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Abstract: Reservoir inversion by production history matching is an important way to decrease the 
uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation 
method. There are two problems have to be solved for the standard EnKF. One is the inconsistency 
between the updated model and the updated dynamical variables for nonlinear problems, another is the 
filter divergence caused by the small ensemble size. We improved the EnKF to overcome these two 
problems. We use the half iterative EnKF (HIEnKF) for reservoir inversion by doing history matching. 
During the HIEnKF process, the prediction data are obtained by rerunning the reservoir simulator using 
the updated model. This can guarantee that the updated dynamical variables are consistent with the 
updated model. The updated model can nonlinearly affect the prediction data. It is proved that HIEnKF is 
similar to the fi rst iteration of the EnRML method. Covariance localization is introduced to alleviate fi lter 
divergence and spurious correlations caused by the small ensemble size. By defi ning the shape and size of 
the correlation area, spurious correlation between the gridblocks far apart is alleviated. More freedom of 
the model ensemble is preserved. The results of history matching and inverse problem obtained from the 
HIEnKF with covariance localization are improved. The results show that the model freedom increases 
with a decrease in the correlation length. Therefore the production data can be matched better. But too 
small a correlation length can lose some reservoir information and this would cause big errors in the 
reservoir model estimation.
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1 Introduction
Most of the traditional automatic reservoir history 

matching methods are gradient methods. We have to use an 
adjoint method to calculate the sensitivity matrix which is the 
gradient of the objective function with respect to the model 
parameters. The adjoint method is difficult to apply to real 
reservoir history matching because it is very complicated 
and computational expensive (Li et al, 2003). The ensemble 
Kalman filter (EnKF) is a developing data assimilation 
method which was firstly introduced by Evensen in the 
context of ocean dynamics literature (Evensen, 1994). Since 
it was introduced into the petroleum engineering literature 
(Naevdal et al, 2003), EnKF has attracted great research 
interest and has now been successfully applied to automatic 
history matching of some practical reservoirs (Haugen et al, 
2006; Evensen et al, 2007; Bianco et al, 2007; Seiler et al, 

2009). Chinese scholars have started to apply the method to 
the inverse problem of the earth surface parameters and the 
estimation of rock mechanics parameters (Qin et al, 2005; 
Han and Li, 2008; Zhao et al, 2007; Jia et al, 2009). However, 
this method has not been used in the petroleum geology and 
reservoir engineering literature in China (Li et al, 2009). 
Although the standard EnKF has been used successfully in 
reservoir history matching and reservoir inversion, there are 
some urgent problems to be solved (Aanonsen et al, 2009). 
The standard EnKF is a time sequential history matching 
and reservoir inversion method. It requires that at each 
data assimilation time the estimated reservoir dynamic 
variables (pressure, saturation, dissolved gas-oil ratio, etc.) 
are consistent with the estimated reservoir model, that is, 
if we input the estimated reservoir model into the reservoir 
simulator, the predicted dynamic fields are consistent with 
the estimated dynamic  fields. It has been proved that for 
linear problems this hypothesis is correct (Thulin et al, 2007). 
However, the results also show that for nonlinear problems 
consistency is not achieved. Most of reservoir fl ow problems 
are nonlinear, especially for the complex reservoirs (fluvial 
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channel reservoirs, three-phase fl ow reservoir, etc.). In order 
to solve this problem, an iterative ensemble Kalman filter 
(IEnKF) which is based on a gradient method and has to 
use an adjoint method to calculate the sensitivity matrix is 
proposed (Li and Reynolds, 2009). Gu and Oliver (2007) 
also proposed an ensemble randomized maximum likelihood 
(EnRML) which used a n average sensitivity matrix instead 
of the real matrix. Because the singular value decomposition 
(SVD) is used to solve the average sensitivity matrix, this 
method is more efficient (Oliver et al, 2008). However, all 
realizations of the ensemble have to rerun the simulator from 
time zero after each iteration, so the computation is still large. 
And because of the utilization of the average sensitivity 
matrix, we can not guarantee the objective function always 
decrease alone the search direction in the subsequent 
iterations. The result is not improved when more iterations are 
done. Another iterative EnKF (HIEnKF) was used to estimate 
the depths of the fluid contacts and relative permeability 
curves (Wang et al, 2010). All realizations have to rerun the 
simulator from time zero using the updated model at each 
the data assimilation time. The result obtained by HIEnKF is 
similar to that obtained by EnRML. But the computational 
expense of HIEnKF is much less than that of EnRML. 

EnKF is one type of Monte Carlo method. It uses an 
ensemble that contains Ne realizations to calculate the 
statistical parameters, such as the mean of the model and the 
covariance matrix (Evensen, 2007). Since the covariance 
matrix is calculated from the ensemble of N e realizations, 
there are Ne degrees of freedom to estimate the actual model 
(Li and Reynolds, 2009). If the number of the realizations 
Ne is not very large and the error of the measurement data 
is small, the rank of the posteriori model covariance matrix 
will reduce when more and more data are assimilated. In the 
most extreme situation, the rank of the updated covariance 
matrix would be zero when all realization are same so that 
all predictions would be equal and we would not be able to 
change the predicted states to match the data. This situation 
is one type of the fi lter divergence that occurs commonly in 
practice (Agbalaka and Oliver, 2008). Furthermore, when a 
small ensemble size is used to represent covariance, there are 
significant sampling errors which tend to produce nonzero 
spurious long-distance correlation between parameters 
or between parameters and dynamical variables, whereas 
in reality, the variables at gridblocks far apart should be 
uncorrelated. Spurious correlations can result in changes 
in model parameters where none should occur because the 
predicted data (corresponding to the data to be assimilated) 
are insensitive to the model parameters. Not only does this 
cause changes during data assimilation in model parameters 
when no change should occur, but it can make it diffi cult to 
properly change these parameters to assimilate later time 
data which are actually sensitive to these parameters, thus, 
contributing to fi lter divergence (Agbalaka and Oliver, 2008). 
To improve the EnKF performance on history matching, 
Houtekamer proposed a standard EnKF method based on 
the covariance matrix localization, and made a preliminary 
application in atmospheric data assimilation (Houtekamer 
and Mitchell, 2001). Anderson proposed a covariance matrix 
inflation method. After data assimilation, magnification of 

the covariance matrix can effectively restrain the filtering 
divergence (Anderson, 2007). But the method can not 
eliminate spurious correlation due to the smaller set of 
models. Agbalaka used covariance localization theory to 
localize the Kalman gain matrix and also improved the 
elimination of filtering divergence (Agbalaka and Oliver, 
2008). But the method must store the Kalman gain matrix 
which is very large. 

A fluvial channel reservoir is highly heterogeneous and 
complex. The fl uid fl ow in this type of reservoirs is nonlinear 
and filtering divergence is quite serious. Inversion of the 
reservoir permeability field by using the standard EnKFis 
difficult ( Li et al, 2009; Sarma et al, 2008; Jafarpour and 
McLaughlin, 2009). In this paper, we use the HIEnKF method 
to do reservoir history matching which can avoid the complex 
calculation of sensitivity coeffi cients and ensure the estimated 
dynamical fi elds are consistent with the estimated models. We 
proved that the HIEnKF is similar to the fi rst iteration of the 
EnRML method. Covariance localization is used to eliminate 
fi ltering divergence and spurious correlation due to the small 
set of models. The HIEnKF with the covariance localization 
is used to estimate a fl uvial channel reservoir. Better results of 
the history matching and estimation of the permeability fi eld 
are obtained.

2 Ensemble Kalman fi lter method
We defi ne a state vector

(1)n n

n

m
y p

d

where m is a Nm-dimensional column vector which represents 
reservoir static model parameters, including discrete field 
of porosity and permeability; pn is a Np-dimensional column 
vector which represents reservoir dynamic parameters (i.e., 
pressure, saturation, dissolved gas-oil ratio (GOR), etc.) 
at time tn; and dn is a Nd-dimensional column vector which 
represents the predicted data at time tn. Therefore, the dimen-
sion of yn, denoted by Ny, is given by Nm+Np+Nd. We defi ne 
matrix

(2)[ ]
dNH O I  

where O denotes the Nd×(Nm+Np) null matrix; INd denotes 
the Nd×Nd identity matrix. Thus the predicted data is linearly 
related to the state vector

  (3)n nd H y  

Actually the predicted data at time tn satisfi es the following 
equation

(4)( , )n n ngd m p

wher e gn is the reservoir numerical model which shows that 
the production at time tn is only related to the geologic model 
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and the dynamic fi eld at this time. The observed data can be 
treated as a random vector

 (5)( , )n n n n n n
obs d dgd d ε m p ε  

where εn
d  is the measurement error. It is assumed that the 

measurement error has a Gaussian distribution with zero 
mean and covariance matrix given by CDn and there is no cor-
relation between the measurement errors at different time.

The purpose of the EnKF is to generate a series of 
reservoir models that can match the production data by 
sampling the following conditional probability density 
function

(6)

1

T 1

T 1

( | )
1
2exp

1
2

n

n

n n
obs obs

n n n n
Y

n n n n
obs D obs

f

a

y d d

y y C y y

H y d C H y d

 

By minimizing the following objective function we can 
obtain a sample of probability density function defi ned by Eq. 
(6)

(7)
T, 1 ,

T 1
, ,

1( )
2

1 1, ,
2

n

n

n n n p n n p
j j j Y j j

n n n n
j uc j D j uc j e

O

j N

y y y C y y

H y d C H y d

where
 

,n p
jy

 
represents the jth state vector at time tn, which is 

obtained by running the reservoir simulator from time tn-1 to 
time tn. 

(8)

where
 

T
nD D DC L L . The Nd-dimensional random vector ZD 

represents the normal random vector with zero mean and 
covariance given by the Nd×Nd identity matrix 

dNI . Minimize 
( )n

jO y  defined by Eq. (7), we get standard EnKF analysis 
equation (Zafari et al, 2005)

  (9)
, , 1 ,

,( )

1, ,
n n n

n u n p T T n n p
j j Y D Y uc j j

ej N

y y C H C HC H d d
 

The covariance matrix of state vector can be divided into

    

(10)

n n n n n

n n n n n n

n n n n n n

M M P M D

Y P M P P D

D M D P D D

C C C

C C C C

C C C

where each sub-matrix represents a covariance between the 
vectors denoted by the subscript. In order to distinguish the 
covaria nce of the predicted data from the covariance of the 
data measurement error given by 

nDC , it is denoted by 
n nD DC . 

Using Eqs. (2) and (10), we obtain

   
 (11)

and

      (12)T
n n

n d n n n n

n n

M D

Y N P D D D

D D

C

HC H O I C C

C

 

Substituting Eqs. (3), (11) and (12) into Eq. (9), we obtain 

    (13), , 1 ,
,( )

n n

n n n n n

n n

M D

n u n p n n p
j j P D D D D uc j j

D D

C

y y C C C d d

C

 

Eq. (13) can be divided into three updated analysis 
equations for a static field, dynamic field, and production 
data, respectively:

 (14), , 1 ,
,( )

n n n n n

n u n p n n p
j j M D D D D uc j jm m C C C d d  

(15), , 1 ,
,( )

n n n n n

n u n p n n p
j j P D D D D uc j jp p C C C d d

(16)
, , 1 ,

,( )
n n n n n

n u n p n n p
j j D D D D D uc j jd d C C C d d  

In EnKF, we generally do not use Eq. (16) to update data. 
Corresponding covariance can be calculated by the following 
equations

, , , , T

1

, , , , T

1 ( )( )
1

1 ( )( )
1

e

n n

N
n p n p n p n p

M D j j
je

n p n p n p n p

e

N

N

C m m d d

M M D D
   (17)

 (18)

, , , , T

1

, , , , T

1 ( )( )
1

1 ( )( )
1

e

n n

N
n p n p n p n p

P D j j
je

n p n p n p n p

e

N

N

C p p d d

P P D D

(19)

, , , , T

1

, , , , T

1 ( )( )
1

1 ( )( )
1

e

n n

N
n p n p n p n p

D D j j
je

n p n p n p n p

e

N

N

C d d d d

D D D D

where the jth column of Mn,p, Pn,p, and Dn,p represents the 
corresponding values of the jth model, respectively. And each 
column of ,n pM , ,n pP , and ,n pD  is the mean of itself.

,n pM

 

,
n n
uc j obs D Dd d L Z       

 

T
T

T

n nn n n n n

n n n n n n n n

d

n n n n n n n n

M DM M P M D

Y P M P P D P D
N

D M D P D D D D

CC C C
O

C H C C C C
I

C C C C
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Using EnKF equations to assimilate the production data, 
we obtain the updated state vectors including the updated 
reservoir models (permeability fi eld, porosity fi eld, the depth 
of the initial fl uid contacts, relative permeability curve, etc.) 
and the updated dynamic fields (pressure field, saturation 
field, dissolved GOR field, etc.). These updated fields are 
used to run the reservoir simulator to the next assimilation 
step to do the next data match. Therefore, the EnKF is a 
time-sequential data assimilation method, each ensemble 
model needs to run the simulator only once. Compared to 
the gradient-based history matching method, EnKF is more 
effi cient.

3 Half iterative ensemble Kalman fi lter
As a time-sequential data assimilation algorithm, EnKF 

requires that the updated model should be consistent with the 
updated dynamic fi eld at every data assimilation time, that is, 
if we input the updated model into the reservoir simulator and 
run it to the present time, the predicted dynamic fi eld should 
be consistent with the updated dynamic field. However, for 
nonlinear problems consistency is not achieved. In order to 
overcome the inconsistency in the nonlinear problems, we use 
the half iterative EnKF (HIEnKF) to do the data assimilation 
(Wang et al, 2010). The state vector only includes model 
parameters, thus the HIEnKF analysis equation is 

 
(20)

, , 1 ,
,( )

1, ,
n n n n n

n u n p n n p
j j M D D D D uc j j

ej N

m m C C C d d

where ,n p
jd  is the predicted data by running the simulator 

from time zero to time tn using model ,n p
jm . Because the 

effect of all updated parameters on the production data can 
be reflected by rerunning the simulator from time zero, the 
reservoir model can be updated reasonably. 1,n p

jd  at time 
tn+1 can be obtained by running the simulator from time zero 
to   time tn+1 using the updated model. Just one simulator run 
from time zero at each assimilation time step is required, so 
the HIEnKF method is more effi cient.

The HIEnKF method is similar to EnRML (  Gu and Oliver, 
2007). If we set iterative step length equal to one and use 
the prior model as the initial model of the iteration, the fi rst 
iterative equation of EnRML can be written as

, , T T 1 ,
,( )

1, ,
n n n

n u n p n n n n n p
j j M D M uc j j

ej N

m m C G C G C G d d

(21)

where nG  is the approximation of the average sensitivity 
matrix at time tn, and can be calculated by

                                                       (22), ,n p n n pD G M  

The jth column of ΔMn,p represents the deviation between 
the jth model and the mean of all the models in the ensemble. 
The dimension of ΔMn,p is Nm×Ne. The jth column of ΔDn,p 
represents the deviation between predicted data of the jth 

model and the average predicted data of all the models in the 
ensemble. The dimension of ΔDn,p is Nd×Ne. In general, ΔMn 
is irreversible. We can do a singular value decomposition to it

                                                           (23), Tn pM U V  

where U and V are both orthogonal matrices.
                                                      (24)T T

mNUU U U I  
                                                        (25)

T T
e

VV V V I  

Λ is a Nm×Ne matrix. If Nm>Ne, Λ can be written as

                               (26)

λi is the ith non-zero singular value of ΔMn,p. 
eNΛ  

is Ne×Ne 
diagonal matrix composed by λi. Therefore

                                                   (27), T
e e e

n p
N N NM U Λ V  

UNe is a Nm×Ne matrix. Its jth column is the left singular 
vector corresponding to the jth non-zero singular value λi. VNe is a Ne×Ne matrix. Its jth column is the right singular vector 
corresponding to the jth non-zero singular value λi. The 
average sensitivity matrix can be calculated by

                                               (28), 1 T
e e e

n n p
N N NG D V Λ U  

From the calculation of CMn

                                       (29), , T1
1n

n p n p
M

eN
C M M

we can obtain
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Analogously, we can obtain 

T
n n n

n n
M D DG C G C (31)
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Substituting Eqs. (30) and (31) into Eq. (21), the first 
iteration of the EnRML analysis equation is same to the 
HIEnKF equation (Eq. (20)). However, due to the application 
of the average sensitivity matrix, EnRML can not guarantee 
the search direction is always downhill. In the real case, the 
better result could not be obtained by doing more iteration 
(Wang et al , 2010). Compared to EnRML method, the 
computation of the HIEnKF is more effi cient.

4 EnKF with covariance localization
In general, the parameters at two gridblocks far apart 

should be uncorrelated. When small ensemble size is used 
to represent the covariance, there are significant sampling 
errors which tend to produce nonzero spurious long-distance 
correlation between parameters or between parameters 
and dynamical variables. Spurious correlations can result 
in changes in model parameters where none should occur 
because the predicted data (corresponding to the data to 
be assimilated) are insensitive to the model parameters. It 
would contribute to fi lter divergence. Covariance localization 
can both eliminate long-distance spurious correlation and 
expand the degree of freedom available to assimilate data by 
setting the correlation between data measured at a particular 
location and model parameters or data corresponding to a 
location far away from the measurement to zero. We use 
the Schur product to fi lter the approximation of the forecast 
covariance at large distances and to increase the effective 
rank of the ensemble. The Schur product is an element-wise 
multiplication of two matrices A and B resulting in a matrix 
C of the same dimensions, defi ned as

(32)C A B  

where 。represents Schur product, and

(33)
, , ,i j i j i jC A B  

Subscripts i and j imply the entry of ith row and jth column 
of the corresponding matrix. We can define the correlation 
coeffi cient matrix ρ as

(34)
M MP MD

PM P PD

DM DP DD

ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ
  

Each sub-matrix represents the correlation coefficient 
matrix of the variables corresponding to the subscript. The 
value of the elements of the matrix is computed from a 
distance-dependent correlation function that varies from 
one at  the observation location to zero at some pre-specifi ed 
radial distance. The EnKF analysis equation with covariance 
localization can be written as 

(35)

, ,

T T 1 ,
,[ ]

1, ,
n n n

n u n p
j j

n n p
Y D Y uc j j

ej N

y y

ρ C H C H ρ C H d d（ ） （ ）

Using Eqs. (2), (10), and (34), we have

(36)

T

T

n

n n n n n

n n n n n
d

n n n n n n

n n

n n

n n

Y

M M MP M P MD M D
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Similarly,

   
 (37)T

n n

n d n n

n n

n n

MD M D

Y N PD P D

DD D D

DD D D

ρ C

H ρ C H O I ρ C

ρ C
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Substituting Eqs. (36) and (37) into Eq. (35), we have

(38)

, ,

1 ,
,[ ]

1, ,

n n

n n n n n

n n

n u n p
j j

MD M D

n n p
PD P D D DD D D uc j j

DD D D

ej N

y y

ρ C

ρ C C ρ C d d

ρ C

By doing covar  iance localization, the effects of the data 
on the state vector are localized.

Note that, if we use the standard EnKF with covariance 
localization, we need to update both the model parameters 
and dynamical variables to keep the updated model consistent 
with the updated dynamic field. If the HIEnKF with 
covariance localization is used, we only need to update the 
model parameters using Eq. (38). The dynamical fields are 
obtained by running the reservoir simulator from time zero to 
the present time using the updated model.

The element of the correlation coefficient matrix 
represents the correlation coeffi cient between two grids with a 
certain distance and can be calculated by (Gaspari and Cohn, 
1999)

5 4 3 2

5 4 3 2

1

1 1 5 5 1 0
4 2 8 3

1 1 5 5 5
12 2 8 3

24 2
3

0 2

L
L L L L

L L L L L

L L
L

L

 

(39)
wh  ere δ is the   distance between the gridblock and the 
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measurement point; L is the correlation length which 
represents the size of correlated area to the production data. 
For an anisotropic reservoir, the correlation length along 
each direction is different. Here we consider the shape of the 
correlation area is an ellipse. The area and orientation can be 
determined by the major correlation length, minor correlation 
length and the direction of the major correlation direction. 

If we know the size and shape of the correlated area, the 
correlation length along each direction can be obtained 
from the location of the grids and measurement points. The 
correlation coeffi cient at different distance is shown as Fig. 1. 
When the correlation coeffi cient matrix affects the covariance 
matrix, the spurious correlation between the gridblocks far 
apart is alleviated.

5 Examples
We appl  y the standard EnKF, HIEnKF, and HIEnKF 

techniques with covariance localization to a fl uvial reservoir 
model to history match the production. The reservoir model 
is discretized over a 45×45×1 grid block system. The size 
of each gridblock is 10m×10m×10m. The real permeability 
field is shown as Fig. 2(a). The permeability of the sand is 
5,000 mD and the background permeability is 500 mD . Four 
producers and four injectors are completed in this reservoir. 
200 prior models were generated by using multi-point 
geostatistical software Snesim with the hard data (Strebelle, 
2002). The average prior model is shown as Fig. 2(b) and 
the training image is shown as Fig. 2(c). The reservoir model 
was water fl ooded for 1,080 days. The bottom hole pressure 
of the injectors are measurement data of the injectors. The 
producer measurement data are the oil and water production. 
The permeability fi eld is estimated by history matching these 
production data. 
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Fig. 2  Basic information of the reservoir
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5.1 Comparison of the standard EnKF and the 
HIEnKF

First  we use the standard EnKF to estimate the 
permeability field by history matching the production data. 
The average of the posteriori models is shown in Fig. 3(a). 

Compared with the real permeability field (shown in Fig. 
2(a)), we fi nd that the result produces the main structure of 
the r eservoir. The border of the sand and the background 
is blurred, and the location of the channel is inconsistent 
with the truth. The permeability in the same facies is not 

Fig. 3 The estimation of the permeability fi eld
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uniform. There are two reasons for the result. The first one 
is that the updated permeability fi eld is inconsistent with the 
updated dynamic fi eld due to the nonlinearity. T he second is 
the large sampling errors cause a great spurious correlation 
between far apart grids. The HIEnKF method can guarantee 
the updated permeability fi eld is consistent with the updated 
dynamic field. The estimated permeability field (as shown 
in Fig. 3(b)) is better than that obtained from the standard 
EnKF. The border is relatively clear. But the permeability in 
the same facies is sti ll not uniform. The permeability in some 
gridblocks is too large.

Fig. 4(a) shows the water production prediction for well 
P-2 during the data assimilation procedure with the standard 
EnKF. During the early production stage the water production 
can be matched. But as more and more data were assimilated, 
the distribution becomes narrow which implies that the 
models in ensemble trend towards each other and the degree 
of freedom becomes small. It is more diffi cult to assimilate 

more data. The data mismatch between the pred icted data and 
the measurement data appeared during the later time. This 
finally leads to filter divergence. Fig. 4(b) shows the water 
production prediction of well P-2 from running the simulator 
from time zero using the fi nal updated model obtained from 
the standard EnKF. Obviously, at the later time, the predicted  
data deviates heavily from the measurement data. The reason 
is the inconsistency between the updated dynamic fi eld and 
the updated reservoir model caused by the nonlinearity of 
the fl uids fl ow in the fl uvial reser voir. Filter divergence also 
appears in the results of the HIEnKF (shown in Fig. 5(a)). 
However, since the HIEnKF overcomes the inconsist ency 
between the updated dynamic field and the updated static 
fi eld, the result from rerunning the simulator from time zero 
using the fi nal updated model (shown in Fig. 5(b))   is similar 
to that obtained during the data assimilation procedure. 
Compared with the standard EnKF the result is a substantial 
improvement.

Fig. 4 Water production prediction at well P-2 from the standard EnKF 
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5.2 Improvement of the HIEnKF with covariance 
localization

We use the HIEnKF with covariance localization to match 
the production data. We set the major correlation length to 
400 m along the x-axis. The minor correlation length is 200 
m along the y-axis. Since the covariance localization reduces 

the spurious correlation of gridblocks far apart, the estimated 
permeability field is improved (as shown in Fig. 3(c)). The 
location and border of the fl uvial channel are closer to the real 
permeability distribution. The permeability in the same facies 
is uniformly distributed. However some information about 
the channel is lost. The possible reason is: 1) the production 

Fig. 5 Water production prediction at well P-2 from the HIEnKF
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data is not sensitive to the parameters at these gridblocks; or 2) 
the information is lost by covariance localization.

Fig. 6 shows the water production prediction at well P-2 
obtained from the HIEnKF with covariance localization 
during the data assimilation procedure and the results 
obtained by rerunning from time zero using the final 
updated models. During the data assimilation procedure the 
distribution of the model predicted curves becomes wide and 
makes the measurement data within the band of predictions 
from the ensemble. The filter divergence is amended. The 
covariance localization makes sure that only the correlation 
area is adjusted by the measurement data and increases the 
degrees of freedom available to match data. Because the 

Fig. 6 Water production prediction at well P-2 from the HIEnKF with covariance localization
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HIEnKF overcomes the nonlinearity, the data match obtained 
by rerunning the simulator from time zero is similar to that 
obtained during the data assimilation procedure.

The distribution of the predictions of the ensemble 
represents the freedom of the ensemble to match data. 
The distribution of the water production predictions of the 
ensemble can be determined from the standard deviation of 
the water production predictions of the ensemble, defi ned by

2
w, w

w 1

1 ( )
1

Ne n n
n jq je

q q
N

(40)

where w
nq   represents the mean of the water production 

predictions of the ensemble at the nth time. 

Fig. 7 The standard deviation of the
water production predictions at well P-2
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Fig. 7 shows the standard deviation of predicted water 
production at well P-2 from the standard EnKF, HIEnKF, and 
the HIEnKF with covariance localization, respectively. We 
find that the standard deviations of the standard EnKF and 
HIEnKF are close. The standard deviations of the HI EnKF are 
larger than the standard EnKF only at the middle production 
time. These two methods have the same standard deviation 
when data assimilation is completed. However the standard 
deviation of the HIEnKF with covariance localization is 
substantially higher. The large standard deviation after data 
assimilation is completed implies that the HIEnKF with 
covariance localization can maintain large degrees of freedom 
to match additional future data.

5.3 Effect of the ensemble size
Each individual posteriori realization of the model parameters 

is a linear combination of the associated prior ensemble of 
models for the EnKF. The sampling error is determined by the 
number of prior realizations. A big sampling error will lead to 
filter divergence. Fig. 8 shows the average estimation of the 
model using the standard EnKF when the ensemble size is 100 
and 200, respectively. Larger sampling errors result in poorer 
estimation of the permeability field when the ensemble size is 
100. The location and border of the channel are not clear. The 
distribution of the permeability is not uniform in one facies. The 
sand between wells P-2 and P-3 is lost. When the ensemble size 
increases to 200, the result is signifi cantly improved. However, 

compared with the real permeability fi eld, the result is not good. 
Fig. 9 shows the water production prediction at well P-2 obtained 
by rerunning the simulator from time zero using the fi nal updated 
models estimated from the standard EnKF. Although the band 
of the prediction curves of ensemble size 200 is wider than that 
of ensemble size 100, divergence appears in both cases. This 
implies that the estimations of the permeability field from the 
standard EnKF are worse whatever the ensemble size is. Fig. 10 
shows the average estimation of the model using the HIEnKF 
with covariance localization. No matter if the model number is 
100 or 200, the estimation of the permeability fi eld is better than 
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that obtained from the standard EnKF. The permeability field 
estimation is very close to the true fi eld when the ensemble size 
is 200. The result of 100 ensemble member obtained from the 
HIEnKF with covariance localization is better that estimated 
from the standard EnKF with 200 ensemble member. This point 
can also be obtained from the water production prediction curves 

(Fig. 11(a)). Although the band of the prediction curves of the 
ensemble size of 100 obtained from the HIEnKF with covariance 
localization is similar to that of ensemble size of 100 obtained 
from the standard EnKF, the data match is good and the filter 
divergence is alleviated. When ensemble member increases to 
200, the result of the HIEnKF with covariance localization is 
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Fig. 9 The effect of the ensemble size on the production predictions (EnKF)
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Fig. 8 The effect of the ensemble size on the estimation of the permeability (EnKF)
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Fig. 1 0 The effect of the ensemble size on the estimation of the permeability (HIEnKF with covariance localization)
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greatly improved. Therefore, although the covariance localization 
can reduce the spurious correlation and sampling error due to a 
small ensemble size, the geological information of the reservoir 
cannot be fully refl ected by the small ensemble size.

5.4 Effect of the correlation length

We use 200 ensemble members to discuss the effect of 
the correlation length on the inversion of the permeability 
field. The major correlation length is 400 m along the 
x-axis which is a constant when the inversion is done. The 
correlation coefficient between measurement data of well 
P-2 and grid gridblock is shown in Fig. 12 when the minor 
main correlation length is 100, 200, and 300 m, respectively. 
The area correlated to the measurement data at well P-2 
increases with an increase in the correlation length. Fig. 
13 shows the estimation of the permeability field using 
different correlation lengths. Fig. 14 shows the predicted 
water production curves for well P-2. With an increase in the 
correlation length, the correlation area to the measurement 
data becomes larger and more information can be obtained 

during the data assimilation procedure. However this will in 
turn result bigger spurious correlation. As shown in Fig. 11, 
the estimation of the permeability field is close  r to the true 
field with increasing correlation length. It can be deduced 
that the estimation of the permeability will closer to the 
result obtained from the HIEnKF (shown in Fig. 3(b)) if we 
increase the length further. From Fig. 14 we fi nd that the band 
of the predicted water prod  uction curve becomes narrow 
although the data match is similar with the increase in the 
correlation length. Fig. 15 shows the standard deviation of the 
predicted water production from different correlation lengths. 
With increasing correlation length, the correlation area of the 
production data increases which results in an increase in the 
scope and scale of the model adjustment. This can lead to 
lower standard deviation of the predicted curve which means 
the degrees of the freedom reduces. Actually, the correlation 
length is affected by many factors, such as geological 
model, production data type, perforation location, etc. The 
relationship between the correlation length and these factors 
require further studies.

Fig. 11 The effect of the ensemble size on the production predictions (HIEnKF with covariance localization)
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Fig. 12 The effect of the correlation length on the correlation matrix
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6 Conclusions

Two problems of the standard EnKF method need to be 

solved. The first is the inconsistency between the updated 
dynamic fi eld and the updated model for the nonlinear fl ow 
problem. Another one is filter divergence and spurious 
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correlation resulting from the small ensemble size. These two 
problems will result in poor estimation and data matching.

1) HIEnKF can solve the nonlinear problem of flow 
in porous media. During the data assimilation procedure, 
only model parameters are updated. The predicted data is 
obtained by rerunning the simulator from time zero using 
the updated model. The effect of the updated parameters on 
production data can be refl ected by doing this procedure. The 
inconsistency problem is solved by this method although 
the expenses of the computation increased compared to the 
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Fig. 13 The effect of the correlation length on the estimation of the permeability
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Fig. 14 The effect of the correlation length on the production predictions

standard EnKF. It is proved that HIEnKF is similar to the fi rst 
iteration of the EnRML.

2) We introduce covariance localization technology to 
eliminate the fi lter divergence and spurious correlation due to 
the small size of the ensemble. By defi ning the shape and the 
size of the correlation zone, the spurious correlation of grids 
far apart is avoided. Covariance localization can maintain the 
freedom degrees of the ensemble and get a good data match 
and model estimation.

3) As the correlation length decreases, the degree of 
freedom increases and the ensemble can match more future 
data. However too small a correlation length loses some 
reservoir information.

4) The shape and size of the correlation zone are affected 
by many factors, such as heterogeneity of the geological 
model, production data type, perforation location, etc. The 
relationship between the correlation length and these factors 
require further studies.
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