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Abstract: 
one-dimensional measurement is of great importance for model building and sensor design. Firstly, we 

of three typical water-dominated oil-water flow patterns in inclined flow, i.e., dispersion oil-in-water 

used magnitude and sign decomposition analysis and multifractal analysis to reveal levels of complexity 
in different flow patterns. We found that the PS and CT flow patterns both exhibited high complexity 
and obvious multifractal dynamic behavior, but the magnitude scaling exponent and singularity of 

complexity and almost monofractal behavior, and its magnitude scaling was close to random behavior. 

positive correlation; at high time scales, the scaling analysis of sign series showed different anti-correlated 

that different oil-water flow patterns exhibited different nonlinear features, and the varying levels of 
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of well deviation on production logging tool responses was 
the non-uniform phase distribution across the pipe. They 
observed a type of segregated flow pattern where the water 

water occurred along the bottom of the pipe; however, a small 
change in the deviation angle can cause a large change in the 

discussed the factors of critical conditions for phase inversion 

the effect of mixture velocity on the water fraction for phase 
inversion. Yang et al (2008) obtained flow pattern maps 
with invading logging tools for inclined oil-water two-phase 

structure in slightly inclined pipes with a inclination from 
5° upward to 5° downward by particle image velocimetry 
(PIV), and the results showed the velocity and turbulence 

et al (2011) focused on the pressure drops and oil hold-up 

1 Introduction
In the petroleum industry, oil is often produced and 

transported together with water, and the complex interfaces 

characteristic distributions. Important applications in the 
petroleum industry such as oil production engineering and 
predictions of liquid holdup and pressure drop strongly 
depend on the flow patterns. Especially in an inclined oil-
water two-phase flow, countercurrent flow occurs widely. 
Due to the existence of complex flow structures and the 
local velocity distribution, computational fluid dynamics 
approaches are usually unable to describe inclined oil-
water countercurrent flow patterns. Therefore, the dynamic 
characterization of inclined oil-water two-phase flow is an 

Earlier investigations into inclined oil-water two-phase 
flow were mainly focused on semi-empirical and semi-
theoretical methods. For example, Hill and Oolman (1982) 
pointed out, in 152-mm ID pipes, the most troublesome effect 
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measurements in horizontal and slightly inclined pipes, and 
they found that the classical models agreed well with the 
experimental data. Wang et al (2012) proposed an algorithm 
to solve the difficulty in computation of transient pressure 
distribution of slanted wells with any inclination angle. 
Rodriguez and Baldani (2012) presented pressure gradient 
and hold up data for horizontal and inclined oil-water wavy 
stratified flow, and the results of phenomenological models 
and predictions were compared with experimental data.

Recently, nonlinear time series analysis has made great 
progress. The detrended fluctuation analysis (DFA) method 
proposed by Peng et al (1995) has been widely used to detect 
long-range correlation and power-law properties in non-
stationary time series. Ashkenazy et al (2001) proposed 
a method based on magnitude and sign decomposition to 
analyze heartbeat signals with long-range correlation and 
found that a time series with identical correlation properties 
may have completely different time ordering, which can be 
characterized by different scaling exponents for the magnitude 
and sign series. Moreover, the long-range correlations of 
magnitude series indicated that the nonlinear behavior and 
the sign time series mainly related to linear properties of the 
original series. Kantelhard et al (2002) extended the DFA 

(MF-DFA). The MF-DFA can be used not only to explore 
the long-range correlation and scaling invariance, but also to 
compute the roughness exponent and identify the multifractal 
property in non-stationary time series.

Although some progress has been made in applying 
nonlinear analysis methods to study inclined oil-water two-

there still exist limitations as how to characterize the dynamic 
characteristics of countercurrent flow from experimental 

nonlinear dynamic characteristics, and usually has complex 
fluid structures. Especially, countercurrent flow structures 
exist due to the effect of gravity and methods such as 
numerical modeling have limitations for uncovering the 

signals usually contain a large number of linear and nonlinear 
components, so it is hard to characterize dynamic behavior of 

that, the previous studies mainly focused on flow pattern 
identification and did not pay much attention to dynamic 

Based on the above mentioned, we conducted inclined 
oil-water two-phase flow experiments to measure the 
conductance signals of three typical water-dominated flow 
patterns, i.e., pseudo-slug (PS), countercurrent (CT), and 
transitional flow (TF). We first decompose nonlinear and 
linear components from the original time series by magnitude 
and sign decomposition analysis. Then we extract scaling 
exponents of singular spectra and their change under different 

analysis provide important information for understanding the 
nonlinear dynamic mechanisms underlying the transitions of 

2 Methods

2.1 Magnitude and sign decomposition method
The magnitude and sign of the original signals measured 

from physical processes contain lots of important information, 

underlying behavior in a given system. So we introduce the 
magnitude and sign decomposition method to explore fluid 
characteristics from the time series. The magnitude and sign 
decomposition analysis consists of the following steps:

F i r s t l y,  t h e  i n c r e m e n t  s e r i e s  i s  g e n e r a t e d  b y 
( ) ( 1) ( ) , where s(i) is the original signal. s(i) 

can be decomposed into a magnitude series | s(i)| and a sign 
series sgn s(i). A positive increment is represented by sign 
(+1), while a negative increment is represented by sign (–1). 
We choose sign (0) to represent a special case of s(i) = 0. 
To avoid the limitation in the accuracy of anti-correlation, we 
subtract from the magnitude and sign series their average and 
then integrate both series.

Secondly, the DFA-2 analysis should be used on both 
magnitude and sign series, and we can obtain corresponding 
scaling exponents for magnitude and sign series by calculating 
the slope of F(n)/n in double logarithmic coordinates. 

For the original signal, the long-term nonlinear properties 
relate to the magnitude series with power-law correlation, 
and the linear features are indicated by the sign series 
(Ashkenazy et al, 2001). Otherwise, the width of the multi-
fractal spectrum relates to the value of the magnitude scaling 
exponent. So this method can be used to obtain nonlinear 
characteristics in short non-stationary signals.

Multifractal features probably exist in inclined oil-water 
two-phase countercurrent flow. To probe the multifractal 
characteristics of measured signals, we apply MF-DFA. 
The method is not only frequently used to detect long-range 
correlation and scaling invariance, but also used to identify 
multifractal properties in non-stationary time series. The MF-
DFA algorithm can be described as follows (Kantelhard et al, 
2002):

Firstly, given an original signal {xk}, where k = 1, 2, ···, 
N, and N is the length of the series, we generate a new time 
series:

(1)
1

( ) , 1, 2, ,

where  is the mean of {xk}.
Then, the new signal Y(i) is partitioned into Nr disjoint 

segments of the same size r, where Nr = int(N/r). Since N 
is often not multiple of the segment size r, some data at the 
end of the time series may remain and will be ignored by 
this way. In order to take these ending parts of the signal 
into consideration, the same partitioning procedure can be 
repeated starting from the ending. Then there will be 2Nr 
segments and calculating the average over them can eliminate 
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For each segment the trend of data can be determined by 
a bivariate polynomial function yy(i). Then, the detrended 

F(v, r) can be calculated by:

(2)22

1

1( , ) [( 1) ] ( ) 1, 2, ,

(3)
22

1

1( , ) [ ( ) ] ( )

, , 2

The Fq(r) is calculated by averaging over all the segments:

(4)

1

2 2
2

1

1( ) ( , )
2

 

where q is the value of order, which can take any real value 
except zero. When q

(5)
2

2 2
0

1

1( ) exp ln[ ( , )]
4

Varying the value of q, we can obtain the scaling relation 
 Fq(r) and the size scale r, as 

a power-law:

(6)( )( )  

where the exponent h(q) is called the generalized Hurst 
exponent. For a given system, the monofractal feature relates 
to a constant scaling exponent h(q), while the multifractal 
feature relates to a nonlinear function of h(q). 

The multifractal property can be characterized by the 
mass exponents (q), which also is a nonlinear function. The 
(q) can be calculated through: 

(7)( ) ( )  

where Df is the geometric support dimension.
Then, we can obtain the singularity strength function (q)

and the singularity spectrum f( ) by Legendre transform as 
follows:

(8)( ) '( )
( ) ( ) ( )

3 Experimental facility and data acquisition

carried out in the Multiphase Flow Laboratory of Tianjin 
University. Details about the flow facility are described in 
our paper (Jin et al, 2008). The experimental media were tap 
water and No.15 industry white oil with a surface tension 
of 0.035 N/m and a viscosity of 12.0 mPa·s (40 °C). In the 
inclined upward 125-mm ID pipes at inclination 45°, the 

water flow rates were 0.21, 0.42, 0.83 and 1.64 m3/h and 
the oil flow rates ranged from 0.53 to 8.3 m3/h. Based on 
flow pattern definition proposed by Flores et al (1999), we 
had observed three typical different water-dominated flow 
patterns in the experiment including PS, CT and TF, whose 
schematic diagrams are shown in Fig. 1. The conductance 
signals were measured with a vertical multi-electrode 
array (VMEA) conductance sensor (Jin et al, 2008) with a 
sampling frequency of 400 Hz, and typical signals are shown 
in Fig. 2. The signals were recorded by National Instrument 
Corporation’s data acquisition cards PXI 4472 and PXI 6115 
operated by LabVIEW software.

Under different flow rates and oil volume fractions, the 

liquid equivalent conductivity will respectively cause voltage 
fluctuation on the measuring electrode, due to significant 
differences in electrical properties between oil and water 
phases. Based on the measured signals, we investigated the 
long-range correlation and levels of complexity of different 

sign decomposition analysis and multifractal analysis.

Fig. 1 Schematic diagrams of three typical inclined 

Dispersion oil-in-
water pseudo-slug

flow

Dispersion oil-in-
water countercurrent

flow
Transitional flow

Fig. 2 Fluctuating conductance signals of three typical 
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4 Magnitude and sign scaling in inclined oil-

Ashkenazy et al (2001) demonstrated the effectiveness of 
the magnitude and sign series in the analysis of long-range 
correlations. In fact, the long-range correlations of magnitude 
series can indicate the nonlinear behavior of the original 
series and the sign time series mainly reflect their linear 
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properties.
Our results show that the magnitude series of different 

flow patterns all exhibit strong positive correlations which 
can be characterized by mag>0.5, as shown in Fig. 3(a), 
indicating nonlinear features in flow mechanisms. For the 

tendency of the magnitude series is basically similar and the 
corresponding scaling exponent is similar as well; while the 
magnitude scaling exponents of different flow patterns are 
distinctly different, this indicates the nonlinear dynamics 

Correspondingly as shown in Fig. 3(b), at short time 
scales, all sign series of inclined oil-water flow patterns 
show very strong positive correlation, and the exponents 
for different flow patterns are very similar; at long time 
scales, the DFA scaling analysis of the sign series shows 
different anti-correlated behavior (

tendencies of the sign series are similar; while the sign scaling 

scales, which indicates the linear dynamic characteristics of 

To further explore the correlation of flow patterns for 
different time scales, we calculate the magnitude scaling 
exponents mag over a broad range of time scales 5<n<1000; 
for sign scaling, we calculate the short-range regime for time 
scale 5<n<34 with scaling exponent 1

sign, and the long-range 
regime for time scale 34<n<1000 with scaling exponent 2

sign .  
For each measure scaling, the group average ±1 standard 
deviation is presented.

Table 1 Results of magnitude and sign DFA analysis of 

Flow pattern mag
1
sign

2
sign

PS 0.74±0.03 1.52±0.03 0.45±0.05

CT 0.67±0.01 1.52±0.02 0.43±0.01

TF 0.53±0.01 1.52±0.01 0.32±0.02

As we can see in Table 1, the range of mag is different for 
all flow patterns. Previous studies have demonstrated that 
information about nonlinear properties of flow dynamics 
can be quantified by long-range power-law correlation in 
magnitude of the increments in fluctuation signals, so the 
different magnitude scaling exponents exhibit the different 

The mean value of magnitude scaling exponents of PS 
is mag

indicating that its long-range correlation is the strongest 
among three types of water-dominated flow patterns. For 
the PS flow pattern, the oil phase move fast in the upward 
direction as the intermittent oil swarms structure, while 

to the effects of pressure, viscosity and gravity components 
in the opposite direction of the main flow. The intermittent 

determine the strongest long-range correlation.
For the CT flow pattern, the mean value of magnitude 

scaling exponents is mag = 0.67±0.01, which is larger than the 

between oil swarms become shorter, and then disappear with 

On the other hand, counter flow of some oil droplets will 
appear near the interface between the oil and water phases, 

The mean value of magnitude scaling exponents of TF is 
mag = 0.53±0.01, indicating its behavior close to random. For 

the TF flow pattern, the flow structure contains three parts: 
the thin oil film at the top; local water-countercurrent flow 
at the bottom; and alternation of oil-dominated and water-

most significant features of TF are the alternations of oil-
dominated and water-dominated flow structure, which is Fig. 3 Magnitude and sign scaling properties of water-dominated flow 

patterns (a) DFA analysis of magnitude series and (b) sign series
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random flow behavior resulting in all magnitude scaling 
exponents close to 0.5. The corresponding result for its 
property will be discussed in the next section. Otherwise, the 
latter analysis would show the magnitude scaling exponents 
relate to the width of the multifractal spectrum of the original 
time series. In this regard, the width of the multifractal 
spectrum increases with the increase in the magnitude 
scaling exponent between 0.5 and 1 (0.5< mag<1), but not in a 
monotonous form (Ashkenazy et al, 2001)).

The results show that the time series composed of the sign 
of the increments in the original signal contain information 
about the underlying dynamics, which is necessarily 
complementary to the original and the magnitude series. In 
the long-range region, the sign scaling behavior of PS, CT 

in a larger range ( 2
sign

occurs across a wide region from low to moderate oil and 

rate, the interval between oil swarms will become shorter and 

2
sign=0.43±0.01). 

The sign scaling property of the TF flow pattern shows 
stronger anti-correlation ( 2

sign=0.32±0.02), indicating the 
oscillatory characteristics of the fluctuating signals for this 

5 Multifractal properties in inclined oil-

5.1 Multifractal spectrum of inclined oil-water two-

The fractal dimension f( ), which is the function of 
singularity strength , can be defined as the multifractal 
spectrum or singularity spectrum. So,  and f( ) are two 
most important characteristics used to characterize the 
multifractal. We have obtained the values of (q) and f( )
through the Legendre transform from h(q) and (q) for all 
the experimental flow conditions. Kantelhardt et al (2002) 
proposed the multifractal analysis method and took the 
monofractal series, binomial multifractal series and random 
cascade model as examples to demonstrate that this method 
can represent the complexity of different dynamic systems. 
Figs. 4-7 illustrate the distributions of f( ) with respect to  

Qo when 

Fig. 4 Multifractal spectra versus Qo at inclination 45° and Qw=0.21 m3/h
(a) Qo =0.53 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.25 m3/h, PS; (d) Qo =1.62 m3/h, PS; 
(e) Qo =2.50 m3/h, PS; (f) Qo =3.30 m3/h, CT; (g) Qo =4.30 m3/h, CT; (h) Qo =5.50 m3/h, TF
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Qw
3/h, respectively.

patterns are smooth curves with a peak value. The maximum 
of f( ) is 2, which is equal to the geometric support of the 
fractal measure for the research object, and the peak appears 
near =1.85. An intriguing feature in Figs. 4(a)-(7a) is that the 
f(

 is smaller than about 1.0. The negative dimension (f( )<0) 
was investigated in several experiments such as the diffusion-
limited aggregation (Amitrano et al, 1986) and the energy 

1991). The negative dimension describes rarely occurring 
events (Mandelbrot, 1990) and one needs an exponentially 
increasing number of samples to observe the subsets with the 
same a value (Chhabra and Sreenivasan, 1991).

The multifractal spectra for different flow patterns can 
directly exhibit different shapes, among which PS flow 
exhibits nearly symmetric spectrum shape and CT flow 
exhibits a left-hooked shape. The range of multifractal spectra 
for TF is very narrow, which to some extent means that this 

magnitude scaling exponent in the former chapter. According 

the same. In addition, the multifractal spectra for different 

which means the multifractal spectrum could be a potentially 
useful tool for analyzing nonlinear mechanisms underlying 

The minimum singularity min and the maximum 
singularity max, which respectively indicate the least and 
most singular, can be calculated:

(9) 
min

max

d ( )lim
d

d ( )lim
d

 

The corresponding parameters f( min) and f( max) reflect 
the fractal dimensions characterized by = min and = max. 
The shape of f( ) can be captured to some extent by the width 
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Fig. 5 Multifractal spectra versus Qo at inclination 45° and Qw=0.42 m3/h
(a) Qo =0.42 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.67 m3/h, PS; (d) Qo =2.50 m3/h, PS;
(e) Qo =3.30 m3/h, PS; (f) Qo =4.17 m3/h, CT; (g) Qo =5.80 m3/h, CT; (h) Qo =7.50 m3/h, TF
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= max min and the difference 
f=f( max f( min). We will discuss the 
f

 with respect to Qo

In the multifractal analysis, min is related to the maximum 
probability measure through min

max ~ , where  represents 
the measure approaching zero, whereas max is related to the 
minimum probability measure by max

min ~ . The range of 
the probability measures can be described by the width of the 

:

(10)max min/ ~

 value becomes, the wider the 
probability distribution is and the more complicated the 

is.
 and Qo at 

the same Qw  gradually decreases 
with an increase in Qo

that the internal flow characteristics become more regular 
with the increase in Qo

exists in the form of intermittent oil swarms at the top of the 
pipe, while the water phase exists as a continuous phase at the 

exists. In low Qo, the oil swarms structure should be small, 
exhibiting quasi-periodic properties in the upper side, while 
the interval distance between two oil swarms is large so that 
the interval time should be more irregular. With an increase 
in Qo, both the interval distance and time between oil swarms 
will become shorter and shorter, that is, the oil phase in the 
upper side of the pipe gradually tends to become continuous. 

property at the bottom of the pipe with changing Qo. So with 
an increase in Qo, the width of the multifractal spectrum 
gradually decreases, and the probability distribution tends 
to be smaller, indicating the intermittent oil swarms tend to 
become continuous.

 also decreases with an increase in Qo. On the 
Qo, the 

interval characteristics between oil swarms will disappear 

pattern. With an increase in Qo, the interval between water-

Fig. 6 Multifractal spectra versus Qo at inclination 45° and Qw=0.83 m3/h
(a) Qo =0.45 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.67 m3/h, PS; (d) Qo =2.50 m3/h, PS;
(e) Qo =3.30 m3/h, PS; (f) Qo =4.00 m3/h, CT; (g) Qo =5.83 m3/h, CT; (h) Qo =7.50 m3/h, TF
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countercurrent flows will decrease and the countercurrent 

so all of these will lead to a decrease in the width of the 

have mentioned above, the alternation of oil-dominated and 
water-dominated flow structure is the main characteristics. 
So compared with other flow patterns, the TF flow pattern 
performs a relatively single motion mode, so the width of 
multifractal spectrum is very narrow, which to some extent 

multifractal characteristics.
The observed multifractal behavior can be partly 

interpreted in terms of the spatial intermittency (Argoul 
et al, 1989; Kuramoto and Nakao, 1997) and the origin of 
the multifractal hidden in the inclined oil-water two-phase 
flow may be the long range correlations of the intermittent 
fluctuation (Mandelbrot, 1990; Mordant et al, 2002). The 
self-similarity property in these flow patterns results from 

the countercurrent structure and intermittency of oil swarms, 

Otherwise, in oil swarm growth and coalescence, the oil 
phase transferred from small swarms (with low Qo) into big 
ones (with high Qo), forming a continuous structure, which 
may be the origin of long-range correlation.

5.3 The dependence of  with respect to Qo 
The difference of fractal dimensions  is also a very 

important parameter in characterizing multifractal properties. 
The f( min) value reflects the most concentrated distribution 
of probability measure with min

max min

( )~ , while 
f( max) value reflects the rarest distribution of probability 

measure with max

min max

( )~ f 
can describe the ratio between the fractal dimensions of the 
maximum and the minimum growth probability, 

(11) 
max min

/ ~

f with respect to Qo 
at the same Qw. We find that the difference of the fractal 
dimensions gradually decreases with an increase in Qo in 

Fig. 7 Multifractal spectra versus Qo at inclination 45° and Qw=1.64 m3/h
(a) Qo =0.45 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.67 m3/h, PS; (d) Qo =2.50 m3/h, PS;
(e) Qo =3.30 m3/h, PS; (f) Qo =4.00 m3/h, CT; (g) Qo =5.83 m3/h, CT; (h) Qo =8.30 m3/h, TF
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the PS flow pattern, which indicates that the concentrated 
regions of the probability distribution become more common 
and the internal flow characteristics become more regular. 
With an increase in Qo, both interval distance and time 
between oil swarms will become shorter and shorter, that is, 
the oil phase in the upper side of the pipe gradually tends to 
become continuous. On the other hand, with increasing Qo 
the resistance to the motion of oil swarms gradually increases 
due to the increase in the equivalent viscosity of the oil-water 
mixture, because the oil viscosity is much higher than the 

f
pattern decreases with increasing Qo.

f values are negative when Qo 
ranges from 3.30 to 4.30 m3/h, indicating that there are more 
concentrated regions than low-density sites. This phenomenon 

at higher Qw, and the | | values are still low, indicating that at 
high Qo and Qw the local countercurrent structure in the pipe 
is almost unchanged and the flow mechanism is almost the 
same.

Likewise for the CT flow pattern, the  value also 
decreases with increasing Qo, indicating that the concentrated 
regions of the probability distribution become more 
numerous. We infer that with increasing Qo, the equivalent 
viscosity of the oil-water mixture increases, correspondingly, 
the resistance to the motion increases in the pipe; 

decrease in .
For the TF flow pattern with a further increase in Qo in 

the pipe, the equivalent viscosity of the oil-water mixture 
continues increasing compared with other flow patterns, 
and both oil and water phases are continuous instead of 
intermittent; consequently, the probability distribution is 
concentrated and the  value is large. However, due to the 

f values of the 

f with respect to flow 

f values in the multifractal analysis can 
effectively reflect the evolutionary process of the flow 
patterns. Note that a single characteristic quantity can not 

variable ratio as /  to describe the different multifractal 
spectrum mode and further to characterize the two-phase 

The distributions of /
shown in Fig. 10. We can see that the /  values are 2.11-

flow patterns reflect their particular modes: the multifractal 

f value is relatively large 

Fig. 8  versus Qo

(a) Qw=0.21 m3/h; (b) Qw=0.42 m3/h; (c) Qw=0.83 m3/h; (d) Qw=1.64 m3/h
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f value 
f

lowest, less than 0.5, and a single edge shape is observed 
for this multifractal spectrum. Therefore, we can effectively 
identify three inclined oil-water flow patterns by using the 

f.

multifractal spectra to probe the nonlinear mechanisms 

Magnitude and sign decomposition analysis can uncover 
the long-range correlation properties of the original time 
series. The magnitude increment series of different flow 
patterns reflect different positive correlation properties. In 
particular, for different flow patterns, the sign increment 
series at short time scales shows the strong and similar 
positive correlation, but at long time scales it presents anti-
correlation properties with certain differences.

Inclined oil-water two-phase flows present typical 
multifractal properties, and the singularity spectra show 
different scaling properties at different scales, which can 

the fluid dynamics in the transitions of flow patterns from 
different time scales.
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