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Abstract: Because the oilfields in eastern China are in the very high water cut development stage, 
accurate forecast of oilfield development indices is important for exploiting the oilfields efficiently. 
Regarding the problems of the small number of samples collected for oilfield development indices, a 
new support vector regression prediction method for development indices is proposed in this paper. This 
method uses the principle of functional simulation to determine the input-output of a support vector 
machine prediction system based on historical oilfi eld development data. It chooses the kernel function of 
the support vector machine by analyzing time series characteristics of the development index; trains and 
tests the support vector machine network with historical data to construct the support vector regression 
prediction model of oilfield development indices; and predicts the development index. The case study 
shows that the proposed method is feasible, and predicted development indices agree well with the 
development performance of very high water cut oilfi elds.

Key words: Oilfi eld development indices, oilfi eld performance, support vector regression, high water 
cut, time series

Using a support vector machine method 
to predict the development indices of 
very high water cut oilfi elds

1 Introduction
In most oil fields in eastern China, the water cut of 

produced fl uids exceeds 90%. Such oilfi elds are called very 
high water cut oilfi elds. It becomes more and more diffi cult 
to stabilize the oil production of these oilfields (Sun, 2006) 
since the distributions of oil and water have greatly changed 
in the very high water cut reservoir. During this production 
phase, the oil production decreases sharply and the remaining 
oil is believed to be widely dispersed over large areas of 
the pay. It is very difficult to recover the remaining oil in 
the reservoir. Therefore, such measures as selective water 
injection, selective hydraulic fracturing, and selective water 
shutoff, are performed in high water cut reservoirs to control 
the increasing rates of water injection and liquid production, 
and to enhance oil recovery (Zhong, 2009). 

Since the relationship between oilfield performance 
(development indices) and its infl uencing factors is generally 
nonlinear during very high water cut production, it is very 
difficult to establish an analytical model for predicting 
development indices. Many oil reservoirs in eastern China 
are producing at very high water cut, but the amount of data 
available about oilfield performance and its influencing 

factors is very small. Therefore, the regression analysis 
method (Wang and Chen, 2004), grey prediction method 
(Yao et al, 2007), differential simulation, and neural network 
simulation (Chen and Lang, 2003; Liu et al, 2008), which are 
based on a large number of cases, cannot be used to predict 
the development indices due to the small sample size of cases. 
However, the small sample size and nonlinear prediction 
problem can be solved by a support vector machine (SVM) 
method (Zhang, 2004). Zhong (2009) proposed that an SVM 
is a very effective method for predicting development indices 
of very high water cut oilfi elds.

In this study, we use an SVM method to predict the 
development indices of very high water cut oilfields, and a 
new method to select its kernel function is proposed.

2 Theory of support vector regression and 
its improvement

2.1 SVR principles
The support vector machine (SVM) method was originally 

proposed for pattern recognition. When Vapnik introduced 
the –insensitive loss function to SVM, SVM was extended 
to support vector regression (SVR) which has excellent 
performance in the nonlinear regression estimation problems 
of small sample size. Its basic idea is that the input variables 
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(training sample vector) are mapped from the primal space to 
higher dimensional feature space based on the information of 
given training samples and through nonlinear mapping ( )x  
to construct a linear decision-making (regression) function 
to realize the linear regression in this feature space (Zhang, 
2004).

Support vector regression (SVR) is a powerful technique 
for solving the regression problem, which is used to estimate 
a regression function T( ) ( )f x w x b  to minimize the 
expected risk [ ] ( , , )d ( , )R f c x y f p x y ,  and to predict 
accurately the output y corresponding to a new sample point x 
according to a small number of given training sample points 

1 1{( , ), , ( , )} ( , )l
l lT x y x y x y , ,n

i ix x R y y R ,
i=1,···, l, and a given loss function ( , , , ( ))c x y f x . xi 
denotes the input vector; yi denotes the output (target) value; 
l denotes the total number of data samples (Zhang, 2004; 
Cheng et al, 2007; Goh and Goh, 2007).

2.2 A new method for selecting the SVR kernel 
function

The generalization performance of SVR depends 
largely on the selection of the kernel function. There is so 
far no general theoretical basis for the selection of kernel 
function. The optimum kernel function is generally found 
using the method of exhaustion for the most common kernel 
functions in the literature, which is somewhat frustrating 
and time-consuming and does not make full use of the input 
information about the regression prediction problem (Ito and 
Nakano, 2003; Feng and Yang, 2007). Hence, to solve the 
nonlinear regression problem of small sample time series, 
a new method for selecting the SVR kernel function is 
proposed in this paper. It is based on the statistical analysis of 
a set  of historical data of prediction indices. This method fi rst 
analyzes some time series characteristics of the prediction 
indices, such as tendency, seasonal nature, periodicity, and 
randomness; then selects the kernel function according to 
the time series characteristics of prediction indices. Based 
on the basic idea of SVR and the characteristics of the kernel 
function, the nonlinear mapping ( )x is replaced by the kernel 
function ( , ) ( ) ( )i j i jk x x x x  to compute the prediction 
indices (Zhang, 2004). Therefore, it is wise to select the type 
of kernel function according to the type characteristics of the 
time-series graph of prediction indices (Box et al, 2005; Wang 
and Hu, 2007) and the kernel function graph to ensure that 
the calculated values of prediction indices follow a similar 
trend to the historical data. Suppose that :k X X R is 
a kernel function, Φ is the feature mapping of X, k makes a 
pseudo-distance ( , ') ( ) ( ')k x x x x

 in input space X 
(Wang, 2006). This pseudo-distance can be interpreted as a 
measure of similarity between x and x΄. Selecting the kernel 
function is equivalent to defi ning the similarity of elements in 
input space, so it is necessary to consider the characteristics 
of the problems while selecting a kernel function (Chapelle et 
al, 2002b); Momma and Bennett, 2002; Cherkassky and Ma, 
2003). If the time series graph of prediction indices shows 
trend variation, then a linear kernel function or polynomial 
kernel function may be selected as the SVR kernel function. 

If the time series graph of prediction indices shows periodic 
movement or variation, seasonal movement or variation, then 
a sigmoid kernel function may be selected as the SVR kernel 
function (Lin and Lin, 2003). If the time series graph of 
prediction indices shows irregular or random movement, then 
a radial basis function (RBF) kernel may be selected as the 
SVR kernel function (Steinwart, 2002).

3 The SVR model and method for predicting 
development indices of very high water cut 
oilfi elds

3.1 SVR model 
When the oilfi eld (or reservoir) is modeled or treated as 

a system, its complicated internal mechanisms are neglected, 
and oilfield development is viewed as an input-output 
process, development indices and their influencing factors 
form a complicated input-output system (Li and Liu, 2001). 
From the point of view of system theory, various complexity 
factors of the whole oilfi eld or reservoir closely interact, so 
it is difficult to establish a prediction model ( ) ( ( ))y t f x t  
between development indices y(t) and their influencing 
factors ( ) nx t R , which can include the fi eld performance. 
Because of the complexity of reservoir geology and the small 
amount of oilfi eld production data collected, the development 
system of a water-drive oilfield with a very high water cut 
is first treated as a whole. Then the input-output system 
of the SVR network model which can indicate the oilfield 
performance is established according to functional simulation 
of the oil-gas system (Li and Liu, 2001) and the change 
information of past state of oil-gas system, i.e. historical data 
on oilfield production. The SVR network model is trained 
using historical data on oilfi eld production. Then functional 
isomorphism is realized with the trained SVR network model. 
Finally the SVR network model is extrapolated to predict 
the future change of the system to provide guidance for 
controlling decision-making.

3.2 SVR algorithm 
According to the analysis mentioned above, the SVR 

algorithm for development indices of very high water cut 
oilfi elds is as follows.

Step 1 Determine the input and output of SVR prediction 
system

Establish the development indices and the important 
infl uencing factors using the correlation analysis method. The 
development indices and infl uencing factors are treated as the 
input and output of SVR prediction system.

Step 2 Construct the SVR prediction model
1) Determine and normalize the training sample set 
{( , ) 1, 2, , }i iT x y i l according to Step 1, where xi 

denotes the ith sample of the factor set that refl ects the oilfi eld 
development index; yi denotes the ith sample of the oilfield 
development index.

2) Select design parameters of SVR, such as C, ε, and 
kernel function ( , )K x x .
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3) Construct the optimization problem

(1)

(*) 2

* *

, 1

* *

1 1

*

1

*

1min ( )( ) ( , )
2

( ) ( ),

. . ( ) 0,

0 , , 1, 2, ,

l

l

i i j j i jR i j

l l

i i i i i
i i

l

i i
i

i i

K x x

y

s t

C i l
l

where αi, αi* are Lagrange multipliers, which satisfy the 
equalities αiαi*=0; C is a penalty factor, and a larger value 
of C means a larger penalty value of fi tness bias; and ε is a 
positive constant and the largest allowable error of regression, 
whose value is selected in advance.

4) Solve Eq. (1) to obtain optimal Lagrange multipliers 
* * T

1 1( , , , , )l l .
5) Construct a regression function, which makes the 

expected risk [ ]R f  minimum

(2)*

1
( ) ( ) ( , )

l

i i i
i

f x K x x b

where the samples xi corresponding to non-zero *
i i  are 

support vectors; *

1
( ) ( , )

l

i i i
i

w K x x ; b  is calculated  

as follows: select j or
*
k  from (0 , )C

l
, if j  is 

selected, then *

1
( ) ( , )

l

i ij i j
i

b y K x x ; if 
*
k is 

selected,
*

1
( ) ( , )

l

i ik i k
i

b y K x x . 

 6) Test the regression/decision function using the test 
data set. If the desired prediction accuracy is achieved, the 
prediction model of the development index is obtained; 
otherwise modify and adjust the design parameters and the 
kernel function (Chapelle et al, 2002a); Chung et al, 2003; 
Zhu et al, 2004; Lin et al, 2008).

Step 3 Predict the development index by the prediction 
model generated in Step 2

Input or predict the infl uencing factors of the development 
index using the time series method (Box et al, 2005), and 
predict the development index by the generated development 
index prediction model.     

4 Case study

4.1 Calculation
The SVR method proposed in Section 3 was used to 

predict oil production and liquid production of integrated 
oilfield A2, the Shengli Oil Field, China in its very high 
water cut stage. Other development indices can be directly 
calculated from these two indices. 

According to Step 1 in Section 3.2, the factors infl uencing 
the monthly oil production include the remaining reserves 
(Qro) in this oilfi eld, the total number of oil production wells 
(No), monthly injection-production ratio (RIP), water cut (fw), 
the number of active water injection wells (Nwa), the number 
of new production wells (Non), and the number of effective 
stimulation treatments for old wells (Nt). There are also 
seven factors influencing the monthly liquid production. A 
total of 12 data sets of oil production, liquid production, and 
their influencing factors selected from December 1993 to 
November 1994 are listed in Table 1.

Table 1 Historical data on oil production, liquid production, and their infl uencing factors of integrated oilfi eld A2

Time Qro

108 tonnes
No

Wells RIP
fw

%
Nwa

Wells
Non

Wells
Nt

Times
Oil production

106 tonnes
Liquid production

106 tonnes 

1993-12 21.74 1329 1.08 90.25 666 124 553 0.332 3.408

1994-01 22.01 1342 1.10 90.36 660 13 26 0.314 3.261

1994-02 21.99 1353 1.10 90.43 663 24 53 0.284 2.966

1994-03 21.95 1359 1.09 90.41 670 33 75 0.315 3.288

1994-04 21.93 1383 1.09 90.59 665 58 114 0.296 3.143

1994-05 21.89 1396 1.09 90.65 662 72 155 0.305 3.268

1994-06 21.87 1399 1.09 90.62 674 80 193 0.293 3.121

1994-07 21.84 1408 1.09 90.91 682 90 214 0.297 3.272

1994-08 21.81 1408 1.11 91.17 678 93 239 0.297 3.358

1994-09 21.78 1407 1.13 91.69 680 92 261 0.287 3.453

1994-10 21.75 1286 1.15 92.02 685 96 277 0.288 3.605

1994-11 21.72 1292 1.16 92.03 692 105 297 0.278 3.494
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The historical data on oil production, liquid production, 
and their influencing factors were respectively normalized 

by min
normal

max min

z zz
z z

,  where zmin, zmax are the minimum 

and maximum in the data to be normalized respectively. 
Three data sets selected randomly such as the data sets 
of July, September, and November in 1994 were taken as 
a testing set; and the other nine data sets were taken as a 
training set. Because the oil production and liquid production 
varied randomly with time, the RBF kernel function was 
selected using time series analysis. Parameters ε = 0.006, C 
= 35.3887 were selected by the empirical formula (Feng and 
Yang, 2007). The Kernel function parameter σ2=0.05 was 
determined by a 3-fold cross-validation of the training set 
(Ito and Nakano, 2003). The nine training samples were used 
to train the SVR model. The mean absolute percentage error 
(MAPE) and root mean square error (RMSE) are used to 
evaluate prediction accuracy, which are as follows: 

1

ˆ1 N
k k

k k

y yMAPE
N y

 (3)

(4)2

1

1 ˆ( )
N

k k
k

RMSE y y
N

 

where yk and ˆky  represent the actual and predicted values, 
respectively; N is the number of prediction points. 

The MAPE and RMSE of SVR of nine training samples 
for oil production are 0.352% and 0.140, respectively; those 
for liquid production are 0.526% and 0.206, respectively. The 
number of support vectors is six. Three test samples were 
used to evaluate the trained SVR model. The MAPE and 
RMSE of SVR of three test samples for oil production are 
0.767% and 0.236, respectively; those for liquid production 
are 0.289% and 0.229, respectively. Table 2 shows that 
the predicted oil production and liquid production of the 
integrated oilfield A2 in December 1994 are separately 
0.278×106 tonnes and 3.659×106 tonnes. 

Table 2 Monthly oil production and liquid production (106 tonnes) of the integrated oilfi eld A2 and 
the MAPE (%) and RMSE values predicted by different methods

Time
SVR FSBOTVS HDCA

Oil production Liquid production Oil production Liquid production Oil production Liquid production

1994-12 0.278 3.659 0.278 3.647 0.279 3.483

1995-01 0.276 3.607 0.276 3.587 0.276 3.469

1995-02 0.274 3.510 0.278 3.499 0.272 3.395

1995-03 0.274 3.411 0.278 3.405 0.269 3.338

1995-04 0.272 3.351 0.277 3.339 0.266 3.289

Training
MAPE 0.352 0.526 0.382 0.752 6.896 4.018

RMSE 0.140 0.206 0.154 0.281 2.340 1.487

Testing
MAPE 0.767 0.289 0.835 0.607 8.961 4.126

RMSE 0.236 0.229 0.258 0.298 2.285 1.527

4.2 Case analysis
In order to validate the SVR method, hyperbolic decline 

curve analysis (HDCA) and functional simulation based on 
time-varying system (FSBOTVS) (Liu et al, 2008) were 
used to predict the oil production and liquid production from 
December 1994 to April 1995 of the integrated oilfield A2 
besides the method presented in this paper. Predicted results 
are listed in Table 2. The MAPE and RMSE values in Table 
2 show the generalization (forecast) ability of methods used. 
The lower the MAPE and RMSE values are, the better the 
predicted result is. The oil production and liquid production 
of the fault block oilfi eld B4 (32 samples, small sample size) 
and the integrated oilfi eld A3 (112 samples, relatively large 
sample size), Shengli Oil Field, China were also predicted 

by different methods. Results are listed in Tables 3 and 4. 
The predicted results indicate that the generalization ability 
of SVR and FSBOTVS are good. The predicted results agree 
well with the actual values, and reflect the trend of output. 
While the prediction accuracy of HDCA is relatively low and 
the results predicted with this method do not refl ect the output 
fl uctuation. This further indicates that HDCA is not suitable 
for prediction of development indices of very high water cut 
oilfi elds. SVR is better than other prediction methods for the 
small sample size problems; its prediction accuracy is almost 
the same as that of FSBOTVS for relatively large sample 
size problems. However, the prediction accuracy is lower 
than that of FSBOTVS when predicting multiple values of 
problems.  
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5 Conclusions
Prediction of oilfield performance is important for the 

design and development of oil fields. Based on analysis of 
conventional prediction methods of development indices and 
factors infl uencing the oilfi eld performance, an SVR method 
is established to predict the development indices of very high 
water cut oilfields. The new SVR method is based on time 
series analysis to select the kernel function. This method 
takes into account the correlation between development 
indices and their infl uencing factors as well as the prediction 
accuracy and reliability of the model; it can overcome some 
shortcomings existing in commonly-used prediction methods 
and can simultaneously predict the development indices under 
complex production conditions. The case study shows that the 
results predicted by the SVR model can refl ect the dynamic 
characteristics of different oil reservoirs at the development 
stage, and can provide a theoretical basis and important 

technical support for making and establishing scientific 
schemes of development programming for very high water 
cut oilfi elds. The method proposed in this paper is applicable 
to the prediction of indices with time series characteristics in 
other fi elds. 
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