a more accurate buckling solution should be expressed

by

h ¼ 2p
p
zþ A sin

2p
p
z

� �
: ð15Þ

The perturbation magnitude A ¼ � 4
5b2

is obtained by

solving the buckling differential equation (Gao et al. 1998)

and using the energy method (Gao 2006). Mitchell (2002a,

b) used the Jacobi elliptic functions to solve the buckling

differential equation and obtained the exact analytical

helical buckling solution as follows:

h ¼ 4 sin�1 sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ

ffiffiffiffiffi
51

p
b

50
ffiffiffiffiffi
51

p
b

s
� 2pz
p

;
50

25þ
ffiffiffiffiffi
51

p
b

 !" #
:

ð16Þ

Meanwhile, Mitchell (2002a,b) found another new

buckling solution in which the tubular string buckles into a

periodically reversing curve which oscillates with a large

angular amplitude about the top of the wellbore rather than

the bottom of the wellbore. Huang et al. (2015a) further

proved that sinusoidal buckling and helical buckling are

just two special periodical solutions of the buckling dif-

ferential equation.

The effect of tubular string buckling on bending moment,

axial compressive displacement, and contact force is also an

important issue. Table 3 lists the values of these three fac-

tors in the sinusoidal buckling and helical buckling stages.

The bending moment from sinusoidal buckling can be

neglected, while bending moment from helical buckling is

significant especially under a large axial force with a big

radial clearance. Because the axial compressive displace-

ment in the helical buckling stage is far larger than that in

the sinusoidal buckling stage, the transition from sinusoidal

buckling to helical buckling includes a section where the

tubular string is continuously shortened with almost no

increase in the axial compression. This phenomenon has

been observed in buckling experiments (Salies 1994; Zou

2002) and now it has been introduced as an important

assumption to calculate the critical helical buckling loads.

The effect of the additional contact force from sinu-

soidal buckling is usually small for the length of the tubular

string in the sinusoidal buckling stage is quite limited

(Fcrs �F\Fcrh). However, the contact force increases

significantly in the helical buckling stage (F�Fcrh) due to

the quadric relationship between the contact force and axial

compressive load and it can seriously restrict the axial

force transfer when the friction force effect is taken into

consideration.

3.3 Curved wellbore

Experiments (McCann and Suryanarayana 1994; Salies

1994) have shown that the build wellbore curvature has a

stabilizing effect on tubular string buckling. The tubular

string may have been in ‘‘lock-up’’ or yielded while the

tubular string does not enter the buckling state in the build

section (Kyllingstad 1995).

Table 2 The critical axial forces for different buckling modes

Researchers Sinusoidal buckling (F/Fcrs) Sinusoidal or helical buckling (F/Fcrs) Helical buckling (F/Fcrs)

Chen et al. (1990) 1;
ffiffiffi
2

p� 
/

ffiffiffi
2

p
; 1

� 
Wu (1992) 1; 2

ffiffiffi
2

p
� 1

� 
/ 2

ffiffiffi
2

p
� 1; 1

� 
Miska et al. (1996) 1; 1:875½ � 1:875; 2

ffiffiffi
2

p� 
2
ffiffiffi
2

p
; 1

� 
Cunha (1995), Mitchell (1997) 1;

ffiffiffi
2

p�  ffiffiffi
2

p
; 2

ffiffiffi
2

p� 
2
ffiffiffi
2

p
; 1

� 
Gao et al. (1998) 1; 1:401½ � / 1:401; 1½ �

Pet. Sci. (2015) 12:443–457 449

123



The first theoretical research into the critical buckling

loads in a curved wellbore was to convert the buckling

problem in a curved wellbore into the equivalent buckling

problem in an inclined wellbore. Considering that the

tubular weight component perpendicular to the wellbore

axis is equal to the contact force in the unbuckling state in

an inclined wellbore, the critical buckling load can be

expressed by (He and Kyllingstad 1995).

Fcr ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EI � N

rc

r
; ð17Þ

where b ¼ 1 for Paslay’s sinusoidal buckling and b ¼
ffiffiffi
2

p

for the Chen’s helical buckling. Here, Eq. (17) is extended

to the curved wellbore case, and the buckling load can be

obtained by substituting the following contact force into a

build section:

N ¼ Fcr

R
þ q sin a; ð18Þ

where R is the curvature radius of the wellbore, q is the

weight per unit length of the tubular string, and a is the

inclination angle.

Wu and Juvkam-Wold (1995a) deduced the critical

buckling loads in build and drop-off wellbore sections

shown in Tables 4 and 5 with the energy method, in which

the lateral component of tubular string weight and axial

force was considered to do negative work. Wu’s results

show that the critical buckling loads in curved wellbores

are usually larger than that in straight wellbores, except

that the critical buckling loads become smaller in drop-off

wellbores with small curvature. Later, Qui et al. (1998)

obtained the critical buckling loads in which only the lat-

eral component of tubular string weight was considered to

do negative work and found that the sinusoidal buckling

has become unstable before the tubular string enters the

helical buckling stage. Kyllingstad (1995) pointed out that

there is an overlapping section for two buckling states

which acts as a barrier for buckling mode conversion.

Mitchell (1999b) obtained Miska’s critical sinusoidal

buckling loads by both solving the buckling differential

equation and using energy stability analysis, and resolved

the conflict between the Miska and Wu’s results. Mitchell

(1999b) pointed out that the lateral tubular string weight

which appears to be part of the contact force can be

neglected in Wu’s studies as no work is done by the contact

force. Liu (1999) solved the buckling differential equation

with the Galerkin method and derived the critical helical

buckling loads in build and drop-off wellbore sections by

letting the minimum contact force on the tubular string be

0. Liu’s results indicate that the up-limit value of the

sinusoidal buckling is rather close to the critical helical

buckling load.

Similar to the inclined wellbore case, the sinusoidal and

helical buckling solutions of the tubular string in a curved

wellbore can be expressed by h ¼ A sin x � zð Þ and

h ¼ 2p
p
zþ B sin 2p

p
z


 �
, in which the variable z is referred to

the arc-length of the wellbore axis. The relevant parameters

are calculated by A ¼
ffiffiffiffiffiffiffiffiffiffiffi
8 1�kð Þ
12�k

q
, p ¼

ffiffiffiffiffiffi
F
2EI

q
and B ¼ � 1

5
k,

where k ¼ F
q sin aR þ 1

 �

� 4EIq sin a
rc

.
F2 (Liu 1999).

The previous studies are mainly focused on build and

drop-off wellbore sections in the vertical inclination plane.

However, previous bucking models may not be applicable

for three-dimensional wellbores of which both the incli-

nation and azimuth angles change simultaneously in com-

plex-structure wells. Therefore, a tubular string buckling

model for arbitrary wellbores is needed.

4 Effect of other factors

4.1 Torque

Miska and Cunha (1995) proposed the critical helical

buckling torque for a tubular string without axial force,

Tcrh ¼ 2:087

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIð Þ3q sin a

r

4

s
; ð19Þ

and then the pitch of the helix is equal to

p ¼ 8EIp
3T

: ð20Þ

Table 3 Relevant parameters in the post sinusoidal and helical buckling stages

Buckling mode Maximum bending moment (M) Axial compressive displacement (DL/L) Contact force (N)

Sinusoidal 0:6302F0:08 F � Fcrsð Þ0:92rc
(Mitchell 1999a)

�0:7285
r2c
4EI

F0:08 F � Fcrsð Þ0:92
(Mitchell 1999a)

�0:0843
r2cF

4EI
(Liu 1999)

q sin a (Mitchell 1999a)

q sin aþ rF2

8EI
(Wu 1995)

Helical 0:5Frc � r2cF

4EI

rF2

4EI
þ q sin a (Mitchell 1999a)

rF2

4EI
(Liu 1999)

450 Pet. Sci. (2015) 12:443–457

123



However, the tubular string usually has yielded before

torque reaches the critical value Eq. (19).

The critical helical buckling conditions while consider-

ing the effects of axial force, torque, and tubular string

weight are shown in Table 6. Miska and Cunha (1995)

derived the critical helical buckling load and pitch of the

helix with the energy method. Later, He et al. (1995)

treated the torque as a perturbation and obtained the

approximate results for Miska’s model. Wu (1997)

assumed that there is only one period of helix when the

axial force reaches its critical value and derived the critical

buckling loads with the energy method. Their studies

simultaneously show that the torque decreases the critical

helical buckling load and pitch but increases the contact

force. However, the pitch of the helix may be increased if

the direction of the helix is opposite to that of the applied

torque and torque has been proved to have no effect on

sinusoidal buckling (Gao 2006). Paslay’s experimental

studies (Paslay 1994) indicated that the effect of torque on

the critical helical buckling load was limited usually no

more than 10 %.

Not only does torque affect the helical buckling con-

figuration, but also helical buckling can also induce torque

in turn. If a tubular string without torque at initial state is

compressed axially and the two ends of the tubular string

are constrained with no relative rotation, the induced tor-

que due to helical buckling is equal to (Mitchell 2004)

Tind ¼ �Fr2c
2

ffiffiffiffiffiffiffiffi
F

2EI

r
: ð21Þ

Mitchell (2004) pointed out that the induced torque may

exceed the makeup torque for large radial clearance. Gao

(2006) supplemented Mitchell’s theory and referred to the

induced torque as an incentive for the helix direction

reversal observed in experiments (Salies 1994).

4.2 Boundary conditions

For a long pinned–pinned or clamped–clamped tubular

string, the buckling configuration is divided into two parts:

the transition section adjacent to the boundary condition

and the full buckling section in the middle shown in Fig. 3

(Huang et al. 2015b). The transition section is further

divided into suspended and perturbed buckling sections.

For the suspended section, the tubular string loses contact

with the wellbore due to the support of the boundary

condition. For the full buckling section, the tubular string

buckles into a sinusoidal or helical configuration. The

perturbed buckling section, on which the tubular string is in

continuous contact with the wellbore, is seen as the tran-

sition from no contact to full buckling section.

Wu and Juvkam-Wold (1995a) pointed out that if a

tubular string has 3.5 or more pitches of helix, the transi-

tion section can be neglected. Gao and Miska (2009,

Table 4 Critical buckling loads for build-up wellbores

Researchers Critical sinusoidal buckling (Fcrs) Critical helical buckling (Fcrh)

He et al. (1995)
2EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

EI

qr
4EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

2EI

qr

Wu and Juvkam-Wold (1995a)
4EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

4EI

qr
12EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

8EI

qr

Qui et al. (1998)
2EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

EI

qr
, 2:532EI

Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

3:52EI

qr
8EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

2EI

qr

Liu (1999)
2EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

EI

qr
3:77EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:53R2rcq sin a

EI

qr

Table 5 Critical buckling loads for drop-off wellbores

Researchers Critical sinusoidal buckling (Fcrs) Critical helical buckling (Fcrh)

Wu and Juvkam-Wold (1995a)
4EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2rcq sin a

4EI

qr
(large curvature)

4EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

4EI

qr
(small curvature)

12EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2rcq sin a

8EI

qr
(large curvature)

12EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2rcq sin a

8EI

qr
(small curvature)

Liu (1999)
2EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2rcq sin a

EI

qr
3:77EI
Rrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:53R2rcq sin a

EI

qr
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2010a) proved that the effect of the boundary condition on

the full buckling section becomes negligible for a long pipe

with the dimensionless length q
EIr

� �1
4�L larger than 5p.

The length of the transition section for fixed and pinned

ends from different researchers is shown in Table 7.

Mitchell (1982) assumed the transition section only inclu-

ded one suspended section. In Mitchell’s analysis, the

suspended section is described by the beam-column solu-

tions and the full buckling section is expressed as a helix.

On the basis of Mitchell’s work, Liu et al. (1999) consid-

ered that the perturbed buckling section which connects the

suspended section and the full buckling section cannot be

ignored. In Liu’s analysis, the perturbed buckling section is

depicted described by the buckling differential equation,

and the results show that the angular displacement rate

decreases in an exponential manner in the perturbed

buckling section. It is proved that the shear contact force on

the contact point is not 0 in Mitchell’s model and the

contact force on the perturbed helix section is negative in

Liu’s model. Sorenson and Cheatham (1986) assumed that

the suspended section is depicted by two suspended beams

between which the adjacent point is in contact with the

wellbore. The end of the perturbed buckling section is

defined where the angular displacement change rate is

0.999 of that in the full buckling section. Later, Mitchell

(2005) made some improvements on the calculation effi-

ciency of Sorenson’s model. All studies indicate that the

transition section is smaller than one pitch of helix, namely

g1 þ g2 þ g3\2p.
Huang et al. (2015a) pointed out that previous studies

mainly considered the effect of axial force but neglected

the bending moment and lateral force on the boundary

constraints. Huang et al. proposed a novel classification

method for the boundary conditions: if the virtual work of

the bending moment and lateral force is 0, it is called the

first category; otherwise the second category. It is shown

that the boundary condition can also affect the full helical

buckling section of a long tubular string under the second

category case. Huang et al. (2015b) further verified that the

boundary condition is closely related to the buckling con-

figuration stability and found that the helical buckling

direction may reverse abruptly when the boundary condi-

tion goes across some critical values.

4.3 Friction force

Friction force is considered to be a stability factor which

inhibits the deviation of the tubular string away from its

initial state. Experimental results also have indicated that

friction force on the tubular string can delay the onset of the

sinusoidal buckling (McCann and Suryanarayana 1994).

Mitchell (2007) pointed out that the initial buckling with

friction is in the form of pipe rolling but not sliding. After

the lateral rolling buckling increases to a certain amplitude,

Fig. 3 Buckling configuration of a pinned–pinned tubular string in a horizontal wellbore. (g1, g2, and g3, respectively, represent the first

suspended section, the second suspended section, and the continuous contact section)

Table 6 Relevant parameters for the helical buckling with torque

Researchers Critical helical buckling loads (Fcrh) Pitch of helix (p) Contact force (N)

Miska and Cunha (1995) Fcrh ¼ 4p2EI
p2

þ q sin a
2p2r p

2 � 2pT
p

p2 ¼ 8p2EI
F

1

1þ3pT
Fpð Þ

/

He et al. (1995)
Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EIq sin a

r

q
1� 0:42T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

EIð Þ3q sin a
4

q� �
/

rF2

4EI
1þ Tffiffiffiffiffiffiffiffiffiffi

EI�F=2
p

� �

Wu (1997)
Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EIq sin a

r

q
1� Tp

4EIp

� �
p ¼

ffiffiffiffiffiffiffiffiffiffi
8p4rEI

q
4

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Tp

4pEI
4

q
/

Gao (2006) /
p2 ¼ 8p2EI

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9T2

32EI�F

q
� 3

ffiffi
2

p
T

8
ffiffiffiffiffiffiffi
EI�F

p
h i2 /
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it converts to the sliding buckling form. Then the critical

buckling load is calculated by

bcrs ¼ 1þGJ

r2p

ffiffiffiffiffiffiffiffiffiffi
rc

4EIq

r
; ð22Þ

where GJ is the torsional stiffness of the tubular string. Gao

and Miska (2010a) deduced the critical axial forces for

sinusoidal buckling and helical buckling in a horizontal

wellbore considering the sliding friction force with the

energy method:

bcrs � 1þ 1:233l
2
3

bcrh �
ffiffiffi
2

p
1þ 30þ 7p2ð Þl

30p

� �
: ð23Þ

Note that only the first order approximation of l is

retained in Eq. (23). Gao’s theoretical results are proved to

be consistent with the results from later experiments.

Su et al. (2013) solve the tubular string buckling equa-

tion with the friction effect using Fourier series. The results

show that the tubular string can tolerate substantial per-

turbation in a no-buckling state.

After the buckling is initiated, the axial friction force

becomes dominant and then causes a rapid decrease in

axial force transfer or even ‘‘lock up’’ (Kuru et al. 1999).

Mitchell (1986) obtained the axial force distribution in the

tubular string slack off process in vertical wellbores shown

in Table 8, in which the tubular string below the neutral

point is considered to stay in helical buckling. Later,

Mitchell (1996) applied the friction force in the axial dis-

placement-based governing equation and solved the axial

force transfer with a finite element method. Wu and Juv-

kam-Wold (1995b) studied the axial force transfer on the

sinusoidal and helical buckling sections in vertical and

horizontal wellbores. The results show that the axial force

on the helical buckling section in vertical wellbores

increases in a hyperbolic tangent function with respect to

the well depth and approaches the limit value of
ffiffiffiffiffiffiffi
4EIq
lrc

q
with

an increase in well depth. The axial force on the helical

buckling section in horizontal wellbores decreases in a

negative tangent function with respect to the well length

and the maximum extending length on the helical buckling

section in a horizontal wellbore is L ¼ p
l

ffiffiffiffiffi
EI
qrc

q
. Gao (2006)

pointed out that Wu’s tubular string buckling analysis was

based on the non-friction case and further proposed a

coupled model of buckling, contact force, and axial force.

The coupled model is given in the form of the buckling

differential equation with the sliding friction force. In

Gao’s model, the lateral component of friction force is

dominant at the instant of lateral buckling, while the axial

component of the friction force becomes dominant at the

helical buckling stage. The differential equations are

solved with the Galerkin method and the multiple-scale

method, and the results show that buckling initiation is

delayed a lot due to the friction force. Gao and Miska

(2010a) re-built Liu’s buckling differential equation with

the energy method and calculated the axial force transfer in

horizontal wellbores on the basis of the critical buckling

loads Eq. (23). Gao’s results indicate that the maximum

extending length on the helical buckling section in a hor-

izontal wellbore is 4EI
lrcFcrh

.

One important method for improving the axial force

transfer is rotating the tubular string. With rotation, the

axial friction force can be dramatically decreased by con-

verting the direction of the friction force from the axial

direction to the rotational direction. Meanwhile, rotation

also affects the tubular string buckling behavior. Menand

et al. (2008, 2009) studied the effect of friction force and

rotation on tubular string buckling with ABIS software and

experiments, which indicates that rotation can reduce about

50 % of the critical helical buckling load from a non-ro-

tating case. Gao and Miska (2010b) deduced the dynamic

buckling equation of a rotating tubular string without

friction and solved it with a perturbation method. The

results show that there are two kinds of snaking motion: the

first one is that the tubular string moves up and down about

the static buckling configuration, while the other is the

tubular string moves from one side to the other side of the

wellbore periodically. Both theoretical and experimental

results indicate that rotation does not affect the critical

buckling load. Hydraulic vibration is another way to

improve the axial force transfer and the ‘‘lock up’’ phe-

nomenon caused by the combined effects of friction force

Table 7 Dimensionless lengths of the transition sections

Researchers Boundary condition g1 g2 g1 þ g2 g3 g1 þ g2 þ g3

Mitchell (1982) Fixed end 3.178 0 3.178 0 3.178

Liu et al. (1999) Fixed end 2.718 0 2.718 1.211 3.929

Sorenson and Cheatham ((1986), Mitchell (2005), Huang et al. (2015b) Pinned end 1.747 1.347 3.094 1.677 4.771

Fixed end 2.700 0.903 3.603 1.846 5.449

g the dimensionless tubular string length
ffiffiffiffiffiffi
F
2EI

q
� L
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and helical buckling can be overcome through tubular

string vibration (Barakat et al. 2007). Some researchers

also believed that the connectors on the tubular string can

inhibit the buckling initiation and reduce the friction force

on the tubular string. The effects of connectors on tubular

string buckling are discussed below.

4.4 Connectors

Connectors distribute discretely along the tubular string

and the diameters of connectors are larger than that of the

tubular string body. Therefore, there exist three contact

cases between the tubular string and the wellbore: no

contact, point contact, and wrap contact. No contact means

that the tubular string suspends between connectors and

does not touch the inner surface of the wellbore, point

contact means that the tubular string touches the wellbore

at a single point, and wrap contact means that a segment of

the tubular string is in continuous contact with the well-

bore. In addition, there are three buckling states: non-

buckling, sinusoidal buckling, and helical buckling. Huang

et al. (2015c) pointed out that there are 9 deflection states

and 12 transition conditions by the combination of three

contact cases and three buckling states shown in Fig. 4.

Generally speaking, a tubular string constrained in a

straight wellbore goes through no contact, point contact to

wrap contact for the contact states and non-buckling,

sinusoidal buckling to helical buckling for the buckling

states. However, the combination of connectors, tubular

string buckling and other factors, such as wellbore con-

figuration and tubular string gravity, is a complex problem.

In Fig. 4, ‘‘C’’ represents critical condition, ‘‘N,’’ ‘‘P,’’

and ‘‘W,’’ respectively, denote no contact, point contact,

and wrap contact, ‘‘I,’’ ‘‘S,’’ and ‘‘H,’’ respectively, rep-

resent initial non-buckling, sinusoidal buckling, and helical

buckling. For example, ‘‘Non-buckling & No contact’’

means the initial non-buckling state under a no contact

case, ‘‘CNP_I’’ means the critical condition between no

contact and point contact in the non-buckling state, and

‘‘CIS_N’’ means the critical condition from initial non-

buckling to sinusoidal buckling under no contact state.

Lubinski (1977) studied the two-dimensional deflection

of a weightless tubular string with axial tension in a curved

wellbore and obtained the bending moment magnification

due to the existence of connectors in the no contact, point

contact, and wrap contact cases. Later, Paslay and Cer-

nocky (1991) extended Lubinski’s work to the axial com-

pression case. The results show that the local bending

curvature with connectors is larger than the wellbore cur-

vature. Therefore, the bending moment magnification

should be taken into consideration for the tubular string

design. On the basis of Paslay’s work, Huang et al. (2015c)

further considered the effect of tubular string weight and

assumed that the wellbore curvature is equivalent to an

additional tubular string weight. The results show that the

tubular string weight and wellbore curvature affect the

critical transition conditions between different contact

cases a lot. All these studies focus only on the two-di-

mensional lateral deflection situations.

Mitchell (2003a) studied the three-dimensional sinu-

soidal buckling problem of a tubular string constrained in a

horizontal wellbore and gave the buckling solutions for the

no contact case. According to Mitchell, the connector/

wellbore radial clearance rc should be used in the critical

sinusoidal buckling expression instead of the tubular string

body/wellbore radial clearance rb:

Fcrs ¼ 1:991

ffiffiffiffiffiffiffi
EIq

rc

r
� 2

ffiffiffiffiffiffiffi
EIq

rc

r
: ð24Þ

From Eq. (24), we can see that the critical buckling load

can be improved to
ffiffiffiffiffiffiffiffiffiffi
rb=rc

p
times of that under no connector

case. Later, Mitchell (2003b) extended his work to the

sinusoidal buckling problem in a curved wellbore. Mitchell

(2000) and Mitchell and Stefan (2006) further studied the

helical buckling of a tubular string in a vertical wellbore for

the no contact case. The results show that the tubular string

approximately buckles helically when the axial compression

is low while the effect of connectors on bending stress

Table 8 Axial force transfer in vertical and horizontal wellbores

Sinusoidal bucking Helical bucking

Vertical wellbore / F ¼
ffiffiffiffiffiffiffi
4EIq
lrc

q
tanh z

ffiffiffiffiffiffiffilqrc
4EI

p
þ c

� �
(Wu and

Juvkam-Wold 1995b; Mitchell 1986)

Horizontal wellbore
F ¼ 2

ffiffiffiffiffiffiffi
2EIq
rc

q
tan �lz

ffiffiffiffiffiffi
qrc
8EI

p
þ c

� �
(Wu 1995)

F ¼
ffiffiffiffiffiffiffi
4EIq
rc

q
�b3 þ 1

b2
tan � lb1 b2

ffiffiffiffiffiffi
qrc
4EI

p
� zþ c

� �h i
(Gao and Miska 2010a)

b1 ¼ 0:7895þ 0:0428l2=3 b2 ¼ 0:4460� 0:1702l2=3

b3 ¼ 1:1579� 0:093l2=3

F ¼
ffiffiffiffiffiffiffi
4EIq
rc

q
tan �lz

ffiffiffiffiffiffi
qrc
4EI

p
þ c

� �
(Wu and Juvkam-Wold 1995b)

F ¼ Fcrh
1

1�lrcFcrh
4EI

z
(Gao and Miska 2010a)
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becomes significant when the axial compression is high.

Mitchell’s results are verified by Duman’s experiments

(Duman et al. 2001, 2003) which show that connectors have

no effect on the critical sinusoidal buckling load but increase

the critical helical buckling load by 20 %.

Gao et al. (2012) studied the critical sinusoidal buckling

load for a initially straight tubular string in no contact,

point contact, and wrap contact cases. The results show that

both the length between two adjacent connectors and the

radial clearance difference between the tubular string body

and connector affect the critical buckling loads a lot. With

a decrease in the length between two adjacent connectors,

the effective radial clearance approaches the connector

radial clearance. When the length between two adjacent

connectors reaches the critical value where the tubular

string is just in point contact with the wellbore, the critical

buckling load achieves its minimum value. Gao’s results

were proved to be in good agreement with numerical cal-

culation (Daily et al. 2013; Hajianmaleki and Daily 2014).

On the basis of Mitchell’s and Gao’s studies, Huang and

Gao (2014a, b, 2015) presented the complete phase dia-

gram of the tubular string deflection states and studied the

sinusoidal buckling and helical buckling problems for a

tubular string constrained in horizontal and curved well-

bores. Huang’s studies indicate that the effect of connectors

on the tubular string buckling behavior is significant and

reaches a maximum value under the critical condition from

no contact to point contact cases.

Previous results indicate that connectors can delay the

buckling initiation, reduce the contact force between

tubular string and wellbore, and improve the axial force

transfer on the tubular string. Therefore, a reasonable

optimization of connector parameters may greatly improve

the tubular string extension limit in long horizontal-section

and extended-reach wells. For practical application, theo-

retical results about the effect of connectors on tubular

string buckling and contact force should be obtained first.

5 Conclusions

In this article, our aim is to introduce three main research

methods in down-hole tubular string buckling, summarize

the effects of relevant factors on the critical buckling loads

and post-buckling behavior, and draw a picture for future

research in this field. Previous studies built the basic

Non-buckling
&

No contact

Non-buckling
&

Point contact

Non-buckling
&

Wrap contact

Sinusoidal buckling 
&

No contact

Sinusoidal buckling
&

Point contact

Sinusoidal buckling
&

Wrap contact

Helical buckling 
&

No contact

Helical buckling
&

Point contact

Helical buckling
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Fig. 4 Phase diagram of deflection states and critical conditions

Pet. Sci. (2015) 12:443–457 455

123



knowledge framework of down-hole tubular string buck-

ling theory in which three issues are studied in detail: (1)

the description of the transition between different buckling

modes and the corresponding critical buckling loads; (2)

the buckling behavior including the deflection curve,

bending moment, and contact force under different bucking

modes; (3) the effects of relevant factors such as wellbore

configuration, torque, and boundary conditions. It is indi-

cated that down-hole tubular string buckling is a complex

problem because of the involvement of instability, non-

linearity, multiple factors etc. Future research on down-

hole tubular string buckling should still be conducted from

two aspects: (1) a more sophisticated and more accurate

description of the critical buckling conditions and post-

buckling behavior, such as the quantitative description of

the full path for the buckling mode transition in a vertical

wellbore and an arbitrary three-dimensional wellbore; (2)

the combination of as many factors as possible, such as the

buckling behavior of a tubular string with connectors under

the action of friction force in a three-dimensional wellbore.

To achieve the above objects, the three research methods

should be combined to solve the down-hole tubular string

buckling problems and an efficient calculation program to

solve the generated nonlinear algebraic equations should be

proposed. In addition, the previous studies mainly focused

on the mechanism of the down-hole tubular string buckling

but neglected the active control of the tubular string

buckling behaviors, which provides an important guidance

for improving the extending limit of the tubular string in

well engineering. Therefore, the achievement of active

control is also a prominent research direction in the down-

hole tubular buckling.
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