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Abstract: Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution 
seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and 
root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s 
improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, 

accuracy of seismic wavelet phase spectrum estimation.
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1 Introduction
Seismic wavelet estimation is a key issue in seismic 

data processing and interpretation. In particular, the phase 
spectrum estimation is paramount. It directly impacts on the 
results of forward modeling, deconvolution and inversion 
(Lu, 2005; Lu et al, 2007; Yuan et al, 2009; Yu et al, 2011). 
In real data, deterministic methods are often used to estimate 
the seismic wavelet by utilizing well logs. However, well 
logs are not always available, and often different well logs 
predict different results of wavelet estimation. The difference 
is mainly manifested in the phase spectrum (Edgar and van 
der Baan, 2011). Thus it is required for statistical approach to 
estimate the phase spectrum of the wavelet from the seismic 
data alone. Levy and Oldenburg (1987), Longbottom et al 
(1988), and White (1988) proposed a method for wavelet 
phase spectrum estimation. On the assumption that the 
wavelet phase is a frequency-independent constant, they 
estimate the wavelet phase spectrum by constant-phase 
rotation and kurtosis criterion maximization. Longbottom et 
al (1988) tested some marine data and found that wavelets 
derived in seismic-to-well ties often have a near-constant 

phase spectrum estimation is feasible. However, when the 
wavelet phase spectrum varies with frequency, constant-phase 
rotation is inappropriate and we need to change the wavelet 
phase spectrum by root transform.

Kurtosis belongs to sparse criterion, which was first 
applied to blind deconvolution by Wiggins (1978). Many 
geophysicists have studied this criterion and proposed 
many improved criteria and other sparse criteria, such as 
Lu’s improved kurtosis criterion, the parsimony criterion, 
exponential transform criterion, Sech criterion, Cauchy 

obtain satisfying effects in deconvolution or inversion.

phase spectrum variation. Then, similarly to the wavelet 
phase spectrum estimation based on the kurtosis criterion, 
we combine Lu’s improved kurtosis criterion, the parsimony 
criterion, exponential transform criterion, Sech criterion, 
Cauchy criterion, and the modified Cauchy criterion with 
the two patterns of wavelet phase variation respectively, to 
estimate the seismic wavelet phase spectrum, and discuss 

Finally, we apply the method to multi-trace seismograms 
to improve the accuracy of seismic wavelet phase spectrum 
estimation.

2 Wavelet phase variation

2.1 Constant-phase rotation
In the conditions when the wavelet phase spectrum is 

a frequency-independent constant, we can change wavelet 
phase spectrum by constant-phase rotation. Constant-phase 
rotation can be implemented either in the frequency domain 
or in the time domain. Let W(f) be the spectrum of wavelet 
w(t),  be the phase rotation angle, and wrot(t) be the wavelet 
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after phase rotation, whose spectrum is Wrot(f). Then in the 
frequency domain,

(1)rot ( ) ( )exp( )W f W f i

where 1i  denotes the imaginary unit. Conducting the 
inverse Fourier transform of Eq. (1), we can obtain wrot(t).

In the time domain, we can accomplish constant-phase 
rotation through Eq. (2) (Levy and Oldenburg, 1987),

rot ( ) ( )cos [ ( )]sinw t w t H w t  (2)

where [ ]H  denotes the Hilbert transform.
Comparing the two implementations, without forward and 

inverse Fourier transform, the time-domain implementation 
is faster than the frequency-domain (Arons and Yennie, 
1950). In addition, each individual time sample can be treated 
independently and corresponds to a phase rotation angle, 
therefore Eq. (2) is conducive to time-varying phase rotations 
(Van der Baan, 2008).

2.2 Root transform
When the wavelet phase spectrum is a frequency-related 

variable, we can change the wavelet phase spectrum by root 
transform. Suppose the discrete form of wavelet wrot(t) is 
(w0, w1,…, wn), according to Z transform,

(3)
1

1 2

1 2

( ) ( )( ) ( )
( ,1) ( ,1) ( ,1)

n n

n n

w t Z w z z z
w

where 1[ ]Z  denotes inverse Z transform, ( 1, 2,…, n) 
denotes the Z transform roots of the wavelet, * denotes 

convolution. Substituting 
1

( ,1)i
i

i, 1) in Eq. (3), 
which is equivalent to making a symmetry transform on the 

unit circle about the Z transform roots of the wavelet. The 
wavelet amplitude spectrum does not change, only the phase 
spectrum changes (Yuan and Wang, 2011). Through different 
combinations of the root transform, we can obtain a series of 
wavelets which have the same amplitude spectra and different 
phase spectra. In general, suppose the number of real roots 
is Nr, and the number of conjugate complex roots is Nc, then 
the number M of wavelets is

0 1 /2 /2
/2 /2 /2 2Nr Nc Nr Nc

Nr Nc Nr Nc Nr NcM C C C (4)

where 
!

!( )!
m
n

n
C

m n m
, and ! denotes factorial.

3 Criterion function

3.1 Kurtosis criterion
The kurtosis criterion (Wiggins, 1978), also known as 

varimax norm, measures the deviation from Gaussian of 
signal x(t). The expression is

4

22

( )( )
( )

x tkurt x N
x t

(5)

where N denotes number of samples. The kurtosis of the 
Gaussian signal is 3. The more the value deviates from 3, the 
greater the degree of deviation from a Gaussian signal.

3.2 Lu’s improved kurtosis criterion
The kurtosis criterion can be placed in the general 

expression (Sacchi et al, 1994),

(6)
1

1( ) ( ) ( ( ))
( )

N

i
V x q i F q i

NF N
where ( )F  is a monotonically increasing function, and q(i) is 
normalized amplitude, whose expression is

(7)

2

2
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x i
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For the kurtosis criterion, ( ( )) ( )F q i q i . Considering 

and Lu (2009) proposed an improved kurtosis criterion by 

letting 
ln(cosh( ( )))

( ( ))
( )
q i

F q i
q i

 in Eq. (6), where >0 is 

a sparsity control parameter. The smaller the value is, the 

3.3 Parsimony criterion
The parsimony criterion is a constraint criterion in 

deconvolution proposed by Claerbout (1977), whose 
expression is

ln( | | ) (| | ln | | ) | |n n n n
i i i i

i i i
Q x x x x (8)

The criterion can be rewritten in another form 

(| | | | ) ln(| | | | ) lnn n n n
i i i i i i

i i i i
Q x x x x p p

(9)
where | | | |n n

i i i
i

p x x  has the property of probability 

distribution, so Eq. (8) can be seen as another form of 
Shannon entropy. In calculation, the value of n generally 
takes 3. Compared with the kurtosis criterion, the parsimony 
criterion has high sensitivity to both strong and weak 
reflectivity, and can preserve weak reflection information 
easily.

3.4 Exponential transform criterion
Considering the kurtosis criterion is very tolerant of 

additive noise, Ooe and Ulrych (1979) wished to improve 
the balance between the noise suppression and the ability 

deconvolution, and introduced exponential transform to the 
results of deconvolution

Pet.Sci.(2012)9:170-181
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(10)
2 21 exp 2i iz x S

where max( )S x C , C is a constant. Then obtain the 
exponential transform criterion

 (11)
2

2

1 1

N N

i i
i i

U z z

Note that when 0C , Eq. (11) becomes kurtosis criterion.

3.5 Other sparse constraint criteria
Sacchi (2002) studied Sech and Cauchy criteria in robust 

statistics, and introduced these criteria to sparse spiking 
inversion as a regularization factor, obtaining satisfying 
effects. These criteria have advantages in anti-noise 
performance and finding strong reflectivity, yet they have 
some suppression effect on weak reflection information. 
In order to get a balance between improving seismic data 
resolution and decreasing the suppression effect on small 
reflectivity, Zhang et al (2008) used the modified Cauchy 
criterion, and also obtained good results in sparse spiking 
inversion. The three criteria are respectively

(12)
2
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x xJ

where is the damping parameter.
All of above criteria affect deconvolution or inversion. 

Among them, the kurtosis criterion is the most commonly 
used. Wiggins (1978) applied kurtosis to deconvolution, and 
proposed the minimum entropy deconvolution. Based on a 
simplification of Wiggins’s method, Levy and Oldenburg 
(1987), Longbottom et al (1988), and White (1988) introduced 
the kurtosis criterion to seismic wavelet phase spectrum 
estimation, searching the phase spectrum through constant-
phase rotation and kurtosis maximization. Van der Baan and 
Fomel (2009) also introduced the kurtosis criterion to non-
stationary wavelet phase estimation. In view of the effect of 
other constraint criteria in deconvolution or inversion, we 
introduce these criteria to seismic wavelet phase spectrum 
estimation.

4 The corresponding criterion function of 
wavelet phase spectrum variation

4.1 Constant-phase wavelet
When the wavelet has a constant phase, we can change 

the wavelet phase spectrum by constant-phase rotation. Fig. 
1 conducts constant-phase rotation from -180o to 180o for a 
zero-phase wavelet. We calculate the values of every criterion 
function about wavelets after constant-phase rotation. Fig. 
2 is normalized values of the criteria functions. We can see 

that the values of these criteria have similar properties. The 
period of exponential transform criterion is 360o, others 
are 180o, and the waveforms are similar to sine or cosine 
functions. In addition, for a zero-phase wavelet, the kurtosis 
criterion, Lu’s improved kurtosis criterion, exponential 
transform criterion, and Sech criterion are maximum, and 
the parsimony criterion, Cauchy criterion, and the modified 
Cauchy criterion are minimum. However, for ±90o constant-
phase wavelet, the kurtosis criterion, Lu’s improved kurtosis 
criterion, exponential transform criterion, and Sech criterion 
are minimum, and the parsimony criterion, Cauchy criterion, 

to these characteristics, we can pick the phase spectrum of the 
constant-phase wavelet.
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Fig. 1 Wavelets after constant-phase rotation
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4.2 Non-constant-phase wavelet
When the wavelet is of non-constant phase, we can change 

the wavelet phase spectrum by root transform. Given two real 
roots 1.3798, 1.3628, and four pairs of conjugate complex 
roots -0.3338±1.4296i, -0.1363±1.3080i, -0.7727±0.9136i, 
-1.0489±0.1858i, we can obtain 64 wavelets (Fig. 3) which 
have the same amplitude spectra and different phase spectra 
by root transform. Among the wavelets in Fig. 3, the first 
is a minimum-phase wavelet, the last is a maximum-phase 
wavelet, and others are mixed-phase wavelets. Fig. 4 is the 
criteria function of 64 wavelets in Fig. 3. We can see that 
the values of these criteria functions have similar properties. 
The kurtosis criterion, Lu’s improved kurtosis criterion, 
exponential transform criterion, and Sech criterion have the 
same trend, and the parsimony criterion, Cauchy criterion, 
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Fig. 2 The corresponding criteria function of constant-phase wavelets 
in Fig. 1. (a) kurtosis criterion, (b) parsimony criterion, (c) Lu’s improved 
kurtosis criterion, (d) Cauchy criterion, (e) exponential transform 
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and the modified Cauchy criterion have the same trend. 
In addition, the kurtosis criterion, Lu’s improved kurtosis 
criterion, exponential transform criterion, and Sech criterion 
of 20th, 24th, 28th, 31st, 34th, 37th, 41st, and 45th wavelets are 
maximum, and the parsimony criterion, Cauchy criterion, 

symmetry. According to these characteristics, we can estimate 
the phase spectrum of the non-constant-phase wavelet.
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Fig. 3 Mixed-phase wavelets by root transform
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Fig. 4 The corresponding criteria function of non-constant-phase wavelets 
in Fig. 3. (a) kurtosis criterion, (b) parsimony criterion, (c) Lu’s improved 
kurtosis criterion, (d) Cauchy criterion, (e) exponential transform criterion, (f) 

5 Phase spectrum estimation of the seismic 
wavelet based on criterion functions

According to the Robinson convolution model (Robinson, 
1967), the seismic record s(t) can be represented by the 
convolution of the seismic wavelet w(t
r(t),

(15)( ) ( ) * ( )s t w t r t  

For a constant-phase wavelet, we can conduct constant-
phase rotation on the seismic record from -90o to 90o, 
which is equivalent to making a constant-phase rotation 
on the wavelet with the same angle, then calculating the 
criterion function. The phase angle corresponding to the 
extreme of the criterion function is the phase spectrum of 
the constant-phase wavelet.

For a non-constant-phase wavelet, we need first to 
estimate the minimum-phase wavelet from the seismic 
record by spectral modeling (Rosa and Ulrych, 1991) or the 
autocorrelation method (Leinbach, 1995), then calculate all 
the wavelets which have the same amplitude spectra and 
different phase spectra. Finally subtract every wavelet phase 
spectrum from the seismic record, and calculate the criterion 
function. The phase spectrum corresponding to the extreme 
of criterion function is the phase spectrum of non-constant-
phase wavelet.

However, in the phase spectrum estimation of the seismic 

existed in the calculated values of criterion function. Because 
the criteria belong to sparse criteria, the sparse feature of the 

5.1 Constant-phase wavelet

is non-sparse. We convolute it with the constant-phase 
wavelets in Fig. 1 and obtain the seismic profile (Fig. 

constant-phase rotation on the seismic record obtained 

series. We estimate the wavelet phase spectrum using the 

the true value of 28.8o (Fig. 8). 
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Fig. 5 The 20th, 24th, 28th, 31st, 34th, 37th, 41st, and 45th wavelets in Fig. 3
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Fig. 7 Seismic traces after constant-phase rotation
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5.2 Non-constant-phase wavelet

series in Fig. 6 respectively and the seismic record is obtained 
(Fig. 9), then we calculate the values of criteria function of 
every trace (Fig. 10). We can see that the kurtosis criterion, 
Lu’s improved kurtosis criterion, exponential transform 
criterion, and Sech criterion of 2nd and 8th wavelet are a 
maximum, and the parsimony criterion, Cauchy criterion, and 

from symmetry.
Thus we can see that these criteria functions have a 

similar effect in phase spectrum estimation of the seismic 
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Fig. 8 The corresponding criteria function of every seismic trace in Fig. 
7. (a) kurtosis criterion, (b) parsimony criterion, (c) Lu’s improved kurtosis 
criterion, (d) Cauchy criterion, (e) exponential transform criterion, (f) 
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Fig. 9 Seismic record generated by the convolution 
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Fig. 10 The corresponding criteria function of every seismic trace in Fig. 
9. (a) kurtosis criterion, (b) parsimony criterion, (c) Lu’s improved kurtosis 
criterion, (d) Cauchy criterion, (e) exponential transform criterion, (f) 
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Fig. 11 The 2nd and 8th wavelet in Fig. 3

Pet.Sci.(2012)9:170-181



179

wavelet, and all will be affected by the sparse feature of the 
reflectivity series. When the reflectivity series are sparse 
enough, as described in part four, the wavelet can be thought 

for constant-phase and non-constant-phase wavelet, phase 
spectrum estimation based on criterion function can all obtain 

non-sparse, even ignoring the impacts of other factors such 

of constant-phase wavelets by criteria function all deviate 
from the true value of 28.8o, and those of non-constant-phase 
wavelet are also the same and deviate from the true value. 
Therefore, when applying the method to real seismic data, 
we need to make accurate judgments on the sparse feature of 

spectrum will likely deviate seriously from the true value.

6 Seismic wavelet phase spectrum estimation 
based on criterion functions and multi traces

When reflectivity series is not sparse enough, in order 
to improve the effect of seismic wavelet phase spectrum 
estimation based on criterion function, we apply the method 
to the multi-trace seismogram.

6.1 Constant-phase wavelet
Fig. 12 is the synthetic seismogram of a zero-phase 

wavelet and reflectivity series in Fig. 6. Considering that 

tiny changes in horizontal direction, we introduce random 

For a constant-phase wavelet, we make a constant-phase 
rotation on every trace, and calculate the criterion function, 
then obtain the criterion function of the whole seismogram 
by summing and averaging the criterion function of every 
trace. Considering that the kurtosis criterion, Lu’s improved 
kurtosis criterion, exponential transform criterion, and Sech 
criterion have the similar characteristics, and the parsimony 

have the similar characteristics, we show only representatives 
of the kurtosis criterion and the parsimony criterion (Fig. 13). 
We can see that the estimated phase spectrum of the constant-
phase wavelet is 14.4o. Compared with the result (28.8o) of a 
single trace, the accuracy is remarkably improved. Fig. 14 is 
comparison of estimated wavelet and true wavelet, and they 
are close to each other.

6.2 Non-constant-phase wavelet
Similarly to Fig. 12, we introduce random disturbance 

to reflectivity in Fig. 6, and convolute them with the 2nd 
mixed-phase wavelet in Fig. 3, thereby obtain the multi-trace 
seismogram (Fig. 15). We can obtain a series of wavelets that 
have different phase spectra by root transform, and eliminate 
the wavelet phase spectrum from the seismic trace. Then we 
calculate the criterion function of the single trace, sum and 
average them. Finally we obtain the criterion function of 
the whole seismogram. Here we also show only the kurtosis 
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Fig. 12 Synthetic seismogram by using the zero-phase wavelet in Fig. 1
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Fig. 13 Criteria function of the seismic wavelet phase spectrum 
estimation based on constant-phase rotation. (a) kurtosis criterion, 
and (b) parsimony criterion
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of the seismic wavelet are completely consistent with the 
true value. When the reflectivity series does not satisfy the 
sparse feature, even ignoring the impacts of other factors, 

Fig. 14 Estimated wavelet and true wavelet
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Fig. 15 Synthetic seismogram by using 
the 2nd mixed-phase wavelet in Fig. 3

criterion and the parsimony criterion (Fig. 16). We can see 
that the kurtosis criterion of the 2nd wavelet gives a maximum, 
and the parsimony criterion shows a minimum. We pick up 

true wavelet (Fig. 17). The effect of seismic wavelet phase 

7 Conclusions
Constant-phase rotation and root transform are two kinds 

of wavelet transform in seismic wavelet phase spectrum 
estimation based on criterion functions, which needs us to 
choose according to the characteristics of the data in real 
seismic data processing and interpretation.

The kurtosis criterion, Lu’s improved kurtosis criterion, 
the parsimony criterion, exponential transform criterion, 
Sech criterion, Cauchy criterion, and the modified Cauchy 
criterion have a similar effect in phase spectrum estimation 
of seismic wavelet, and all will be affected by the sparse 

is sparse enough, the results of phase spectrum estimation 
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Fig. 16 Criteria function of seismic wavelet phase spectrum estimation 
based on root transform. (a) kurtosis criterion, and (b) parsimony criterion

Fig. 17 Estimated wavelet and true wavelet
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the estimated wavelet phase spectrum by criterion function 
is still very different from the true value. Therefore, we need 
to make accurate judgments on the sparse feature of the 

In order to eliminate the influence of non-sparse 

multi-trace seismogram, improving the accuracy of seismic 
wavelet phase spectrum estimation.
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