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Abstract: Shaley sandstone is heterogeneous at a seismic scale. Gassmann’s equation is suited for uid 
substitution in a homogeneous medium. To study the difference between shaley sandstone effective elastic 
moduli calculated by mean porosity as a homogeneous medium, and those calculated directly from the 
sub-volumes of the volume as a heterogeneous medium, computational experiments are conducted on 
Han’s shaley sand model, the soft-sand model, the stiff-sand model, and their combination under the 
assumption that the shaley sandstone volume is made up of separate homogenous sub-volumes with 
independent porosity and clay content. Fluid substitutions are conducted by Gassmann’s equation on 
rock volume and sub-volumes respectively. The computational data show that at seismic scale, there are 
minor differences between uid substitution on rock volume and that on sub-volumes using Gassmann’s 
equation. But uid substitution on sub-volumes can take consideration of the effects of low porosity and 
low permeability sub-volumes, which can get more reasonable data, especially for low porosity reservoirs.
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1 Introduction
Gassmann’s equation is widely used to predict elastic 

moduli of a porous rock saturated with a given fluid based 
on the corresponding properties of the dry rock, which is 
called fluid substitution. Gassmann’s equation makes the 
following assumptions  (1) a homogenous mineral modulus 
and statistical isotropy of the pore space; (2) seismic low-
frequency so the pore pressures are equilibrated throughout 
the pore space; (3) all minerals making up the rock have 
the same bulk and shear moduli; (4) fluid bearing rock 
is completely saturated (Gassmann, 1951). For the low 
frequency assumption, the seismic frequency is generally 
acceptable. But at seismic scale, the shaley sandstone is 
rarely homogenous (Skelt, 2004; Dvorkin and Uden, 200 ; 
Dvorkin et al, 2007), because many factors can cause rock 
heterogeneity, including depositional environment variation 
and the difference in compaction, diagenesis and cementation 
(Blangy, 1992). We often apply mean porosity in fluid 
substitution by Gassmann’s equation to obtain the effective 
bulk and shear moduli saturated with different fluids. But 
what is the difference between effective elastic moduli 
calculated by mean porosity, and those calculated directly 
from the sub-volumes of rock. Since the shear moduli are 
constant for a rock saturated with different uids, in the paper, 

we mainly study differences between bulk moduli calculated 
by mean porosity, and those calculated directly from the sub-
volumes of rock.

To study the question, we conduct computational 
experiments, on the supposition that (1) the shaley sandstone 
volume is made up of separate homogenous sub-volumes; (2) 
porosity ( ) and clay content (C) for each sub-volume of the 
whole rock volume are independent and follow a Gaussian 
probability distribution function, shown as Fig. 1. First, we 
get both porosity and clay content by Monte Carlo simulation 
(Avseth et al, 2005). Next, we use rock physical models, 
including Han’s shaley sandstone model (Han, 1987), the 
soft-sand model, the stiff-sand model (Mavko et al, 2009) 
and their combination, to compute the dry rock moduli of 
each sub-volume. Then we compute the bulk moduli of 
water-saturated rock by two ways. In the first way, on the 
supposition that the shaley sandstone volume is homogenous, 
we compute the volume moduli of water-saturated rock 
using mean porosity by Gassmann’s equation, shown as Eq. 
(1). During the calculation, the volume moduli of dry rock 
are obtained from the sub-volumes by generalized Hashin-
Shtrikman-Walpole bounds (Berryman, 1995). In the second 
way, on the supposition that each component of the shale 
sandstone volume is homogenous, we compute each sub-
volume modulus of water-saturated rock by Gassmann’s 
equation from the dry moduli of the sub-volumes, and obtain 
the effective bulk moduli by generalized Hashin-Shtrikman-
Walpole bounds (Berryman, 1995). Then we analyze and 
compare the data computed in two different ways.
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Table 1 Mineral and uid properties used in computational experiments

Component Bulk moduli, GPa Shear moduli, GPa Density, g/cc

Quartz 3 . 0 45.00 2. 5

Clay 21.00 7.00 2.58

Water 2.32 0.00 0.9

3 Computational experiments
To study the difference of calculated effective bulk 

moduli of shaley sandstone estimated from mean porosity and 
directly from the sub-volumes, we use rock physical models, 
including Han’s shaley sandstone model, the soft-sand 
model, stiff-sand model, and their combination, to conduct 
computational experiments with same input parameters, 
including porosity, clay content and effective pressure. Han’s 
model is from rock physical experiments, the others are from 
rock physical theory derivation but all of them are con rmed 
by real data. The stiff-sand model and the soft-sand model 
can be used respectively for the upper and lower bounds of 
shaley sand elastic moduli. So we get plausible results from 
these representative models. Han’s dry shaley sandstone 

model under 40 MPa effective pressure, shown as Eqs. (3) 
and (4), are derived from laboratory data measured on 70 
shaley sandstone samples (Han et al, 198 ). These laboratory 
data were measured using high-frequency waves but on dry 
samples. Because there is no fluid action in the rock, the 
frequency effect is negligible. We compute Vp and Vs of each 
dry sub-volume by Eqs. (3) and (4), and its density by volume 
averaging pore uid, clay and quartz densities. We compute 
bulk and shear moduli of each dry sub-volume and the upper 
and lower bounds of the sub-volumes set by generalized 
Hashin-Shtrikman-Walpole bounds. We compute bulk moduli 
upper and lower bounds of the water-saturated rock from 
the bulk moduli upper and lower bounds of dry rock using 
mean porosity by Gassmann’s equation. At the same time, 
we compute each sub-volume moduli of the water-saturated 
rock by Gassmann’s equation from dry sub-volume moduli, 
and obtain the effective bulk moduli upper and lower bounds 
by generalized Hashin-Shtrikman-Walpole bounds. The 
computational data are shown as Fig. 3.

(3)p 5.41 .35 2.87V C

(4)s 3.57 4.57 1.83V C  

Fig. 3 Bulk modulus versus porosity by Han’s shaley sand model. Left  the volume consists of 5×5×5 sub-volumes; Right  the volume consists of 
10×10×10 sub-volumes. Red circles  the bulk moduli of dry rock versus porosity for each sub-volume. Blue circles  the bulk moduli of water-saturated 
rock versus porosity for each sub-volume. The black and pink triangles are bulk moduli upper and lower bounds by Hashin-Shtrikman-Walpole methods 
for dry and water-saturated rock in the first way described above. The blue and cyan squares are bulk moduli upper and lower bounds by Hashin-
Shtrikman-Walpole methods for water-saturated rock in the second way described above. (In the cases, the lower and upper bounds are very close to each 

other and appear as a single square.)
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There is a big variation range for bulk moduli of dry-rock 
and water-saturated rock computed by Han’s shaley sandstone 
model. But the differences are small between effective bulk 
moduli upper and lower bounds for both dry and water-
saturated rock. The bulk moduli upper and lower bounds of 
water-saturated rock calculated by the second way described 
above overlap on those calculated by the first way. So at 
seismic scale, there is little difference in uid substitution by 
the two ways. The rock partition schemes have little effect on 
the above conclusions.

Next, the soft-sand model is applied to calculate the bulk 

and shear moduli Keff, Geff of dry sandstone in which cement is 
deposited away from grain contacts (Dvorkin and Nur, 199 ). 
In this model a heuristic modified Hashin-Shtrikman lower 
bound (Hashin and Shtrikman, 19 3) is used. The model is 
shown as Eqs. (5) and ( )

                
1

0 0
eff HM

HM HM HM

/ 1 / 4
4 4 3
3 3

K G
K G K G

(5)
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Fig. 4 Bulk moduli versus porosity by the soft-sand model. Left  the volume consists of 5×5×5 sub-volumes; Right  the volume consists of 10×10×10 sub-
volumes. Red circles  the bulk moduli of dry rock versus porosity for each sub-volume. Blue circles  the bulk moduli of water-saturated rock versus porosity 
for each sub-volume. The black and pink triangles are bulk moduli upper and lower bounds by Hashin-Shtrikman-Walpole methods for dry and water-saturated 
rock in the rst way described above. The blue and cyan squares are bulk moduli upper and lower bounds by Hashin-Shtrikman-Walpole methods for water-
saturated rock in the second way described above. (In the cases, the lower and upper bounds are very close to each other and appear as a single square.)
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In upper equations, K and K0 are the porosity and critical 
porosity, K and G are the bulk and shear moduli of rock 
grains, KHM and GHM are the effective bulk and shear moduli 
of randomly packed identical spherical grains under pressure 
calculated by contact Hertz-Mindlin theory (Mindlin, 
1949; Hill, 1952). The soft-sand model is suited for dry 
unconsolidated shaley sand under following assumptions  
(1) the strains are small; (2) grains are elastic, homogeneous; 

stiff-sand model is suited for dry consolidated shaley sand 
under the same assumptions as the soft-sand model. The 
model is shown as Eqs. (7) and (8). 

 (7)

1

0 0
eff

HM

/ 1 / 4
4 4 3
3 3

K G
K G K G

1

0 0
eff

HM

/ 1 /
9 8 9 8( ) ( )

2 2
9 8( )

2

G G K G G K GG G
K G K G

G K G
K G

 

(8)

1

0 0
eff

HM HM HM HM HM HM
HM

HM HM HM HM

HM HM HM

HM HM

/ 1 /
9 8 9 8( ) ( )

2 2

9 8( )
2

G G K G G K GG G
K G K G

G K G
K G

 ( )

(3) packing is random and statistically isotropic; (4) the 
wavelength is much longer than the grain radius.

Using the same input parameters and ways as in Han’s 
shaley sandstone model, we compute each sub-volume bulk 
modulus of dry and wet rock, and their upper and lower 
bounds of the sub-volumes set under 40 MPa effective 
pressure by the two ways described above. The computational 
data are shown as Fig. 4.

The fluid effect on bulk modulus computed by the soft-
sand model is bigger than that by Han’s shaley sand model. 
There is a smaller bulk modulus and variation range computed 
by the soft-sand model than those computed by Han’s shaley 
sand model at a given porosity. The clay content has smaller 
effect on moduli under 40 MPa effective pressure in the soft-
sand model. The difference is smaller between effective bulk 
moduli upper and lower bounds of dry and water-saturated 
rock than that computed by Han’s shaley sandstone model. 
The bulk moduli upper and lower bounds of water-saturated 
rock calculated by the second way also overlap on those 
calculated by the first way. So at seismic scale, the same 
conclusion is derived as obtained by Han’s model.

The stiff-sand model for cemented sandstone is a 
counterpart to the soft-sand model (Mavko et al, 2009). The 
model uses precisely the same end-members as the soft-sand 
model, but connects them with a heuristic modi ed Hashin-
Shtrikman (Hashin and Shtrikman, 19 3) upper bound. The 
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In the upper equations,  and 0 are the porosity and 
critical porosity, K and G are the bulk and shear moduli of 
rock grains, KHM and GHM are the effective bulk and shear 
moduli of randomly packed identical spherical grains 
under pressure calculated by contact Hertz-Mindlin theory 
(Mindlin, 1949). Using the same input parameters and 

Fig. 5 Bulk moduli versus porosity by the stiff-sand model. Left  the volume consists of 5×5×5 sub-volumes; Right  the volume consists of 
10×10×10 sub-volumes. Red circles  the bulk moduli of dry rock versus porosity for each sub-volume. Blue circles  the bulk moduli of water-
saturated rock versus porosity for each sub-volume. The black and pink triangles are bulk moduli upper and lower bounds by Hashin-Shtrikman-
Walpole methods for dry and water-saturated rock in the rst way described above. The blue and cyan squares are bulk moduli upper and lower 

bounds by Hashin-Shtrikman-Walpole methods for water-saturated rock in the second way described above
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Fig. 6 Rock bulk moduli versus porosity by combined model of the stiff-
sand model and the soft-sand model. Red circles  the bulk moduli of dry 
rock versus porosity for each sub-volume. Blue circles  the bulk moduli 
of water-saturated rock versus porosity for each sub-volume. The black 
and pink triangles are bulk moduli upper and lower bounds by Hashin-
Shtrikman-Walpole methods for dry and water-saturated rock in the rst 
way described above. The blue and cyan squares are bulk moduli upper 
and lower bounds by Hashin-Shtrikman-Walpole methods for water-

saturated rock in the second way described above
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ways as in Han’s shaley sandstone model and the soft-sand 
model study, we compute the bulk moduli of each sub-
volume of dry and water-saturated rock, and bulk moduli 
upper and lower bounds of the sub-volumes set under 40 
MPa effective pressure. The computational data are shown 
as Fig. 5.

The fluid effect on rock bulk moduli computed by the 
stiff-sand model is smaller than that by the soft-sand model, 
because there are bigger rock bulk moduli in the stiff-sand 
model. In a given porosity, there are bigger bulk modulus and 
variation range computed by the stiff-sand model than those 
computed by the soft-sand model. The clay content has a 
bigger effect on bulk moduli under 40 MPa effective pressure 
in the stiff-sand model than in the soft-sand model. So there 
is a bigger difference between effective bulk moduli upper 
and lower bounds for dry and water-saturated rock than that 
computed by the soft-sand model. The bulk moduli upper 
and lower bounds of water-saturated rock calculated by the 
second way also overlap on those calculated by the rst way. 
So at seismic scale, the same conclusion can be drawn as 
obtained by Han’s model and the soft-sand model.

Next, we conduct computational experiments on the 
combination of the soft-sand model and the stiff-sand model, 
that is, the rock is made up of soft sand and stiff sand half 
and half. With the same input parameters and by the same 
ways as above, we get the computational data shown as 
Fig. . The bulk moduli of dry and water-saturated rock are 
both separated because there are big differences of elastic 
properties for the two kinds of sands. The bulk moduli upper 
and lower bounds of water-saturated rock computed by the 
second way almost overlap on those by the rst way, but the 
difference is bigger than that in the above model for stronger 
rock heterogeneity.

4 Analysis and discussion
In Han’s shaley sand model, the soft-sand model and the 
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stiff-sand model, the variations of porosity and clay content 
affect the rock bulk modulus to different degrees, shown 
as Fig. 7. But for all the three models, the differences are 
small between the upper and lower bounds of dry and/or 

wet rock bulk moduli. Since there are small differences, we 
can represent the rock effective moduli with their average 
( HS+ HS-( ) / 2M M ). We compute the effective bulk moduli 
of dry and water-saturated sands with varying average 
porosities using the stiff-sand model and the same two ways 
described above. In the computational experiments, fluid 
substitutions are conducted in all the rock sub-volumes. The 
computational results (Fig. 8  Left) show that there are very 
small differences between effective moduli calculated by 
mean porosity and those calculated directly from the sub-
volumes. But for shaley sandstone under seismic scale, the 
porosity and clay content have big variation ranges. Fluid 
substitutions are impossible under real reservoir conditions 
for the sub-volumes with too small porosity and/or too high 
clay content. So there are differences between effective bulk 
moduli by mean porosity and directly from the sub-volumes 
in real reservoir conditions (Fig. 8  Right). And there are 
more sub-volumes without fluid substitution in the rock 

Fig. 7 The color-coded bulk modulus versus porosity and clay content 
according to (a) Han’s model, (b) the soft-sand model, and (c) the stiff-sand 

model. Color bar  bulk modulus, unit  GPa
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Fig. 8 Average bulk moduli versus average porosity by the stiff-sand 
model. Upper  fluid substitution in all sub-volumes; Lower  no fluid 
substitution in the sub-volumes with low porosity (under 5%) and 
high clay content (higher than 40%). Red line with circle  the dry rock 
average bulk moduli versus porosity. Blue line with circle  the average 
bulk moduli of water-saturated rock versus porosity calculated by mean 
porosity. Black dash line with cross  the average bulk moduli of water-
saturated rock versus porosity calculated directly from the sub-volumes
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with smaller mean porosity. In all probability, this is one of 
important reasons for Gassmann’s equation does not work 
as well in low porosity and high clay content rock as in high 
porosity rock. 

We also compute the average bulk moduli (as explained 
above) of dry and water-saturated shaley sands with varying 
average porosities using the combination of stiff-sand model 
and soft-sand model and the same two ways described in 
the above text. In the computational experiments, fluid 
substitutions are conducted in all the rock sub-volumes. The 
computational results (Fig. 9) show that there are visible bulk 
moduli differences by the two ways because elastic property 
differences between the soft sand model and the stiff-sand 
model produce a rock with stronger heterogeneity.   

impossible, so fluid substitution by mean porosity using 
Gassmann’s equation likely gives a bigger variation than that 
in real reservoir conditions, especially for low porosity and/or 
high clay content rock.
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5 Conclusions and suggestion
The computational experiments on shaley sand rock 

physical models show that there are minor uid substitution 
differences between bulk moduli calculated by mean porosity 
and those calculated directly from the sub-volumes using 
Gassmann’s equation. The differences are related to the 
bulk moduli variation range in rock volume. But under real 
reservoir conditions, too small a porosity and/or too high a 
clay content in some sub-volumes make fluid substitution 
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