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Abstract A novel data-driven, soft sensor based on support

vector regression (SVR) integrated with a data compression

technique was developed to predict the product quality for the

hydrodesulfurization (HDS) process. A wide range of exper-

imental data was taken from a HDS setup to train and test the

SVR model. Hyper-parameter tuning is one of the main

challenges to improve predictive accuracy of the SVR model.

Therefore, a hybrid approach using a combination of genetic

algorithm (GA) and sequential quadratic programming (SQP)

methods (GA–SQP) was developed. Performance of different

optimization algorithms including GA–SQP, GA, pattern

search (PS), and grid search (GS) indicated that the best

average absolute relative error (AARE), squared correlation

coefficient (R2), and computation time (CT)

(AARE = 0.0745, R2 = 0.997 and CT = 56 s) was accom-

plished by the hybrid algorithm. Moreover, to reduce the CT

and improve the accuracy of the SVR model, the vector

quantization (VQ) technique was used. The results also

showed that the VQ technique can decrease the training time

and improve prediction performance of the SVR model. The

proposed method can provide a robust, soft sensor in a wide

range of sulfur contents with good accuracy.

Keywords Soft sensor � Support vector regression �
Hybrid optimization method � Vector quantization �
Petroleum refinery � Hydrodesulfurization process � Gas oil

List of symbols

w Weight vector

b Bias term

AARE Average absolute relative error

R2 Squared correlation coefficient

RBF Gaussian radial basis kernel function

N Sample size

g (1/2r2) Hyper-parameter

C Regularization parameter (hyper-parameter)

X̂ Code vector

Fi Validation data

Ti Training data

k Subsets (folds)

Expi Actual values

Prei Predicted values

Sexp Experimental value of sulfur content

Spre Predicted value of sulfur content

QH2 Hydrogen flow rate

Qgasoil Gas–oil flow rate

Greek symbol

r Width of kernel of radial basis function

e Precision parameter (hyper-parameter)

ni, ni
* Slack variables

U(x) High-dimensional feature space

1 Introduction

Sulfur compounds are one of the most important impurities

in crude oil and various petroleum fractions. Reduction of
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sulfur content of end product to the new lower limits is one

of the recent challenges in the petroleum refineries. Online

determination of sulfur concentration in the end product is

difficult or impossible due to the limitations in process

technology and measurement techniques. This index as the

key indicator of process performance is normally deter-

mined by offline sample analysis in laboratories or online

hardware analyzers that are mostly expensive with high

maintenance costs.

Soft sensors can be a supplement to hardware process

analyzers as their measurements may often be unavailable

due to instrument failure, maintenance calibration necessity,

insufficient accuracy, and long dead time (Kartik and

Narasimhan 2011). Moreover, soft sensors can be applied

for product quality estimation for industrial processes as an

alternative to laboratory testing (Bolf et al. 2010). The core

of a soft sensor is the construction of a soft sensing model

(Yan et al. 2004). Different classes of soft sensors are

(Kadlec 2009): (1) Model-driven or white-box model, (2)

Data-driven or black-box model, and (3) Hybrid model or

gray-box model. The Model-driven or first principle models

obtained from the fundamental process knowledge require a

lot of expert process knowledge, effort, and time to develop.

Data-driven models are based on the data taken from the

processing plants, and thus describe the real process condi-

tions (Kadlec et al. 2009, 2011). These data-driven models

can be developed more quickly with less expense. The

hybrid model is a combination of both methods.

Artificial neural networks (ANNs) have been widely

used as a useful tool for nonlinear soft sensing models.

However, they give no guarantees of high convergence

speed or of avoiding local minima, while there are no

general methods to choose the number of hidden units in

the networks. Moreover, they need a large number of

controlling parameters, have difficulty in obtaining stable

solutions with the danger of overfitting, and thus lack

generalization capability (Liu et al. 2010).

In recent years, the support vector machine (SVM)

technique, based on machine learning formalism and

developed by Vapnik (1995), has been gaining popularity

over ANN due to its many attractive features and promis-

ing empirical performance (Pan et al. 2010).

King et al. (2000) have compared SVM with ANN and

concluded that SVM can provide more reliable and better

performance under the same training conditions. Li and

Yuan (2006) have applied SVMs to the prediction of key

state variables in bioprocesses and indicated that SVM is

better than ANN.

SVM can be used for classification, regression and other

tasks. Applying the SVM to solve regression problems is

called the support vector regression (SVR) method (Basak

et al. 2007). The SVR tries to find an optimal hyper-plane

as a decision function in high-dimensional space. SVR is

different from conventional regression techniques, since it

uses structural risk minimization (SRM), instead of

empirical risk minimization (ERM) induction principles

(Boser et al. 1992; Cristianini and Taylor 2000).

Hyper-parameter tuning is one of the main challenges in

improving the predictive accuracy of an SVR model.

Moreover, the generalization capability of SVR is highly

dependent upon its learning parameters. The grid search

method (GSM) is the most common method to determine

appropriate values of hyper-parameters. Most researchers

have followed a standard procedure using the GSM (Lu

et al. 2009). This method’s the computation time (CT) is

too high, and it is unable to converge to the global opti-

mum, and it is dependent on the parameters of boundary

selection (Min and Lee 2005). There have been some

research and development efforts into tuning of SVR

hyper-parameters. Duan et al. (2003) have found a rea-

sonably good hyper-parameter set for SVM using the Xi-

Alpha bound. Some researchers have developed heuristic

algorithms for the parameter optimization of SVR. Wu

et al. (2009) have developed a kernel parameter-optimi-

zation technique using a hybrid model of GA and SVR.

Huang (2012) has employed the hybrid GA–SVR meth-

odology to solve an important stock selection for an

investment problem. Chen and Wang (2007) have opti-

mized the SVR parameters using metaheuristic algorithms.

Therefore, potentials of the hybrid strategies for opti-

mization of these parameters need to be further investi-

gated. This study proposes a novel hybrid metaheuristic

approach for the SVR models to increase their performance

both in accuracy and CT by hybridization of GA and SQP.

Moreover, despite having large datasets in process

industries, the important issue is the need for high-speed

and extensive memory capacities to process the data. The

data compression phenomena provided by the VQ tech-

nique can be employed to overcome the problem (Somas-

undaram and Vimala 2010). Using VQ, the training time

for choosing optimal parameters is greatly reduced. The

most impactful gain here is the robustness of such systems.

The objectives of the present study are (1) Designing a

robust and reliable data-driven soft sensor using an SVR

model for prediction of sulfur content of treated gasoil. (2)

Applying the VQ technique for data compression in the

SVR model. This technique can simplify and compress the

training set and speed up the computing time and also

simultaneously improve the accuracy of the SVR model.

(3) Optimizing the hyper-parameter of SVR model. An

integrated hybrid GA–SQP algorithm was employed for

optimizing the SVR hyper parameters using a fivefold

cross-validation technique. To validate the prediction

accuracy of the proposed hybrid model, the prediction

performance of the proposed hybrid model was compared

to those of GS–SVR, PS–SVR and GA–SVR.
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2 Methodology

2.1 Support vector regression (SVR)

The basic concept of SVR is to map nonlinearly the original

data x into a higher-dimensional feature space and solve a

linear regression problem in this feature space (Gunn 1998).

A number of loss functions such as the Laplacian, Huber’s,

Gaussian, and e-insensitive can be used in the SVR formu-

lation. Among these, the robust e-insensitive loss function

(Le) is more common (Vapnik et al. 1996; Si et al. 2009):

Leðf ðxÞ � yÞ ¼
f ðxÞ � yj j � e for f ðxÞ � yj j � e

0 otherwise

(
ð1Þ

where e is a precision parameter representing the radius of

the tube located around the regression function, f(x) (see

Fig. 1). The goal of using the e-insensitive loss function is

to find a function that can fit current training data with a

deviation less than or equal to e. The optimization problem

can be reformulated as

Min
1

2
wk k2þC

Xl

i¼1

n�i þ nþi
� �

ð2Þ

subject to the following constraints:

y ¼
yi � w; xih i þ bð Þ� eþ ni

w; xih i þ bð Þ � yi� eþ n�i
ni; n

�
i � 0

8><
>:

The positive slack variables ni and ni
* represent the

distance from actual values and the corresponding bound-

ary values of the e-tube, respectively. The constant C [ 0

is a parameter determining the trade-off between the

empirical risk and the model flatness.

The basic idea in SVR is to map the dataset xi into a

high-dimensional feature space via nonlinear mapping.

Kernel functions perform nonlinear mapping between the

input space and a feature space. Different kernel trick

functions were used (Table 1) (Yeh et al. 2011).

2.2 Vector quantization (VQ)

VQ is a data compression method based on the principle of

block coding. VQ is applied to reduce a large dataset

replacing examples by prototypes. Using VQ, the training

time for choosing optimal parameters is greatly reduced.

The most impactful gains here are the robustness of such

systems.

The prediction speed is very important in soft sensor

design. Therefore, in order to speed up the training time

and reliability prediction of SVR model, the VQ technique

is applied for data compression. The main goal of this

method is to simplify the training set and increase the

prediction accuracy. In the VQ technique, the data are

quantized in the form of contiguous blocks called vectors

rather than individual samples. VQ maps a K-dimensional

vector x in the vector space Rk to another K-dimensional

vector y that belongs to a finite set C (code book) of output

vectors (code words).

In this method, K-dimensional input vectors are derived

from input data {X} = {xi: i = 1, 2, ���, N}. Data vectors

are quantized into a finite set of code words {Y} = {yj:

j = 1, 2, ���, K}. Each vector yj is called a code vector or a

code word, and the set of all the code words is called a

code book where the overall distortion of the system

should be minimized. The purpose of the generated code

book is to provide a set of vectors which generate minimal

distortion between the original vector and the quantized

vector.

The generation of the code book is the most important

process that determines the performance of VQ. The aim of

code book generation is to find code vectors (code book)

for a given set of training vectors by minimizing the

average pairwise distance between the training vectors and

their corresponding code words (Horng 2012).

Each vector is compared with a collection of represen-

tative code vectors, X̂i ð i ¼ 1; 2; � � � ;NcÞ, taken from a

previously generated code book. The best-matching code

vector is chosen using a minimum distortion rule (Gersho

and Gray 1992). To minimize the distortion, the following

formula is used to determine the distance between two code

words:

f(x)+ɛ

ξ x

Fitted by SVR
Support Vector 
Data point

Y

X

f(x)

f(x)−ɛ

ξ

Fig. 1 A schematic diagram of SVR using an e-sensitive loss function

Table 1 Different kernel functions

No. Kernel type Equation

1 Linear kernel K(x, y) = xi
T 9 yi

2 Polynomial kernel K(x, y) = (xi
Tyi ? t)d

3 Sigmoid kernel K(x, y) = tanh (xi
T 9 yi)

4 Gaussian (radial basis function,

RBF) kernel Kðx; yÞ ¼ exp � xi�yjk k
2r2

2
� �
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dðX; X̂Þ ¼ 1

N

Xn

i¼1

ðxi � x̂iÞ2 ð3Þ

where dðX; X̂Þ denotes the distortion incurred in replacing

the original vector X with the code vector X̂.

Therefore, VQ comprises three stages: (1) Code book

generation, (2) Vector encoding, and (3) Vector decoding.

It works by encoding values from a multidimensional

vector space into a finite set of values from a discrete

subspace of lower dimension.

2.3 K-fold cross-validation (CV)

The quality of the soft sensor model identified from data

can be assessed using CV. In k-fold cross-validation, the

original sample is randomly partitioned into k subsets

(folds) of approximately equal size. Of the k subsets, a

single subset is retained as the validation data for testing

the model, and the remaining k-1 subsets are used as

training data (An et al. 2007). Therefore, the training

dataset X is randomly divided into k mutually exclusive

folds of approximately equal size parts Zi (i = 1, 2,���, k).

By training the model k times and leaving out one of the k

subsets each time, k pairs are obtained as follows:

F1 ¼ Z1; T1 ¼ Z2 [ Z3 [ � � � [ ZK

F2 ¼ Z2; T1 ¼ Z1 [ Z3 [ � � � [ ZK

..

.

Fk ¼ Zk; Tk ¼ Z1 [ Z2 [ � � � [ Zk�1

ð4Þ

where Fi represents the validation dataset, and Ti represents

the training dataset. The k results from the folds can then be

averaged to produce a single estimation. The advantage of

this method over repeated random sub sampling is that all

the observations are used for both training and validation,

while each observation is used for validation exactly once.

As k increases, the percentage of training samples increa-

ses, and a more robust estimator can be obtained; however,

the validation sets become smaller.

3 Experimental set-up

As one of the vital catalytic units in oil refineries, the HDS

process is very effective in sulfur removal from petroleum

fractions where the molecules containing sulfur lose their

sulfur atoms via hydrogenation reactions (Zahedi et al.

2011). HDS of gas–oil fractions is commonly accomplished

in a trickle-bed reactor where there are three phases, namely

gas (hydrogen), liquid (gasoil), and solid (catalyst particles)

(Froment 2004; Korsten and Hoffmann 1996).

A pilot plant facility for HDS processing of petroleum

streams has been set up at the Research Institute of

Petroleum Industry of Iran (RIPI). A schematic diagram of

the experimental set-up used in this work is shown in

Fig. 2. The major parameters of the set-up are shown in

Table 2. Gas–oil containing 7,200 ppm (by weight) of

sulfur is fed into the reactor. Feedstock selected for HDS

set-up is gasoil with the characteristics listed in Table 3.

Gasoil is first pumped into the unit, preheated and mixed

with hydrogen. The mixture is then passed through the

trickle-bed reactor. Output of the reactor is directed to the

condenser in which the treated gas–oil and H2S are separated.

Co-Mo HDS catalyst on alumina support (DC-130) procured

from CRITERION Company is used in the experiments.

The content of sulfur in the product depends on (1)

reactor temperature, (2) reactor pressure, and (3) H2/Oil

ratio. Therefore, in order to train and test the SVR model, a

set of experiments were carried out using the setup. The

inlet temperature varied from 320 to 370 �C, while the

reactor pressure changed from 50 to 70 bars and H2/oil

ratio from 85 to 170 Nm3/m3. Values of the parameters are

shown in Table 4.

Only one factor was allowed to change in every test

evaluating the parameters. Over 300 experiments were

performed in the laboratory to find the values. Minimum and

maximum contents in the products were 10 and 4,900 ppm

wt, respectively. A single model capable of predicting the

product sulfur concentration over the wide range is sought.

The samples are collected based on 4 h of operation under

nearly steady-state conditions. A time interval of 2 h

between every experiment was required to reach the next

steady-state condition. Treated gasoil sulfur content is col-

lected from each experiment as the output values.

4 Development of model

The input and output variables of the SVR model were

selected as shown in Table 5. In order to consider the effect

of reactor (catalyst) size, the reactor outlet temperature was

selected as one of the input variables of the SVR model. In

this way, the trained model could be applied to industrial

scale reactors independent of the (catalyst) size. A five-

dimensional input vector X = [x1, x2,���, x5]T and the cor-

responding row of Y matrix denoting the one-dimensional

desired (target) output vector Y = [y1]T were employed in

training the SVR model.

The SVR model is developed using the LIBSVM

package (Chang and Lin 2001). Implementation of the

model was carried out using MATLAB 7.10 simulation

software. The experimental results were obtained using a

personal computer equipped with Intel (R) Core (TM) 2

CPU (3.0 GHz) and 3.25 GB of RAM.

To build an SVR model efficiently, the SVR parameters

must be specified carefully. These parameters include (1)

180 Pet. Sci. (2015) 12:177–188
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Kernel function, (2) bandwidth of the kernel function (r2),

(3) regularization parameter C, and (4) the tube size of e-
insensitive loss function (e). Furthermore, in order to
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Fig. 2 Schematic of HDS set-up

Table 2 Setup specification

Reactor

Reactor diameter, m 0.0127

Reactor length, m 0.63

Catalyst bed length, m 0.11

Catalyst

Chemical composition, wt% dry basis

Cobalt 3.4

Molybdenum 13.6

Physical properties

Surface area, m2/g 235

Pore volume, cc/g (H2O) 0.53

Flat plate crush strength, N/cm (lb/mm) 200

Attrition index 99

Compacted bulk density, g/c 0.72

Table 3 Characteristics of selected gasoil

Temperature �C Fraction

vol %

Distillation curve 171.4 0

204.4 5

216.2 10

240.8 20

263.7 30

281.0 40

295.3 50

308.7 60

322.8 70

338.5 80

357.5 90

370.6 95

371.7 100

Specific gravity, g/cm3 0.865

Total sulfur in

feed, ppm

7,200
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simplify the training set and to reduce training time, the VQ

technique was applied. In this study, different algorithms

including GS, GA, PS, and GA–SQP were applied for

optimizing the SVR hyper-parameters. The C and gð 1
2r2Þ

hyper-parameters were selected as the optimization

parameters. Figure 3 represents the structure of the pro-

posed method and details of the parameter-optimization

procedure. About 70 experiments were selected randomly

for testing data, and the 230 data were used as training data.

According to Fig. 3, the main steps of model development

were as follows:

Step 1: Data compression: Extracting a collection of

raw data and generate training and testing sets and reduce

CT of the SVR model by applying the VQ technique. Thus,

the SVR model was trained with low-dimensional dense

datasets, which can lead to speeding up of computation

with a reasonable accuracy.

Step 2: Selecting the SVM (the e-SVR model was used);

applying cross-validation technique (the fivefold cross-

validation technique was used); and selecting the type of

core kernel.

Step 3: Hyper-parameter optimization: Optimizing

model parameters (C and gð 1
2r2Þ) using GSM, GA, PS, and

GA–SQP algorithms;

Step 4: Validating the model and predicting the sulfur

content.

Hyper-parameter optimization is one of the vital chal-

lenges in SVR models. In addition to the commonly used

GS, other techniques were also employed in SVR (or SVM)

to correct appropriate values of hyper-parameters. Huang

and Wang (2006) presented a GA-based feature selection

and parameters’ optimization for SVM. Also, Momma and

Bennett (2002) developed a fully automated pattern search

(PS) methodology for model selection of SVR.

4.1 Parameter tuning of SVR with GSM

The GSM is the most common method used to determine

the appropriate values of hyper-parameters. This method

suffers from the main drawbacks of being very time con-

suming, lacks guarantee of convergence to a global optimal

solution, and involves dependency on the parameters’

boundary selection.

In this study, two typical ranges were selected for hyper-

parameters’ boundary of GSM. First, log 2
C and log 2

g varied

between [-3 3] and [-5 4], respectively. Then, log 2
C and

log 2
g varied between [-2 2] and [-3 2], respectively.

Since e has little effect on ARRE, it was assumed to be

0.01. Typical results by this method are shown in the

Table 7.

Selecting a wide range for this method can increase the

accuracy but the CT would become very long. Since the

accuracy of the SVR model depends on a proper setting of

Table 4 The parameter levels Parameter Level 1 Level 2 Level 3 Level 4 Level 5

Inlet temperature, �C 320 337 353 370

Reactor pressure, bar 50 60 70

H2/Oil ratio, nm3/m3 85 100 120 140 170

Liquid flow rate, cc/min 0.20 0.23 0.26 0.29 0.32

Table 5 Input and output parameters for SVR model

Input variables (X) Output variable (Y)

Hydrogen flow rate (QH2) Product sulfur content

Gasoil flow rate (Qgasoil)

Reactor pressure

Inlet temperature of reactor

Outlet temperature of reactor

Data set

SVR model 

Vector quantization (VQ)
&

5-Fold cross validation 

Optimization module
(GSM, GA, GA, PS, GA/SQP)  

Criteria
terminating 

Yes

NO

Select best settings hype-parameters {C, g} 

Initial value of
{C, g}

Training data set Testing data set

Evaluation of SVR model 

Prediction of treated gas-oil
sulfur content. 

Finish 

Fig. 3 The procedure of parameter tuning in SVR
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SVR hyper-parameters, some optimization algorithms have

been developed.

4.2 Optimizing the SVR parameters based on GA

The concept of GA was developed by Holland (1975). GA

is a heuristic search method that mimics the process of

natural evolution. Furthermore, it is a stochastic search

technique that can be used in finding the global optimum

solution in a complex multidimensional search space. It

can search large and complicated spaces using ideas from

natural genetics and the evolutionary principle (Goldberg

1989). In this work, the procedure for hyper-parameter

optimization with GA method is summarized in the fol-

lowing steps:

(1) Start Initialize the parameters for GA and choose a

randomly generated population, population size, the

number of subpopulations and individuals per sub-

population, the type of kernel function, and the range

of the SVR parameters. The SVR hyper-parameters

{C, g, and e} are directly coded to generate the

chromosome randomly.

(2) Calculating the fitness The fitness function is defined

as the AARE cross-validation on the training dataset

as follows:

MinðFitnessÞ ¼ MinðAARE of CVÞ

¼ Min
1

k

Xk

i¼1

k

m

Xm=k

i¼1

Expi � Preið Þ
Expi

����
����

 !

ð5Þ

where Expi and Prei are the actual values and the

predicted values, respectively. In this research, a

fivefold cross-validation method was being used

(k = 5). m denotes the total number of training sets

(m = 230).

(3) Creating the offspring by genetic operators To select

the subpopulation individuals for the mating pool.

The integration of discrete recombination and line

recombination is applied to randomly paired chro-

mosomes, which determines whether a chromosome

should be mutated in the next generation.

(4) Elitist strategy Elitist reinsertion is used to prevent

losing good information and is a recommended

method.

(5) Migration The migration model is used to divide the

population into multiple subpopulations.

(6) Check the termination condition If the executed

generation number equals the special generation

number, the algorithm ends; otherwise, it goes back

to step 2. The GA creates generations by selecting and

reproducing parents until termination criteria are met.

4.3 Parameters tuning of SVR based on the PS

algorithm

The PS method is a class of direct search methods to solve

nonlinear optimization problems. The PS algorithm can

calculate the function values of a pattern and tries to find

the minimum value. For the hyper-parameter optimization

with the PS algorithm, the procedures are summarized in

the following steps:

(1) Parameters setting, set iteration i = 0

(2) Set iteration i = i ? 1

(3) Model training: Hyper-parameter optimization, five-

fold CV

(4) Fitness definition and evaluation

(5) Termination: The evolutionary process proceeds

until a stopping criterion is met (maximum iterations

predefined or the error accuracy of the fitness

function). Otherwise, we go back to step (2).

4.4 Parameter tuning of SVR based on GA–SQP

hybrid algorithm

This method relies on both local search and global search

techniques. The SQP method is a deterministic method, while

the GA is a stochastic method. The SQP method is one of the

most effective gradient-based algorithms for constrained

nonlinear optimization problems. The method is sensitive to

initial point selection. It can guarantee local optima as it

follows a gradient search direction from the starting point

toward the optimum point. GA is efficient for global opti-

mization by finding the most promising regions of search

space. Hybridization of GA and SQP can complement the

qualities of GA by focusing on accuracy and solution time.

The GA is first applied to produce the proper estimation point

for SQP. In other words, GA and SQP were used in series.

The algorithm starts with the GA, since the SQP is

sensitive to the initial point. Therefore, GA is the main

optimizer, and the SQP is used to fine tune for improve-

ment of the every solution of the GA. GA has shown to be

efficient on global optimization by finding the most

promising regions of search space; however, it suffers from

excessive solution time and low accuracy. On the other

hand, the SQP can complement the qualities of GA by

focusing on accuracy and solution time. GA can be applied

first in order to refine the initial point, and then the SQP

will be able to reach the solution fast. In other words, the

calculation continues with the GA for a specific number of

generations or a user-specified number for stall generation

during which the approximate solution becomes closer to

the real solution. The algorithm then shifts to the SQP

which is a faster method. Details of the procedure are

illustrated in the flowchart shown in Fig. 4.
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According to Fig. 4, the procedure of hyper-parameter

optimization with GA–SQP method is summarized as

follows:

(1) Start To define the parameters for GA and choose a

randomly generated population, population size, the

number of subpopulations and individuals per sub-

population, the mutation rate, type of kernel func-

tion, and the range of the SVR parameters.

(2) Calculating the fitness The fitness function is defined

as the AARE cross-validation on the training dataset

as per Eq. 5.

(3) Creating the offspring by genetic operators The GA

uses selection, crossover, and mutation operators to

generate the offspring of the existing population.

Offspring replaces the old population and forms a

new population in the next generation. The evolu-

tionary process proceeds until a stopping criterion is

satisfied.

(4) Shift to the SQP The GA creates generations by

selecting and reproducing parents until a stopping

criterion is met. One of the stopping criteria is a

specified maximum number of generations. Another

stopping strategy involves population convergence

criteria. After satisfying a stopping criterion, the

algorithm shifts to the SQP method. The search will

continue until a stopping criterion is satisfied.

5 Results and discussion

In this research, over 300 experiments were conducted on a

pilot scale hydro-desulfurization set up. Gas–oil flow rate,

H2 flow rate, reactor pressure, and inlet temperature were

chosen as the different operating parameters in the exper-

iments. The gas–oil sulfur contents used in experiments

varied from 10 to 4,900 ppm. Besides the mentioned

parameters, the reactor outlet temperature was also selected

as an input parameter of the SVR model. This facilitates

the application of the developed SVR model to simulate the

behavior of industrial reactors. Note that when catalyst

Define:
• Parameter ranges
• Population Size
• Mutation rate
• Number of generation

Create a real-Valued 
initial random 
population, Pi

Perform SVR on each
individual in Pi and
calculate fitness 

Stopping
criteria

Create new individuals by:

• Selection
• Crossover
• Mutation

Optimize (C, g)
as the initial

point to SQP 

SQP algorithm

Optimal SVR settings
(C, g) 

No:
i = i+1

i = 1

Yes:
Shift to
SQP 

Yes

Building SVR
model 

Stopping
criteria

Fig. 4 Flow diagram of the

combined GA–SQP and SVR

for parameter optimization
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deactivation occurs during the time, the outlet temperature

would change for the same input conditions.

One of the important factors in forecasting performance

of SVR is the kernel function. In this work, different ker-

nels namely linear kernel, polynomial kernel, sigmoid , and

radial basis function (RBF) kernel were used, and the

effects of these kernel functions on SVR model based on

GS-optimization method are summarized in Table 6. The

results show that SVR model with Gaussian (RBF) kernel

provides a lower AARE. Furthermore, in order to obtain

better accuracy of SVR model and data compression, the

VQ technique was employed. The impacts of VQ on CT and

prediction accuracy of SVR model are shown in Table 6.

The VQ technique can reduce the CT and simultaneously

improve the accuracy of the SVR model.

The most important factor influencing the efficiency and

robustness of the SVR algorithm is hyper-parameter tuning.

Hence, the optimization method is the most critical factor to

determine the convergence speed of the SVR model and the

ability to search for the global optimal solution.

The effects of different optimization methods on the

SVR model are shown in Table 7. The performance of

these methods was evaluated by the statistical criteria

(AARE and R2).

It is seen that the GS results depend completely on the

boundary value of C and g. PS gives a better result of

AARE and R2 than GA; however, the GA–SQP algorithm

gives the best AARE, R2, and CT.

From the results, it can be concluded that the perfor-

mances of the PS, GA, and GA–SQP integrated with SVR

are relatively superior to GSM integrated with SVR. On the

other hand, integrating these methods (PS, GA, and GA–

SQP) with SVR presented attractive advantages compared

with GSM and SVR, as follows:

(1) Optimization of the SVR parameters without draw-

backs of GSM.

(2) Reduction of computational time.

Some of the results from the hybrid GA–SQP algorithm

are shown in Table 8. As seen in this table, integration of

GA–SQP with SVR model has good accuracy for predic-

tion of sulfur content of the treated gas–oil in a wide range.

The parity plots for different optimization algorithms inte-

grated with SVR model are shown in Fig. 5. It shows that the

Table 7 Optimal SVR hyper-parameters obtained by different algorithms (e = 0. 1)

No. Method Boundary C g Type of

kernel

AARE AARE R2 R2 CT(S)

(training) (test) (training) (test)

1 GS–SVR C:2^[-2 2], g:2^[-3 2] 4.0 0.125 RBF 0.0978 0.1063 0.985 0.983 291

2 GS–SVR C:2^[-3 3], g:2^[-5 4] 8.0 0.125 RBF 0.0885 0.0893 0.988 0.986 323

3 PS–SVR C:[0. 01 1e4], g:[0. 01 1e4] 52.0 0.100 RBF 0.0723 0.0828 0.996 0.995 107

4 GA–SVR C:[0. 01 1e4], g:[0. 01 1e4] 48.9 0.030 RBF 0.0734 0.0844 0.995 0.994 112

5 GA–SQP–SVR C:[0. 01 1e4], g:[0. 01 1e4] 50.5 0.099 RBF 0.0652 0.0745 0.998 0.997 56

Table 8 Typical input and

output data for the SVR testing

with GA–SQP method

Test no. Qgasoil, kg/s QH2, m3/h P, kPa Tin, �C Tout, �C Sexp, ppm Spre, ppm

1 2.85E-06 3.54E-05 5,000 320 322.27 3,660 3,652

2 2.85E-06 3.54E 05 5,000 337 339.24 1,598 1,586

3 2.85E-06 3.54E-05 5,000 353 355.76 313 273

4 2.85E-06 6.90E-05 5,000 370 373.28 15 20

5 3.71E-06 6.90E-05 5,000 320 320.66 4,333 4,354

6 3.71E-06 6.90E-05 5,000 337 338.47 2,346 2,354

7 3.71E-06 6.90E-05 5,000 353 355.99 675 670

Table 6 The impact of kernel

function and VQ on prediction

by SVR model

Kernel type AARE (with VQ) AARE (without VQ) CT (with VQ) CT (without VQ)

1 Linear 1.295 4.274 228 327

2 Polynomial 0.227 2.894 264 368

3 Sigmoid 0.246 2.928 243 339

4 Gaussian 0.083 0.546 312 595
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Fig. 5 The parity plot for different algorithms. a Hyper-parameter optimization using GS. b Hyper-parameter optimization using PS. c Hyper-

parameter optimization using GA. d Hyper-parameter optimization using GA–SQP

Table 8 continued Test no. Qgasoil, kg/s QH2, m3/h P, kPa Tin, �C Tout, �C Sexp, ppm Spre, ppm

8 4.56E-06 6.90E-05 5,000 337 338.92 2,950 2,921

9 2.85E-06 6.90E-05 5,000 320 321.27 3,644 3,634

10 2.85E-06 6.90E-05 5,000 353 356.44 320 297

11 2.85E-06 3.54E-05 7,000 320 321.18 3,737 3,705

12 2.85E-06 3.54E-05 7,000 337 338.59 1,733 1,819

13 2.85E-06 3.54E-05 7,000 353 356.43 384 369

14 2.85E-06 3.54E-05 7,000 370 373.56 18 22

15 4.56E-06 6.90E-05 7,000 320 320.60 4,885 4,859

16 4.56E-06 6.90E-05 7,000 337 338.44 3,097 3,054

17 3.71E-06 1.13E-04 7,000 320 320.60 4,377 4,343

18 3.71E-06 1.13E-04 7,000 337 338.87 2,477 2,429

19 3.71E-06 1.13E-04 7,000 353 356.33 805 7,83

20 2.85E-06 1.13E-04 7,000 337 339.33 1,731 1,691
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SVR model is a robust and reliable model to predict the treated

gas–oil sulfur content, no matter what algorithm is being

selected for hyper-parameter optimization. Consequently, the

model can be applied with good confidence to predict sulfur

content in the industrial plants with any characteristics.

6 Conclusion

The aim of this study was to improve the prediction per-

formance and the CT of a data-driven, soft sensor used in

the production of ultra-low sulfur diesel. A novel, soft

sensor model integrating VQ technique with SVR model

was proposed. Selection of optimal parameters of the

model is a vital challenge directly affecting prediction

accuracy. An integrated GA and SQP (GA–SQP) optimi-

zation procedure that is a relatively a fast alternative to the

time-consuming GS approach was employed.

The other important factor in the predictive performance

of SVR model is kernel function. Four different kernels,

namely, linear, polynomial, sigmoid, and Gaussian kernels

were evaluated. Results show that the SVR model with a

Gaussian (RBF) kernel gives a lower AARE. The model

was validated against a wide range of experimental data

taken from the gas–oil HDS set-up. The results revealed

that the proposed VQ–SVR model coupled with hybrid

GA–SQP optimization algorithm is superior to other

methods and gives the best prediction for the sulfur content

with the highest accuracy (AARE = 0.0745, R2 = 0.997)

and the lowest computation time (CT = 56 s).

The proposed approach can pave the way for design of

reliable data-driven soft sensors in petroleum industries.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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