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Abstract High energy gas fracturing is a simple approach

of applying high pressure gas to stimulate wells by gen-

erating several radial cracks without creating any other

damages to the wells. In this paper, a numerical algorithm

is proposed to quantitatively simulate propagation of these

fractures around a pressurized hole as a quasi-static phe-

nomenon. The gas flow through the cracks is assumed as a

one-dimensional transient flow, governed by equations of

conservation of mass and momentum. The fractured

medium is modeled with the extended finite element

method, and the stress intensity factor is calculated by the

simple, though sufficiently accurate, displacement ex-

trapolation method. To evaluate the proposed algorithm,

two field tests are simulated and the unknown parameters

are determined through calibration. Sensitivity analyses are

performed on the main effective parameters. Considering

that the level of uncertainty is very high in these types of

engineering problems, the results show a good agreement

with the experimental data. They are also consistent with

the theory that the final crack length is mainly determined

by the gas pressure rather than the initial crack length

produced by the stress waves.

Keywords Gas fracturing � Numerical modeling �
Extended finite element � Fracture mechanics

1 Introduction

High energy gas fracturing (HEGF) is a technique to sti-

mulate wellbores by producing several radial cracks around

the holes. The cracks are generated by high pressure gas

produced from burning a propellant. This approach creates

multiple fractures and avoids the inherent limitations of

other common well stimulating techniques such as hy-

draulic fracturing (HF) and explosive fracturing (EF).

Hydraulic fractures are generated using a fluid which needs

pumping equipment on the top of the well, and the result is

usually in the form of two fractures perpendicular to the

minimum principle stress orientation. Explosive fracturing

can also generate several fractures, but releasing a very

high amount of energy in a few milliseconds may cause

considerable crushing of rock and leaving a residual

compressive stress zone around the wellbore. HEGF pro-

duces a higher pressure in a shorter time than HF but a

significantly lower pressure in a longer time than EF, so

multiple cracks can be generated without causing sub-

stantial damage to the rock structure.

Since a higher recovery is obtained by HF due to the

possibility of having very long fractures, HEGF has not

been accepted as the first choice for increasing the recov-

ery. Despite the disadvantageous of short crack lengths,

HEGF has its own applications and advantages: no need for

special pumping equipment, low overall costs, simple and

fast procedure, and the possibility of having multiple

fractures without causing an extensive damage. Krilove

et al. (2008) investigated the capability of this technique by

applying it on petrophysical laboratory samples and inside
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production wells. They concluded that HEGF is an effec-

tive and efficient method which can increase the oil pro-

duction rate by a factor of 2 to 3. It has also been

experimentally observed that HEGF is rather suitable for

exploratory wells or wells with natural fissures around

them (Yang et al. 1992; Wu et al. 2012). In addition, this

method has been successfully implemented in other ap-

plications such as enhancing the injectivity of gas injection

wells (Salazar et al. 2002), prefracturing before hydraulic

fracturing to reduce the friction pressure losses near the

wellbore (Jaimes et al. 2012), stimulating geothermal wells

(Chu et al. 1987), extracting gas from coal seams (Chao

et al. 2013), etc.

The procedure of crack initiation and propagation has

been comprehensively studied for blasting applications,

and the role of different effects has been determined

through numerous experimental and numerical investiga-

tions which will be briefly discussed in this section. Ac-

cording to these studies, one can conclude that a

conventional blasting process has two major stages which

contribute to crack propagation and rock fragmentation:

(a) stress wave and (b) gas pressure. The role of the stress

wave is to create initial cracks, while the gas pressure leads

to crack propagation. In fact, the stress wave can only

initiate limited cracking and crushing of the rock near the

borehole which would not exceed more than several hole

diameters (Kutter and Fairhurst 1971). Based on some field

and laboratory experiments, McHugh (1983) concluded

that the effect of gas pressure could be more noticeable

than the effect of stress wave. The same result was con-

firmed by Daehnke et al. (1997). The peak pressure of

propellant in HEGF is not as high as an explosive charge

and this pressure is released over a longer period of time, as

a result, the HEGF procedure can be assumed to be very

similar to the second stage of blasting (Nilson et al. 1985).

Possibility of unexpected results during such compli-

cated and fast engineering actions, which may cause major

safety and economic problems, motivates implementation

of numerical and analytical simulations to predict a wide

range of problems. Several attempts have been devoted to

simulating the complex process of blasting, but only those

related to this research are briefly reviewed. Nilson et al.

(1985) developed equations of conservation of mass and

momentum for penetration of a gas through a crack. These

equations were solved numerically, while analytical solu-

tions were implemented for analyzing the solid media.

Munjiza et al. (2000) suggested a simple model for

evaluation of gas pressure through cracks. Gas pressure

was only considered in a specific area around the source,

and the combined finite-discrete element method was used

for the analysis of the cracked solid. The Nilson equations

were implemented by Cho et al. (2004b) to investigate the

dynamic fracture process of rock. A dynamic FEM code

equipped with a re-meshing algorithm was used to consider

crack growth, and the gas pressure was estimated as a one-

dimensional flow through cracks. In a different approach,

Mohammadi and Bebamzadeh (2005) developed an ap-

proach to model gas–solid interaction. This model used two

separate but coupled meshes for the computation of solid

and gas phases based on the mechanics of porous media.

Then Mohammadi and Pooladi (2007) improved the

method proposed by Munjiza et al. (2000) to non-uniform

gas flow through fractures to account for the effects of

cracking and deformation induced by blasting on the

pressure and density of the gas. The same idea was used

and further developed by Mohammadi and Pooladi (2012)

to efficiently simulate the process of gas flow through a

complex system of fractures. Different benchmark exam-

ples were simulated to assess the performance of their

proposed approach. Other numerical techniques such as

discrete element method (DEM) for particulate media have

also been implemented to simulate rock fragmentation by

high energy gas (Ruest et al. 2006). This method can

handle highly complex fracture networks but the compu-

tational cost is extremely high.

Similar to blasting, the gas fracturing procedure can be

classified into two stages; rapid rising of gas pressure

which causes some cracking around the hole and the gas

penetration which leads to crack extension. The crack

initiation step can be simulated using sophisticated rate-

dependent constitutive models. Several models have been

proposed for random generation of cracks in rocks under

dynamic loading, including Cho et al. (2004a, 2008), Cho

and Kaneko (2004), Zhu et al. (2004, 2007), and Ma and

An (2008). The second stage of gas fracturing, gas

penetration into existing cracks, is of great importance

because it predominantly determines the final crack ex-

tension. It has been considered as a quasi-static phe-

nomenon due to a lower rate of loading (Paine and Please

1995; Nilson et al. 1985).

HEGF can be regarded as an engineering problem in

highly complicated conditions with several uncertainties.

The final results depend on many factors such as rock

strength (tensile strength, toughness), in situ stresses, type

of propellant and quality of sealing. The first stage of

HEGF procedure is not in the scope of this study and the

main focus is to simulate the process of gas penetration and

crack extension to obtain quantitatively acceptable results.

For simulating the solid medium, the powerful extended

finite element method (XFEM) is implemented. This

method simulates the existing and propagating cracks in-

dependent of the generated mesh, so avoiding the difficult

re-meshing and stress transfer algorithms. This method has

been used to study hydraulic fractures in concrete dams by

(Ren et al. 2009), in which the fluid pressure was applied as

a uniform constant pressure through the entire crack
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surfaces. Different coupled hydro-mechanical formulations

of XFEM were also proposed in several studies to simulate

hydraulic fracturing in porous media, while the injected

fluid can permeate into the surrounding rocks (Moham-

madnejad and Khoei 2013; Gordeliy and Peirce 2013;

Gholami et al. 2013). Here, to consider the gas flow

through the fractures, a one-dimensional transient flow

model governed by conservation of mass and momentum

(Nilson and Griffiths 1983; Nilson et al. 1985) is adopted.

These equations are solved using an explicit finite differ-

ence method (FDM). In each time step, the geometrical

parameters of fractures are given to the FDM code, and the

resultant solution for the gas pressure along the crack is

applied as the boundary conditions on the solid medium.

These equations were previously used by Cho et al.

(2004b) and Goodarzi et al. (2011, 2013) to simulate a

laboratory scale experiment conducted by Cho et al. (2002)

to study the gas flow inside a crack. Applicability of these

equations was confirmed by the good agreement obtained

between numerical and experimental values of the average

gas velocity inside the crack.

In this paper, after introducing the gas flow and XFEM

equations, the provided XFEM code is validated against an

analytical solution, and the effects of different numerical

parameters are assessed in order to achieve a reasonable

accuracy for the numerical results. The proposed algorithm

is then evaluated by simulating two field experiments of

gas fracturing, with comprehensive sensitivity analyses to

investigate the effect of each parameter.

2 Numerical modeling of gas flow

After a blast, a small zone with many cracks would appear

around the blast-hole, and just a few of them can surpass

the others and extend. Experimental investigations have

also shown that the number of major cracks around a blast-

hole is between 3 and 8 (Garnsworthy 1990). Accordingly,

in this research, the gas flow is only considered in those

surpassing fractures. The gas penetration through the

cracks is assumed to be a one-dimensional transient flow.

Moreover, because of the insignificant loss of mass and

heat into the surrounding rock, it is reasonable to presume

that the gas expansion is an adiabatic process, and the rock

is impermeable (Nilson et al. 1985).

The one-dimensional equations of gas flow, governed by

the laws of conservation of mass and momentum, can be

written as follows:

oðqhÞ
ot

þ oðqvhÞ
ox

¼ 0; ð1Þ

qh
1

q
oP

ox
þ w

� �
¼ 0; ð2Þ

where q is the density; v is the velocity; P is the gas

pressure; and W is the viscous shear stress, which can be

approximated by Eq. (3a) and (3b) for laminar and turbu-

lent flow, respectively (Paine and Please 1995),

w ¼ 12lv
qh2

; ð3aÞ

w ¼ a
e
h

� �bv2
h
; ð3bÞ

where l is the viscosity of fluid; h is the fracture opening; e
is the fracture roughness; and a and b are experimental

constants: a = 0.1 and b = 0.5 (Nilson et al. 1985). Cho

et al. (2004b) showed that the turbulent model for gas flow

through the fracture is much more reasonable, so Eq. (3b)

is chosen for the rest of this study.

Replacing the viscous shear stress in Eq. (2) by Eq. (3b)

and after simple manipulations, the velocity can be deter-

mined from

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

ftq
� oP

ox

� �s
; ft ¼ aðe=hÞb: ð4Þ

Substituting Eq. (4) into Eq. (1), the discretized form of

Eq. (1) on the mesh shown in Fig. 1, can be written as

follows:

qtþDt
N � qtN ¼ � 4Dt

ðDxR þ DxLÞðhw þ hxÞ

� hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qtx

hx

f

ðPt
L � Pt

NÞ
DxL

s 

�hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qtw

hw

f

ðPt
N � Pt

MÞ
DxR

s !
;

ð5Þ

where h is a constant input associated with an element, and

the density of elements is calculated as the average of the

densities of their nodes. Despite the fact that an advanced

equation of state such as JWL can better predict the explosive

pressure, the JWL parameters for the propellant used in our

verification examples are not available in the literature. As a

result, to estimate the detonation gas pressure along the

fractures, an ideal gas equation of state is implemented

(Paine and Please 1995; Mortazavi and Katsabanis 2001).

P ¼ P0

q
q0

� �c

; ð6Þ

M w N x L

xR xL

Fig. 1 The finite difference mesh for one-dimensional gas flow,

w and x are in the middle of the elements
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where P0 and q0 are the initial pressure and density of the

gas; P and q are the current values and c is the coefficient

of the ideal gas.

3 Extended finite element method

3.1 Formulation

The finite element method (FEM) is one of the most

powerful methods in engineering analyses, frequently used

to model various problems in solid media. One of the main

approaches of FEM in modeling crack propagation prob-

lems is to use the technically difficult and time-consuming

adaptive re-meshing approach. The extended finite element

method, on the other hand, simulates the cracks by en-

riching the shape functions of the elements which are in-

volved with cracks. In this way, after each step of crack

propagation, there is absolutely no need to change the

initial mesh and only the new involved elements should be

detected for proper enrichments.

When an element takes part in a crack simulation, its

XFEM displacement approximation can be defined as fol-

lows (Mohammadi 2008):

uðxÞ ¼
Xn
j¼1

NjðxÞuj þ
Xm
h¼1

NhðxÞHðnðxÞÞah

þ
Xmt
k¼1

NkðxÞ
Xmf
l¼1

FlðxÞblk

 !
: ð7Þ

Here u is the conventional FEM nodal displacements; n is

the number of nodes of the element; m is the number of

nodes which are involved with the crack length; mt is the

number of nodes being related to the crack tip; mf is the

number of functions that are used for enriching the crack

tip element; and ah and bk
l are the additional degrees of

freedom associated with crack discontinuity and crack tip

singularity enrichments, respectively; N is the conventional

shape functions of FEM; and H is the Heaviside function

for simulation of displacement discontinuity across a crack,

HðnðxÞÞ ¼ 1; nðxÞ� 0

0; nðxÞ\0

�
: ð8Þ

In Eq. (7), F is a set of functions which are obtained

from analytical solution of displacement around a crack tip.

The crack tip enrichment function F for an isotropic elastic

material can be defined as follows:

Faðr;hÞ¼
ffiffi
r

p
sin

h
2
;
ffiffi
r

p
cos

h
2
;
ffiffi
r

p
sinhsin

h
2
;
ffiffi
r

p
sinhcos

h
2

� �
:

ð9Þ

Selection of the enriched nodes is performed according

to the crack position, as shown in Fig. 2.

The conventional FEM formulation should be updated

to account for the additional degrees of freedom. If a

cracked body subjected to body force b and internal pres-

sure p on the crack surfaces is assumed, as depicted in

Fig. 3, the global governing equation for determining the

unknown vectors u can be defined as follows:

Ku ¼ f; ð10Þ

where the unknowns vector u, the stiffness matrix K, and

the external force vector f, for each element, can be de-

termined from the equations as follows:

ue ¼ uj; ah; b
l
k

	 
T
; ð11Þ

keij ¼
kuuij kuaij kubij
kauij kaaij kabij
kbuij kbaij kbbij

2
64

3
75; ðr; s ¼ u; a; bÞ; ð12Þ

Fig. 2 Selection of the nodes for enrichments, squares show the

crack tip enrichment, and circles are related to the Heaviside

enrichment

p

n

LcLc

Lf

Lu

t
Ω

Fig. 3 A cracked solid domain subjected to an internal pressure on

crack surfaces
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fei ¼ fui ; f
a
i ; f

bl
i

	 

: ð13Þ

Considering B and D as the matrix of the shape function

derivatives and the constitutive matrix, respectively, dif-

ferent terms in Eq. (12) and (13) can be determined as

following:

krsij ¼
Z
Xe

Br
i

� �T
DBs

jdX; ð14Þ

fui ¼
Z
X

NibdXþ
Z
Lf

NitdC; ð15Þ

fai ¼
Z
X

NiHbdXþ
Z
Lf

NiHtdCþ 2

Z
Lc

n:NipdC; ð16Þ

fbli ¼
Z
X

NiFlbdXþ
Z
Lf

NiFltdCþ 2

Z
Lc

n
ffiffi
r

p
:NipdC;

ðl ¼ 1� 4Þ:
ð17Þ

3.2 Numerical integration

Despite the simple idea of XFEM, specific details are re-

quired for its implementation. One of them, which is cri-

tical to achieve proper accuracy, is the integration on the

elements that are involved with a crack. The Gauss

quadrature method is usually adopted for this purpose in

conventional FEM simulation. However, it may not be

accurate enough for singular or discontinuous functions

usually encountered in XFEM simulations. One way to

improve the results is to subdivide the both sides of the

enriched element into subtriangles in such a way that their

edges conform to the geometry of the crack and the ele-

ment (Mohammadi 2008). Figure 4 shows a simple typical

procedure for subdividing a crack element and a crack tip

element; a larger number of triangles may be required to

achieve sufficient accuracy. It should be noted that inte-

gration in each triangle is performed by a standard Gauss

quadrature rule.

More details about the formulation, implementation, and

applications of XFEM can be found in Mohammadi (2008,

2012).

4 Coupling process and crack propagation

The two numerical approaches for solving the gas flow and

the cracked solid medium have to be coupled. At first,

initial lengths of cracks are assumed as a result of the first

phase of blasting (the shock wave propagation), which is

not directly simulated in this paper. The initial FDM mesh

is generated on the existing cracks and the gas flow algo-

rithm is performed for a small time span (time step). Then

the calculated gas pressure is applied as the boundary

conditions into the XFEM code for simulating the cracked

domain. The new crack lengths and the crack opening

displacements (COD) are computed and exported to the gas

flow algorithm for the next step of calculation.

A criterion is also required for crack propagation. The

stress intensity factor (SIF) is calculated and compared

with the critical value in each step. There are several

methods for numerical evaluation of SIF, but due to the

assumption of linear elasticity in this study, the computa-

tionally inexpensive displacement extrapolation method is

adopted. As the problem is solved in a quasi-static condi-

tion, cracks propagate and extend to a specific value when

the criterion is satisfied. In other word, a pseudo-velocity is

assumed for crack propagation, and the specific value of

propagation extent for each step is obtained from this ve-

locity multiplied by the time step. The proposed algorithm

is described in Fig. 5.

Assuming a linear elastic analysis, the SIF can be cal-

culated using the analytical solution of displacements

around the crack tip (Eq. 18). Rewriting these expressions

in terms of SIF and substituting the numerically obtained

displacements for several points on a radial line emanating

from the crack tip, a set of data for SIF in mode I (KI) or

mode II (KII) with respect to the distance r from the crack

tip is generated. The SIF at the crack tip is the extrapolated

value for r = 0. Figure 6 shows the procedure of this

approach,

4G

ffiffiffiffiffiffi
2p
r

r
u

v

( )
¼ KI

ð2k � 1Þ cos h
2
� cos

3h
2

ð2k þ 1Þ sin h
2
þ sin

3h
2

8>><
>>:

9>>=
>>;
;

4G

ffiffiffiffiffiffi
2p
r

r
u

v

( )
¼ KII

�ð2k þ 3Þ sin h
2
� sin

3h
2

ð2k � 3Þ cos h
2
þ cos

3h
2

8>><
>>:

9>>=
>>;
:

: ð18Þ

Crack Crack

Fig. 4 Subtriangles for integration on a crack tip element (left) and a

cracked element (right)
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5 Numerical results

5.1 Validation of XFEM code

To verify the accuracy of the presented XFEM code, a

classic problem with available analytical solution is

simulated. A pressurized hole with two radiating cracks in

an infinite plate (Fig. 7) has the following closed-form

solution for the stress intensity factor,

K ¼ bP
ffiffiffiffiffiffi
pa

p
; ð19Þ

where b is a coefficient related to the ratio of crack tip

distance from the center of the hole to the hole radius. A

hole with 5 cm radius and two 15 cm radiating cracks is

assumed and a uniform internal pressure of 1 MPa is ap-

plied inside the hole and the cracks. b for this problem is

0.9976 (Saouma 2000), so the analytical stress intensity

factor (Eq. 19) is computed, 7.91 MPa m0.5.

Due to the axial symmetry of the problem, one half of

the geometry is simulated with the developed XFEM code.

Figure 8 shows the generated mesh of 2200 nodes, the

enriched nodes and the distribution of Gauss points around

the cracks. It is noted that only 54 extra degrees of freedom

are required to simulate the crack. Increasing the number of

Gauss points around the crack tip can reduce the error but

increases the computational time, so an optimum distri-

bution should be obtained for each type of problem. The

numerically predicted stress intensity factor for this model

is 7.7 MPa m0.5 with an acceptable error of about 2.7 %.

5.2 Gas fracturing simulation

In order to investigate the capability of the proposed ap-

proach to simulate gas fracturing problems, the ex-

perimental studies conducted by the Sandia National

laboratory (Nilson et al. 1985) in deep tunnels excavated in

a homogenous Tuff with 10 MPa hydrostatic stress are

Crack tip

KI

r

Fig. 6 Displacement extrapolation method; the SIF at the crack tip is

estimated from the best fitted line on the sampling points

Applying initial conditions:
In situ stresses

Gas pressure inside the bore hole at t=0 s

XFEM analysis:
Calculation of stress intensity factor (K)

Calculation of crack opening displacement

Applying the new pressure inside the
bore hole and the crack as boundary

conditions

Finite difference analysis:
Calculation of gas pressure at time t+∆t

Mapping the pressure at time t to the new
mesh as the initial condition

YES NO

NO
YES

END

T ≥ t K ≥ Kcritical

Crack extension and
generation of a new

finite difference mesh

Fig. 5 The flowchart for the

proposed algorithm

Fig. 7 Geometry of the hole with two radiating cracks
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modeled. Two of these examples are chosen for this study.

One of them is a low-power fracturing, which produced

only two fractures and the other one is a high energy

fracturing with 6 major radiating cracks. The details of the

experiments and the rock properties are presented in

Tables 1 and 2.

The gas produced from the propellant burning is con-

sidered as an ideal gas, while its expansion is assumed as

an adiabatic expansion. These are reasonable assumptions

for high temperature gases produced by blasting (Mor-

tazavi and Katsabanis 2001). Initial tiny cracks around the

borehole are assumed to initiate the crack propagation. In

addition, the rapid phase of pressure rise is ignored. In fact,

the simulation starts immediately after the peak pressure is

reached. The fluid pressure acts normal to the crack surface

and in these particular examples, the stress state is hydro-

static; therefore, the crack propagation occurs in pure Mode

I which means no change in the direction of the crack

during its propagation. It should be noted that it will not be

the case when the in situ stress state becomes anisotropic.

In addition, there are two unknown parameters in this

simulation which are determined based on calibration of

the experiments: the constant of equation of state (c) and
the crack propagation velocity.

Figure 9 shows the generated model for the first ex-

periment (D1) which contains 3000 nodes. The initial crack

Table 2 Properties of the host rock (Nilson et al. 1985)

Parameters Values

Toughness, MPa m0.5 0.5

Shear modulus, GPa 3

Poisson’s ratio 0.3

Crack roughness, mm 0.4

Shear wave velocity, m/s 1200

Table 1 The details and results of the experiments (after Nilson et al.

1985)

Experiment ID D1 GF2

Pressure
Peak, MPa
Rise time, ms
Decay time, ms

90
0.5
16

40
3

18
Wellbore

Diameter, m 0.2 0.048

Propellant
Diameter, m
Density, g/cm3

Type

0.2
0.5

M5B

0.04
0.5

M5B
Cracks

Number
Length range, m
Length mean, m

7
0.9–2.5

1.7

2
0.4–0.9

0.7
Cracking pattern

1.5

1.0

0.5

0

−0.5

−1.0

−1.5
−1.0 1.0−0.5 0 0.5 2.0−1.5 2.5

Fig. 8 Generated mesh and extra degrees of freedom for enrichments (left) and the distribution of Gauss points (right)
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length is 2 cm, the time step for analyzing the solid

medium is 100 ls, and the crack velocity is assumed to be

100 m/s. According to the observed cracking pattern for

this experiment, the average final crack length is equal to

0.7 m, so the constant of equation of state can be

calibrated. Performing a back analysis on the results, the

value of 1.29 is obtained which is in the expected range of

1.2–3 for blast-induced high temperature and high density

gases, as proposed by Mortazavi and Katsabanis (2001)

(Fig. 10). The calibrated value for the constant of equation

of state might not be exactly equal to the real value, due to

so many unavoidable uncertainties in these complex

problems and the simplifications and assumptions that are

essential to make the simulation possible. The obtained

value may cover some of them but it can generate the same

overall result.

To better investigate the effects of other parameters, a

sensitivity analysis is carried out on the crack propagation

2.0

1.5

0.5

0

−0.5

−1.0

−1.5

0.1

−2.0

−1.0 1.0−0.5 0 0.5 2.0−1.5 2.5−1.5 3.0 3.5 0 0.02 0.04 0.06−0.02 0.08 0.10

0.04

0.03

0.01

0

−0.01

−0.02

−0.03

0.02

−0.04

−0.05

0.05

Fig. 9 Generated mesh (left) and enriched nodes (right) for the D1 experiment
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velocity, the initial crack length and the time step. Values

for these parameters are changed in reasonable ranges and

their effects on the final crack length are studied. Figure 11

clearly shows that the results for the final crack length

remain practically insensitive to these numerical

assumptions.

Despite the fact that the final solution is not sensitive to

the assumption of the crack propagation velocity, its value

should be set in a logical range. Nilson et al. (1985) argued

that in a dynamic state, the maximum velocity for crack

propagation mostly depends on the mechanical properties

of the solid medium and it can be roughly estimated around

50 % of the Rayleigh wave speed in the medium. In con-

trast, in hydraulic or gas fracturing, the fluid-dynamic

considerations control the crack propagation velocity and it

depends on how fast the driving pressure can push fluid

into the fracture, so the crack speed becomes slower than

the dynamic mode. As the Rayleigh wave speed is slightly

less than the shear wave speed which is 100 m/s (Table 2)

for this rock. The assumed pseudo-crack propagation ve-

locity should be less than 600 m/s. Figure 12 shows the

effect of crack velocity and the constant of equation of

state on the borehole pressure decay of the D1 experiment.

It can be concluded that it is the crack propagation velocity

that mainly determines the rate of pressure drop in the

borehole. The crack extension velocity of 50 m/s can well

be matched with the field data, which is also in agreement

with the description provided by Nilson et al. (1985) that

fluid-driven fracturing is slower than dynamic fracturing.

Another important issue that should be clarified is the

effect of in situ stress, as HEGF might be applied in dif-

ferent depths. The final results of this test with different

in situ stresses (Fig. 13) reveal that this parameter has a

significant non-linear effect on the final results and it

should be considered in the design procedure of a suc-

cessful HEGF operation.

Additionally, to investigate the effect of mesh size on

the results, the same problem is simulated by different

number of nodes. The results are summarized in Table 3

which indicates that for around 3000 nodes or more, for

this particular simulation, the final result will converge and

become mesh insensitive. It should be noted that the mesh

size can also slightly change the loading evaluated inside

the crack and consequently affects to some extent the ac-

curacy of the predicted stress intensity factor.

The calibrated parameters obtained from the first ex-

periment (D1) are now used to simulate the second ex-

periment (GF2) because the host rock and the propellant are

the same for both tests. Figure 14 shows the adopted mesh

for the GF2 experiment which has 2750 nodes. The crack

propagation velocity and the initial crack length are assumed

to be 200 m/s and 5 cm, respectively, which may not be the

real values, but the results are expected to be insensitive to

them, as it was investigated in the previous simulation.

After 16 ms, the final crack length becomes 2.3 m.

According to the reference description and the borehole

pressure sensor results, after this time, the test sealing had

broken, and the gas pressure was lost so, this time is

considered as the end of the simulation. The stress states at

this time are shown in Fig. 15.
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EOS (c) on the decay of borehole pressure
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Table 3 Sensitivity analysis of the final crack length with respect to

the mesh size

Number of nodes 3600 3000 2400 1144

Final crack length, m 0.695 0.70 0.76 0.55
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The observed difference between the average of final

crack lengths in the numerical model (2.3 m) and the ex-

perimental test (1.7 m) can be discussed on the basis of

some unavoidable sources of error. Firstly, the evaluated

material properties, especially the toughness, involve some

level of uncertainties. Secondly, due to the short rise time

(0.5 ms), small cracks are generated around the hole which

absorb a portion of the gas energy through its penetration

into these small spaces. As a result, the final crack length is

shortened. Generally, because of high level of uncertain-

ties, some authors believe that a precise quantitatively

prediction of such a complex problem with a conventional

computational model seems very difficult and unlikely, and

they may even accept a model that can predict with twofold

difference for practical purposes (Nilson et al. 1985).

6 Conclusions

In this paper, a simple model was proposed and evaluated

to predict the final length of gas fractures. The available

equations of gas flow through a crack were implemented

and solved on a 1D finite difference mesh. The novel and

computationally efficient XFEM approach was used for

simulation of the cracked solid. A simple fracture me-

chanics problem with an analytical solution was also uti-

lized for validation of the XFEM code. Moreover, the

details of XFEM integration and evaluation of the stress

intensity factor were determined in such a way that with a

reasonable computational effort, a sufficient accuracy

could be obtained. Two experimental studies were chosen

to calibrate and evaluate the model. Although the predicted
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results of numerical simulation could not be perfectly

matched with the experimental study, the error remained in

an acceptable level for practical purposes. In addition,

comprehensive sensitivity analyses were performed and the

influential parameters were clarified. The in situ stress was

found to be a very critical factor on the final result which

should be considered for HEGF designs. The final lengths

of the cracks were found to be independent of the initial

crack lengths. As a result, in a blasting process, the role of

gas pressure on the extension of cracks remained more

important than the role of the stress wave. This model can

be easily improved for complicated geometries, stress

states, and material properties as a general computational

tool for checking the initial or finalized designs of HEGF

operations. Moreover, similar engineering problems such

as control blasting in mining industry can be simulated

with this algorithm.

Acknowledgments The authors would like to acknowledge the

technical support of the High Performance Computing Lab, School of

Civil Engineering, University of Tehran. The support of Iran National

Science Foundation is also gratefully appreciated.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Chao Z, Baiquan L, Yan Z, et al. Study of fracturing-sealing

integration technology based on high-energy gas fracturing in

single seam with high gas and low air permeability. Int J Min Sci

Technol. 2013;23:841–6.

Cho SH, Risei K, Kato M, et al. Development of numerical simulation

method for dynamic fracture propagation due to gas pressuriza-

tion and stress wave. In: Proceedings of 2002 ISRM regional

symposium (3rd Korea-Japan joint symposium) on rock engi-

neering problem and approaches in underground construction,

Jul 22–24, Seoul; 2002. p. 755–62.

Cho SH, Ogata Y, Kaneko K. Strain-rate dependency of the dynamic

tensile strength of rock. Int J Min Sci Technol. 2004a;40:763–77.

Cho SH, Nakamura Y, Kaneko K. Dynamic fracture process analysis

of rock subjected to stress wave and gas pressurization. Int J Min

Sci Technol. 2004b;41:433–40.

Cho SH, Kaneko K. Influence of the applied pressure waveform on

the dynamic fracture processes in rock. Int J Min Sci Technol.

2004;41:771–84.

Cho SH, Nakamura Y, Mohanty B, et al. Numerical study of fracture

plane control in laboratory-scale blasting. Eng Fract Mech.

2008;75:3966–84.

Chu TY, Jacobson RD, Warpiniski N. Geothermal well stimulation

using high energy gas fracturing. In: Proceedings of 12th

workshop on geothermal reservoir engineering, Jan 20–22,

Stanford, CA; 1987.

Daehnke A, Rossmanith HP, Napier AL. Gas pressurization of blast-

induced conical cracks. Int J Rock Mech Min Sci.

1997;34(3–4):263.e1–17.

Garnsworthy RK. The mathematical modeling of rock fragmentation

by high pressure arc discharges. In: 3rd international symposium

on rock fragmentation blasting, Aug 26–31, Brisbane; 1990.

p. 143–7.

Gholami A, Rahman SS, Natarajan S. Simulation of hydraulic

fracture propagation using XFEM. In: EAGE symposium,

sustainable earth sciences, Sept 30–Oct 4, Pau; 2013.

Goodarzi M, Mohammadi S, Jafari A. Analysis of gas-driven crack

propagation around a blasthole with the extended finite element

method. In: Proceedings of the 2nd international symposium on

computational geomechanics (COMGEO II), April 27–29,

Croatia; 2011. p. 425–33.

GoodarziM, Salmi EF,Mohammadi S, et al. Numerical modeling of gas

fracturing with the extended finite element method. In: Proceedings

of the 3rd international symposiumoncomputational geomechanics

(COMGEO III). August, 21–23, Poland; 2013. p. 706–16.

Gordeliy E, Peirce A. Coupling schemes for modeling hydraulic

fracture propagation using the XFEM. Comput Methods Appl

Mech Eng. 2013;253:305–22.

Jaimes MG, Castillo RD, Mendoza SA. High energy gas fracturing: a

technique of hydraulic prefracturing to reduce the pressure losses

by friction in the nearwellbore—aColombian field application. In:

The SPE Latin American and Caribbean petroleum engineering

conference, April 16–18, Mexico City (SPE 152886); 2012.

Krilove Z, Kavedzija B, Bukovac T. Advanced well stimulation

method applying a propellant technology. Wiertnictwo Nafta

Gaz. 2008;25(2):405–16.

Kutter HK, Fairhurst C. On the fracture process in blasting. Int J Rock

Mech Min Sci. 1971;8:181–202.

Ma GW, An XM. Numerical simulation of blasting-induced rock

fractures. Int J Rock Mech Min Sci. 2008;75:966–75.

McHugh S. Crack extension caused by internal gas pressure

compared with extension caused by tensile stress. Int J Fract.

1983;21:163–76.

Mohammadi S, Bebamzadeh A. A coupled gas-solid interaction

model for FE/DE simulation of explosion. Finite Elem Anal Des.

2005;41:1289–308.

Mohammadi S, Pooladi A. Non-uniform isentropic gas flow analysis

of explosion in fractured solid media. Finite Elem Anal Des.

2007;43:478–93.

Mohammadi S. Extended finite element method for fracture analysis

of structure. London: Blackwell Publishing; 2008.

Mohammadi S. XFEM fracture analysis of composites. London:

Wiley; 2012.

Mohammadi S, Pooladi A. A two-mesh coupled gas flow–solid

interaction model for 2D blast analysis in fractured media. Finite

Elem Anal Des. 2012;50:48–69.

Mohammadnejad T, Khoei AR. An extended finite element method

for hydraulic fracture propagation in deformable porous media

with the cohesive crack model. Finite Elem Anal Des.

2013;73:77–95.

Mortazavi A, Katsabanis PD. Modeling burden size and strata dip

effects on the surface blasting process. Int J Rock Mech Min Sci.

2001;38:481–98.

Munjiza A, Latham JP, Andrews KRF. Detonation gas model for

combined finite-discrete element simulation of fracture and

fragmentation. Int J Numer Method Eng. 2000;49:1495–520.

Nilson RH, Griffiths SK. Numerical analysis of hydraulically-driven

fractures. Comput Method Appl Mech Eng. 1983;36:359–70.

Nilson RH, Proffer WJ, Duff RE. Modeling of gas-driven fracture

induced by propellant combustion within a borehole. Int J Rock

Mech Min Sci Geomech Abstr. 1985;22(1):3–19.

Paine AS, Please CP. An improved model of fracture propagation by

gas during rock blasting—some analytical results. Int J Rock

Mech Min Sci Geomech Abstr. 1995;31(6):699–706.

Ren QW, Dong YW, Yu TT. Numerical modeling of concrete

hydraulic fracturing with extended finite element method. Sci

China Ser E. 2009;52(3):559–65.

314 Pet. Sci. (2015) 12:304–315

123



Ruest M, Cundall P, Guest A, et al. Developments using the particle

flow code to simulate rock fragmentation by condensed phase

explosives. In: FRAGBLAST—8 (8th international symposium

on rock fragmentation by blasting), May 8–11, Santiago; 2006.

p. 140–51.

Salazar A, Almanza E, Folse K. Application of propellant high-

energy gas fracturing in gas-injector wells at El Furrial field in

Northern Monagas State–Venezuela. In: The SPE international

symposium and exhibition on formation damage control, Feb

20–21, Lafayette (SPE 73756); 2002.

Saouma VE. Lecture notes in fracture mechanics (Chapter 7).

Department of Civil Environmental and Architectural Engineer-

ing, University of Colorado; 2000.

Wu J, Liu L, Zhao G, et al. Research and exploration of high energy

gas fracturing stimulation integrated technology in Chinese shale

gas reservoir. Adv Mater Res. 2012;524–527:1532–6.

Yang W, Zhou C, Qin F, et al. High-energy gas fracturing (HEGF)

technology: research and application. In: European petroleum

conference, Nov 16–18, Cannes (SPE 24990); 1992.

Zhu Z, Mohanty B, Xie H. Numerical investigation of blasting-

induced crack initiation and propagation in rocks. Int J Rock

Mech Min Sci. 2007;44:412–24.

Zhu WC, Tang CA, Huang ZP, et al. A numerical study of the effect

of loading conditions on the dynamic failure of rock. Int J Rock

Mech Min Sci. 2004;41(3):424.

Pet. Sci. (2015) 12:304–315 315

123


	Numerical analysis of rock fracturing by gas pressure using the extended finite element method
	Abstract
	Introduction
	Numerical modeling of gas flow
	Extended finite element method
	Formulation
	Numerical integration

	Coupling process and crack propagation
	Numerical results
	Validation of XFEM code
	Gas fracturing simulation

	Conclusions
	Acknowledgments
	References




