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Abstract: Well testing is recognized as an effective means of accurately obtaining the formation
parameters of low-permeability reservoirs and effectively analyzing the deliverability. Well test models
must comply with the particular characteristics of flow in low-permeability reservoirs in order to
obtain reasonable well test interpretation. At present, non-Darcy flow in low-permeability reservoirs is
attracting much attention. In this study, displacement tests were conducted on typical cores taken from
low-permeability reservoirs. Two dimensionless variables were introduced to analyze the collected
experimental data. The results of the dimensionless analysis show whether non-Darcy flow happens or
not depends on the properties of fluid and porous media and the pressure differential. The combination
of the above three parameters was named as dimensionless criteria coefficient (DCC). When the value
of the DCC was lower than a critical Reynolds number (CRN), the flow could not be well described by
Darcy’s law (so-called non-Darcy flow), when the DCC was higher than CRN, the flow obeyed Darcy’s
law. Finally, this paper establishes a transient mathematical model considering Darcy flow and non-
Darcy flow in low-permeability reservoirs, and proposes a methodology to solve the model. The solution
technique, which is based on the Boltzmann transformation, is well suited for solving the flow model
of low-permeability reservoirs. Based on the typical curves analysis, it was found that the pressure
and its derivative curves were determined by such parameters as non-Darcy flow index and the flow

characteristics. The results can be used for well test analysis of low-permeability reservoirs.
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1 Introduction

Low-permeability reservoirs form one of the important
resources in China according to the statistics of Jiang et
al (2004). Low-permeability reservoirs have different
characteristics from the conventional ones. Non-Darcy flow
occurs in the low-permeability reservoirs (Yan et al, 1990).
When the pressure gradient Ap is relatively low, the fluid
flow in low-permeability reservoirs does not obey Darcy’s
law, i.e. the fluid velocity v is not proportional to the pressure
gradient; when the pressure gradient is relatively high, the
fluid velocity increases linearly with the pressure gradient
(Huang, 1998). Extrapolating the straight part of the Ap—v
curve to the pressure gradient axis, the pseudo threshold
pressure gradient is obtained. The equation including the
threshold pressure gradient was firstly used to describe fluid
flow in low-permeability reservoirs. To increase the prediction
accuracy of the flow equation, a three-parameter model was
presented (Deng and Liu, 2001; Deng et al, 2007; 2009).
Later, the model was simplified to a two-parameter model
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(Yang, 2007). The threshold pressure gradient and other
parameters mentioned in these models were only determined
by specific core tests. This makes the model difficult to apply
to general cases.

Ren et al (2009) proposed a new Non-Darcy flow
equation for single-phase flow (oil or water) in low-
permeability porous media. This equation took into account
the pore structure of reservoir rocks, fluid properties, and the
pressure gradient. However, this equation is not applicable
to low-velocity fluid flow in porous media. For example,
the flow rate calculated from this equation is not zero when
the pressure gradient is zero, which contradicts the flow
characteristics in actual reservoir formations. Based on the
core flow tests, Yao and Ge (2001) concluded that the flow
within the low-permeability cores was non-linear when the
dimensionless criteria coefficient (DCC) was lower than the
critical Reynolds number (CRN, 8.5x107%); and the flow was
linear when it exceeded CRN. The experimental results were
also in agreement with microscopic boundary layer theory.
In order to achieve more satisfactory results, the resistance
coefficient of the above model was modified by Liu and Liu
(2003). However, the new resistance coefficient is not easy
to apply to general cases due to varying threshold pressure
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gradient in different cores. Using the method proposed by
Yao and Ge in 2001, Li et al (2005) drew the same conclusion
except for a slightly difference in the critical Reynolds
number (Re,=8.95x107).

For non-Darcy transient flow in low-permeability
reservoirs, it is convenient to choose the Izbash equation
(Bordier and Zimmer, 2000) to describe non-Darcy flow.
The Izbash equation indicates that the hydraulic gradient
is a power function of the flow rate. Izbash’s law has been
preferred to derive drainage equations because it is in
continuity with Darcy’s law and facilitates the development of
an analytical solution. Because of its nonlinearity, the Izbash
equation is usually simplified by the linear approximation, and
then an approximate solution is obtained (Ikoku and Ramey,
1979). The above approximation is applicable only for fluid
flow near the borehole or in large time, and the radial flow
rate calculated is only accurate in the wellbore. Assuming that
the flow rate is constant at any time and any space, the longer
the distance from the wellbore and the earlier the time is, the
greater the error is. The same approximate linear method was
applied to study non-Newton fluid flow (Ikoku and Ramey,
1982; Tong and Shi, 2004; Tong and Wang, 2004; Li et al,
2007; Zhang and Yue, 2007). Other researchers studied the
transient flow in low-permeability reservoirs using the non-
Darcy flow model with the additional threshold pressure
gradient (Liu, 1982; Cheng et al, 1996; Song and Liu,1999;
Hou and Tong, 2009; Xiong et al, 2009), while the above
method is restricted to set the exact value of the threshold
pressure gradient just as mentioned above. By using the
power function of the Izbash equation (Wen et al, 2008), a
single power function was used in the equation of the whole
flow regime. The above method should divide into regimes
individually according to the distribution of flow pattern. The
dimensionless bottom-hole pressure solution of above model
is lower than Darcy’s flow, it is obviously unreasonable.

In this study, we conducted a number of core tests on low-
permeability reservoir rocks to determine the flow equation
and critical Reynolds number for non-Darcy flow in low-
permeability reservoirs. According to the characteristics
of fluid flow in low-permeability reservoirs, we developed
a complex model for transient flow in low-permeability
reservoirs, solved the flow model considering the variation

of parameters such as the distribution of flow pattern and
seepage index, and then analyzed the transient pressure and
its influencing factors.

2 Flow tests on low-permeability cores

2.1 Cores and flowing medium

Flow tests were performed on 28 cylindrical core samples
taken from low-permeability reservoirs. The core plugs were
8 cm long and 2.5 cm in diameter. The gas permeability and
porosity of these samples ranged from 0.017 to 50x10° um’
and 0.095 to 0.218, respectively. There were no structural
defects like surface cracks, bedding planes, and corrosion
holes etc. All samples were consistent with the characteristics
of a sedimentary environment. The fluids used in core
flow tests were 8% KCI solution, kerosene, and simulated
oils A and B. Simulated oils A and B were prepared by
blending degassed oil with kerosene in a ratio of 1:1 and 1:3,
respectively. The physical properties of these fluids were
listed in Table 1.

Table 1 Physical properties of fluids used in flow tests

Fluid Relative density Viscosity, mPa-s
8% KCl solution 1.01 0.89
Kerosene 0.80 0.90
Simulated oil A 0.84 5.46
Simulated oil B 0.82 2.13

2.2 Experimental equipment and method

The experimental equipment was mainly composed
of a flowing system, a pressure control system, and a data
acquisition system, as shown in Fig. 1. Core flooding
tests were conducted in a conventional manner at room
temperature (20 °C). The core was saturated with the fluid of
known density and viscosity.

The pump connected to the experimental fluid container
maintained the desired flow rate through the core. The outlet
of the pump was connected to the core. The effluents from the
core outlet were collected in a fraction collector. A differential
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Fig. 1 A schematic diagram of the flow test apparatus
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pressure transmitter was connected between the inlet and
outlet of the core to measure the pressure difference across
the core.

A back pressure pump was used to pump fluid through
the core sample at a designed inlet pressure. and a receiving
pump was used at the other end of the sample to control
the outlet pressure. The flow rate was read from the pump.
Tests should be repeated several times at low flow rates and
relatively high flow rates to ensure that the Darcy and non-
Darcy flow behavior were taking place. A plot of pressure
gradient versus flow rate would give a straight line in the
Darcy regime and a deviated upward trend in the non-Darcy
regime.

1.0E+14

2.3 Experimental results and analysis

Based on all collected data of pressure gradient versus
flow rate, set

Ap 94,
=5 1
& pAl(q) (N
Re = Z";‘; 2)

then, a plot of dimensionless groups f versus Re was been
given (Fig. 2).
As for the curve trend of Fig. 2, the slope of curve
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Fig. 2 The dimensionless experimental curve of flow in low-permeability cores

increased as the Re decreases, but the whole curve could be
divided into two straight lines approximately, the critical
point was: Re.=8.5x10"°.
2.3.1 The left straight line

The left straight line is the best fit of the data, with a
correlation coefficient R* of 0.925. The fitted equation is:

lg £ =1g2.5356—1.60131g Re

Then
6£(¢_A)Z(qp§)l.6013 —2.5356
PAL g pAp
So
Ap :
o =c 3987 3)

The above is non-Darcy flow equation.
2.3.2 The right straight line

Similarly, the right straight line f =756.46Re """

(R*=0.937) is the best fit to the data when Re>8.5%10"".
So

a_

Al GV 4)

The above is Darcy flow equation, in which J is the
characteristic scale of porous media, m; 4p is the difference
between the inlet and outlet pressures, MPa; p is the density,
kg/m’; AL is the length, m; ¢ is the porosity of the medium,
fraction; A4 is the cross area of core, m>: q is the surface flow
rate, m’ /s; u is the viscosity, mPa's; C, and C, are constant.

3 Continuity equation for non-Darcy flow in
low-permeability reservoirs

3.1 Continuity equation for radial flow

For an infinitesimal circular element, as shown in Fig. 3,

the quantity of fluid that will flow into the element over a time
interval df is:

{pv,, —M%}xb{r—%]dzdf

or =

For the radial fluid flow, the element above has no
connection with the z axis.

The quantity of fluid that will flow out the infinitesimal
element over a time interval dz is:
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ME x2n[r+£]dzdr (6)
o 2 2

Ex

Considering the compressibility of fluid and formation,
the change of quantity of fluid over a time interval dr is:

g{pga[n(rwrdr/Z)z—Tr(r—dr/2)21}dzdt @)

According to the law of conservation of mass, the
continuity equation can be expressed as:

a(ﬂ@) (8)

For slightly compressible fluid flow, Eq. (8) can be
simplified to
8v(r, t)

1
T'F;V(l’, f)=C

op(r,t
; p( ) 9)
ot
where r is the radius distance, m; £ is the permeability, mD; ¢
is time, s; ¢, is the system compressibility, MPa™".

Fig. 3 The schematic of a circular element

3.2 Continuity equation for non-Darcy flow

The fluid flow in low-permeability reservoirs may be
Darcy flow or non-Darcy flow, which means that the power
law index » for the non-Darcy flow may be a changing
parameter, so it is necessary to do a multi-regional study
according to different DCCs. For low-permeability reservoirs,
low velocity non-Darcy flow usually happens in the area
which is far away from the wellbore; utilizing a non-Darcy
or Darcy flow model alone will not accurately describe fluid
flow in the formation effectively. As a result, it is necessary
to introduce a composite reservoir model considering both
Darcy flow and non-Darcy flow. For an infinite reservoir
producing at constant rate, the non-Darcy flow model can be
expressed as follows:

2,
ov(r.t) it di=a ap(r.t)
or ot
a »
p(r t):cv”(r,r) O<n<l, r>rn
or .
op(r,
p(r.1) =—v,(r,t), r,<Srsr
or
p(r.t=0)=p, Initial condition
v,(r=r,.t)=q, /2nhr,  Inner boundary condition
v, (r=r.t)=vy(r=r.t) Continuous condition
plr=ei)=p; Outer boundary condition
(10)
The dimensionless variables are defined as follows:
k
P o= -
’ 'V\\ V“, M (pL p)
kt
Iy = 5
pe
748
o =—
r\r\‘
v
v, =—
v

Then Eq. (10) can be written as follows:

ov, (r,,t 1 opy, (7,
D(aD D)"’_VD(”{)’ID):_ D(D D)
™y U Oty
opy (7. 1 e
Dc('irl: D)z— - Valits) Ogn<l, BPig
pp (fo: 1)

l=F 51

= Vi (”b I ) D

Initial condition
Inner boundary condition

Voo (1 =iy 1y ) = Vap (1, =iy 1, ) Continuous condition

Pplt,=o,t,)=0 Outer boundary condition

(11)

where # is the seepage index; subscripts w denotes the well
wall, D denotes dimensionless, p denotes regime of non-
Darcy, d denotes regime of Darcy, and ¢ denotes critical
regime of Darcy; p, is the initial reservoir pressure, MPa.
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4 Exact solutions to the non-Darcy flow
model

4.1 The flow rate

4.1.1 Darcy flow regime (1<r\<r,;)
The Darcy flow equation is:

apn('"r)-tn)

=—v, (1.t (12)
or. D( D D)
Let
r
77:21‘[:)”2 (13)

Applying the Boltzmann transformation (Eq. (13)) to Egs.
(11-12) yields:

dusla) 1, ()= 4P (1) 14
dn n In dn

dp, (7

%bﬂb’zvn(n) (15)

The combination of Eq. (15) with Eq.(14) gives the
control equation:

dvn('}') 1
hicki ), 04 R =
dn +’?"’D(’7) r]vD(I])

The general solution to Eq. (16) can be written as follows:

(16)

c
vy (17) = ’—;exp(—’?:{) (17)
where ¢, is an integral constant.
Substituting Eq. (13) into Eq. (17), we have:
21‘”20 r
VD(roafD):—exp(“' =) (18)
T 4t,,

Applying the inner boundary condition v (rD =14, ) =1
to Eq. (18) gives:

p(—)

C,
s A2
2t l) 4t D

Thus the dimensionless flow rate can be written as
follows:

(19)

1 | B
vy (1, 1) = —exp(—L) (20)
Ty 4,
4.1.2 Non-Darcy flow regime (r,>rp)
Let
_
. o™ 1)

Substituting Eq. (21) into Eq. (11), we have:

dvp(n7) 1 d p, (7

dw () )+—vn(q)=%—“( ) (22)
dn 7 ' dp

d n—1 __112

P;é’?):_Zkv\;lctp v (7) (23)

The combination of Eq. (23) with Eq. (22) gives the
control equation:

dvy(n7) 1 2kven
D—()"'_vr)(’]):_“—vl)(n) (24)
dn. 7 u
Eq. (24) is a Bernoulli equation, let
z=v5"(n) (25)
Eq. (24) can be reduced as follows:
d 1 2k
2 o~ (1-n)z -2 T (1) (26)
dp 7 H
The general solution to Eq. (26) can be written as follows:
n-1
o ni?— ZkV“_ cn-1 ]73‘1! 27)
U 3-n
where ¢, is an integral constant.
Substituting Eq. (25) into Eq. (27) gives:
i 2eren-1 ]
vp()=—~| ¢, +=—"———n (28)
n 4 3-n

Using the Boltzmann transformation, Eq. (28) can be

expressed as:
|

2 e 1-nf n )
vl)(rD'rD)z ¢ - & d-m e (29)
D

Applying the continuity condition V,,p("u =ilis )
=V (l‘ L )to Eq. (29) gives:

o 1-n 3-n
1 L =%, 2kv" 'c1-n( rp
= exp(——== 30
‘ {2:;;2 B 4t )] g 3- [2;“2 )

Substituting Eq. (30) into Eq. (29) yields:

I-n
1 =iy
Vi 7y, ! ex fe
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( ~D) -
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4.2 The formation pressure

Lo 6D
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5 (”D)
Mty 3—n

4.2.1 Non-Darcy flow regime (r,>r,,)
Substituting Eq. (31) into the non-Darcy flow equation
gives:
v le

o (rooto) e,
5"D u D\'D?*"D

nl I-n
e {exp( “")] 0
B g

e 1—np s
= 2ut. 3— (rn)
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Integrating Eq. (32) and applying the outer boundary
condition p (o0,#,)=0 gives:

a2+

hvile 1| e l-n 3
Po(ytp) = J' 1 F 2ut 3_}1(’11)) - dn 5
D D
kv:f'c l—n 3-n
> (‘VD)
Mty 3—n

4.2.2 Darcy flow regime (1<r,<r.;)
Substituting the Darcy flow equation into Eq. (20) gives:

2

1 =S
——eX 34
- p( v ) (34)

D D

opy, ("n 2 Iy )
on,

==V (rD’tI))z

In the Darcy flow regime (1<r,<r.,), the pressure
drawdown is composed of p, and py,, where p,;, is the
pressure drawdown in the non-Darcy flow regime; py, is the
pressure drawdown in the Darcy flow regime.

Then, the dimensionless pressure in the Darcy flow
regime:

Pp =Pap t P (35)
with
re 1 1-r;
=| —ex dr
Pap LD % p( ar, )dn,
., " ;e
l—rf)
exp(—=— +
{ p( 2, )}
o e 1| b cl-n, \3a (36)
ppD J.’_ n (,‘LD) = er
W f 1y | 2uty 3-n
ke 1- “n
el-n (”0)3
2uty 3—n
4.3 Bottom-hole pressure
Substituting #,=1 into Eq. (35) gives
w | n
Pwltp) = j. — Xp( )dr[)
r ] rz l-n i
exp(—=2 +
( p( a, )J
0 kvnil k_vngl T -1
I e 1" e ”(QD)S | an
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2/11‘[) 3-n
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Taking a time step Af, so #,,=iA¢. If i=0, from the initial
condition: p, (1,=0)=0; otherwise t,,=iAt, i=1, 2, 3+

l
Pw(tp)= D)dr
D \YD J- 4t,D D
B 2 I-n kA
exp( ‘“) +
4t (38)
J-oc kv::.ﬁ] = k‘):"lc l—h‘ (FCD )3711 - d]"l)
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The time derivative of the bottom-hole pressure can be
expressed:

ap“-[) (f‘.u) = wa ([(H-J)D ) ~ Pup (‘ru'—i)D )
ot 2A¢

T e

5 Results and discussion

Based on the above solutions, the dimensionless bottom-
hole pressure and its derivative for non-Darcy flow in low-
permeability reservoirs were obtained under different
boundary conditions. Fig. 4 presents a graph of the logarithm
of the dimensionless bottom-hole pressure versus the
logarithm of dimensionless time and its derivative with
respect to time for different wellbore storage coefficients
(ep=10", 10%, 10”) and different flow regimes (r,,=20, 50,
100). Due to the influence of non-Darcy flow, the derivative
curve will be upward sloping, it is a slanted line instead of a
0.5 valued horizontal line.

— r,=20 :
—————— rcD=50
10E —k -100
“a wa " / =
3
2‘5 :
° / -
= r =
m j o
% tDpr)
o =
\x
T oe=10°
c.=104
A roren il
10? 10° 10° 107

Fig. 4 Dimensionless curves for bottom-hole pressure and its derivative
under different wellbore storage coefficients and flow patterns

5.1 The influence of distribution of reservoir flow
patterns

For reservoirs producing at a given production rate, higher
viscosity of the crude oil and lower reservoir permeability
will lead to larger zones in which the flow does not obey
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Darcy’s law. This means a smaller critical radius. For a
specific reservoir, the change of production rate can also result
in different distribution of flow patterns. As a consequence,
we considered the distribution of Darcy flow and non-Darcy
flow; the dimensionless critical radii were 20, 50, 100, 500,
and 1,000. Then we compared the results from the complex
flow model with those from the Darcy flow model under
different distribution of flow patterns, and the results are
shown in Fig. 5. The pressure derivative curve in Fig. 5 shows
that the bigger the critical radius r, of the complex reservoir
is, the later upwards the pressure derivative curve bends. This
means non-Darcy flow happens later. Therefore, the flow of
fluids from the reservoir is mainly governed by Darcy flow
in these wells, under these conditions the pressure derivative
curves bend upwards later and their flow coefficients in the
well control area are good. The pressure curves in Fig. 5
indicate that for the complex reservoirs the dimensionless
pressure obtained from the non-Darcy flow model is larger
than that from the Darcy flow model; and the smaller the
critical radius r, is, the higher the dimensionless pressure is.
This means that the larger the area of non-Darcy flow is, the
earlier the curve of dimensionless pressure curve will deviate
from the Darcy curve.

-

P wD and tDwa'

fD‘DwD’

0.1

il PP RV RSPV BT
10° 10° 107 10° 104 10° 10° 107 108

Fig. 5 Dimensionless curves for bottom-hole pressure and its
derivative under different distribution of flow patterns

5.2 The influence of seepage index

The non-Darcy seepage index obtained from core flow
tests was 0.3987, at which the experimental results had
the minimum error. In order to analyze the sensitivity of
seepage index, we constructed a log-log plot of dimensionless
pressure and pressure derivative versus dimensionless time
at different seepage indices, as shown in Fig. 6. The slope of
the pressure curve decreases with an increase in the seepage
index. When the seepage index is unity, the flow obeys
Darcy’s law in the whole reservoir and the dimensionless
pressure derivative curve is a horizontal line with the value of
0.5. The dimensionless pressure curve for Darcy flow locates
at the bottom, dimensionless pressure increases slowest with
time. With the decrease in the seepage index, the slope of
the pressure curve increases, and the dimensionless pressure
increases more quickly with time. When the seepage index

10

wa and {Dwa'
(4]

10° 10¢ 10° 10°

Fig. 6 Dimensionless curves for bottom-hole pressure and its
derivative under different seepage indexes

changes from 1/2 to 1/3, the seepage curves (bottom-hole
pressure and its derivative) are similar to each other. This
indicates that all the pressure derivative curves bend upwards
and the slope decreases with an increase in the seepage index.

6 Conclusions

This paper analyzed the experimental data with the
dimensionless method and established a combined transient
flow mathematical model of low-permeability reservoirs. The
exact solution to the model was given and the typical curve
was discussed.

1) Fluid flow in low-permeability reservoirs: when

A
Re<Re,, ?}; =cv"™ ; while Re>Re,, v = iA_p The critical

. Al
Reynolds number, Re, is 8.5x10 °.

2) Characteristics of non-Darcy flow in low-permeability
reservoirs: the slope of the dimensionless pressure increases,
the pressure derivative curve is not a horizontal line at the
value of 0.5, but a slanted line.

3) With the decrease in non-Darcy seepage index, the
slope of the dimensionless pressure curve increases, and
the dimensionless pressure increases more quickly with
time. When the seepage index varies from 1/2 to 1/3, the
distribution of flow patterns are similar to each other. This
indicates that the dimensionless curves for the pressure and
its derivative slope upwards and the slope decreases with the
increase in the seepage index.
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