Skip to main content

Advertisement

Log in

Advanced glycation end products and diabetic retinopathy

  • Published:
Journal of Ocular Biology, Diseases, and Informatics

Abstract

Studies have established hyperglycemia as the most important factor in the progress of vascular complications. Formation of advanced glycation end products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that hyperglycemia contributes to the pathogenesis of diabetic complications including retinopathy. However, their role in diabetic retinopathy remains largely unknown. This review discusses the chemistry of AGEs formation and their patho-biochemistry particularly in relation to diabetic retinopathy. AGEs exert deleterious effects by acting directly to induce cross-linking of long-lived proteins to promote vascular stiffness, altering vascular structure and function and interacting with receptor for AGE, to induce intracellular signaling leading to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Novel anti-AGE strategies are being developed hoping that in next few years, some of these promising therapies will be successfully evaluated in clinical context aiming to reduce the major economical and medical burden caused by diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh R, Barden A, Mori T, et al. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46.

    Article  PubMed  CAS  Google Scholar 

  2. Amos AF, McCarty DI, Zimmet P, et al. The rising global burden of diabetes and its complications: estimates and projections to 2010. Diabet Med. 1997;14(5):S1–S85.

    PubMed  Google Scholar 

  3. Hanssen KF. Blood glucose control and microvascular and macrovascular complications. Diabetes. 1997;46(2):S101–3.

    PubMed  CAS  Google Scholar 

  4. Šebeková K, Kupčová V, Schinzel R, et al. Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis-amelioration by liver transplantation. J Hepatol. 2002;36:66–71.

    Article  PubMed  Google Scholar 

  5. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  6. UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  7. Brownlee M. Glycation and diabetic complications. Diabetes. 1994;43:836–41.

    PubMed  CAS  Google Scholar 

  8. Bucala R, Cerami A. Advanced glycation: chemistry, biology and implications in diabetes in aging. Adv Pharmacol. 1992;23:1–34.

    Article  PubMed  CAS  Google Scholar 

  9. Hammes HP, Weiss A, Hess S, Araki N, et al. Modification of vitronectin by advanced glycation alters functional properties in-vitro and the diabetic retina. Lab Invest. 1996;75:325–38.

    PubMed  CAS  Google Scholar 

  10. John WG, Lamb EJ. The maillard or browning re-action in diabetes. Eye. 1993;7:230–7.

    Article  PubMed  Google Scholar 

  11. Schmidt AM, Hori O, Brett J, et al. Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb. 1994;14:1521–8.

    Article  PubMed  CAS  Google Scholar 

  12. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt AM, Yan SD, Wautier JL, et al. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84:489–97.

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt AM, Hasu M, Popov D, et al. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci U S A. 1994;91:8807–11.

    Article  PubMed  CAS  Google Scholar 

  15. Fu MX, Wells-Knecht KJ, Blackledge JA, et al. Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994;43:676–83.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka S, Avigad G, Brodsky B, et al. Glycation induces expansion of the molecular packing of collagen. J Mol Biol. 1988;203:495–505.

    Article  PubMed  CAS  Google Scholar 

  17. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48:1–9.

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki D, Miyata T, Saotome N, et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol. 1999;10:822–32.

    PubMed  CAS  Google Scholar 

  19. Lo TW, Westwood ME, McLellan AC, et al. Binding and modification of proteins by methylglyoxal under physiological conditions: a kinetic and mechanistic study with N-α-acetylarginine, N-α-acetylcysteine, and N-α-acetyllysine, and bovine serum albumin. J Biol Chem. 1994;269:32299–305.

    PubMed  CAS  Google Scholar 

  20. Frye EB, Degenhardt TP, Thorpe SR, et al. Role of the Maillard reaction in aging of tissue proteins. J Biol Chem. 1998;273:18714–9.

    Article  PubMed  CAS  Google Scholar 

  21. Ahmed MU, Thorpe SR, Baynes JW. Identification of N-ε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986;261:4889–94.

    PubMed  CAS  Google Scholar 

  22. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Angew Chem Int Ed Engl. 1990;6:565–94.

    Article  Google Scholar 

  23. Wells-Knecht KJ, Brinkmann E, Wells-Knecht MC, et al. New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transplant. 1996;11(5):41–7.

    Article  PubMed  CAS  Google Scholar 

  24. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  25. Thornalley JP. Advanced glycation and the development of diabetic complications: unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol Metab. 1996;3:149–66.

    CAS  Google Scholar 

  26. Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94:13915–20.

    Article  PubMed  CAS  Google Scholar 

  27. Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94:6474–9.

    Article  PubMed  CAS  Google Scholar 

  28. Nicholl ID, Stitt AW, Moore JE, et al. Increased levels of advanced glycation end products in the lenses and blood vessels of cigarette smokers. Mol Med. 1998;4:594–601.

    PubMed  CAS  Google Scholar 

  29. Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002;99:15596–601.

    Article  PubMed  CAS  Google Scholar 

  30. Henle T (2003) AGEs in foods: do they play a role in uremia? Kidney Int Suppl S145-S147.

  31. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 1985;34:938–41.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt AM, Yan SD, Stern DM. The dark side of glucose. Nat Med. 1995;1:1002–4.

    Article  PubMed  CAS  Google Scholar 

  33. Garay-Sevilla ME, Regalado JC, Malacara JM, et al. Advanced glycosylation end products in skin, serum, saliva and urine and its association with complications of patients with type 2 diabetes mellitus. J Endocrinol Invest. 2005;28:223–30.

    PubMed  CAS  Google Scholar 

  34. Rojas A, Morales MA. Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sci. 2004;76:715–30.

    Article  PubMed  CAS  Google Scholar 

  35. Brownlee M, Vlassara H, Cerami A. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–21.

    Article  PubMed  CAS  Google Scholar 

  36. Eble AS, Thorpe SR, Baynes JW. Nonenzymatic glucosylation and glucose-dependent cross-linking of proteins. J Biol Chem. 1983;258:9506–12.

    Google Scholar 

  37. Fu MX, Knecht KJ, Thorpe SR, Baynes JW, et al. The role of oxygen in cross-linking and chemical modifications of collagen by glucose. Diabetes. 1992;41:42–8.

    PubMed  CAS  Google Scholar 

  38. Sell DR, Lapolla A, Odetti P, et al. Pentosidine formation in skin correlates with severity of complication in individuals with long-standing IDDM. Diabetes. 1992;41:1286–92.

    Article  PubMed  CAS  Google Scholar 

  39. Sell DR, Carlson EC, Monnier VM. Differential effects of type 2 (noninsulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane. Diabetes. 1993;40:190–6.

    Google Scholar 

  40. Schleicher E, Nerlich A. The role of hyperglycaemia in the development of diabetic complications. Horm Metab Res. 1996;28:367–73.

    Article  PubMed  CAS  Google Scholar 

  41. Vlassara H, Brownlee M, Cerami A. High-affinity receptor-mediated uptake and degradation of glucose modified proteins: a potential mechanism for the removal of senescent macromolecules. Procl Natl Acad Sci USA. 1985;82:5588–92.

    Article  CAS  Google Scholar 

  42. Higashi T, Sano H, Saishoji T, et al. The receptor for advanced glycation end products mediates the chemotaxis of rabbit smooth muscle cells. Diabetes. 1997;46:463–72.

    Article  PubMed  CAS  Google Scholar 

  43. McCance DDG, Dunn JA, et al. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993;91:2470–8.

    Article  PubMed  CAS  Google Scholar 

  44. Beisswenger PJ, Makita Z, Curphey TJ, et al. Formation of immunochemical advanced glycation endproducts precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes. 1995;44:824–9.

    Article  PubMed  CAS  Google Scholar 

  45. Chappey O, Dosquet C, Wautier M-P, et al. Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest. 1997;27:97–108.

    Article  PubMed  CAS  Google Scholar 

  46. Vlassara H, Baucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biological, and chemical implications for diabetes and aging. Lab Invest. 1994;70:138–51.

    PubMed  CAS  Google Scholar 

  47. Stitt AW, Li YM, Gardiner TA, et al. Advanced glycated end-products(AGE) co-localise with AGE receptors in the retinal vasculature of diabetic and AGE infused rats. Am J Pathol. 1997;150:523–39.

    PubMed  CAS  Google Scholar 

  48. Yamagishi S-C, Yonekura H, Yamamoto Y. Advanced glycation end product driven angiogenesis in vitro. J Biol Chem. 1997;272:8723–30.

    Article  PubMed  CAS  Google Scholar 

  49. Monnier VM, Kohn RR, Cerami A. Accelerated age related browning of human in diabetes mellitus. Proc Natl Acad Sci USA. 1984;81:583–7.

    Article  PubMed  CAS  Google Scholar 

  50. Doi T, Vlassara H, Kirstein M, et al. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc NatI Acad Sci USA. 1992;89:2873–7.

    Article  CAS  Google Scholar 

  51. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest. 1991;87:432–8.

    Article  PubMed  CAS  Google Scholar 

  52. Vlassara H, Fuh H, Makita Z, et al. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA. 1992;89:12043–7.

    Article  PubMed  CAS  Google Scholar 

  53. Vlassara H, Striker W, Teichberg S, et al. Advanced glycation endproducts induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA. 1994;91:11704–8.

    Article  PubMed  CAS  Google Scholar 

  54. Vlassara H, Fuh H, Donnelly T, et al. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med. 1995;1:447–56.

    PubMed  CAS  Google Scholar 

  55. Stitt AW, Friedman S, Scher L, et al. Carotid artery advanced glycation end products and their receptors correlate with severity of lesion and with plasma AGE-ApoB levels in non-diabetic patients. FASEB J. 1996;10:A616.

    Google Scholar 

  56. Beisswenger PJ, Morre LL, Brinck-Johnsen T, et al. Increased collagen-like pentosidine levels and AGEs in early diabetic nephropathy. J Clin Invest. 1993;92:212–7.

    Article  PubMed  CAS  Google Scholar 

  57. Araki N, Ueno N, Chakraharti B, et al. Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem. 1992;267:10211–4.

    PubMed  CAS  Google Scholar 

  58. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product Nε-(carboxymethyl) lysine in human tissues in diabetes and aging. J Clin Invest. 1997;99:457–68.

    Article  PubMed  CAS  Google Scholar 

  59. Cooper ME, Bonnet F, Oldfield M, et al. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens. 2001;14(1):475–86.

    Article  PubMed  CAS  Google Scholar 

  60. Hammes HP, Alt A, Niwa T, et al. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia. 1999;42:728–36.

    Article  PubMed  CAS  Google Scholar 

  61. Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis. 1995;26:875–88.

    Article  PubMed  CAS  Google Scholar 

  62. Makita Z, Bucala R, Rayfield EJ, et al. Reactive glycosylation end products in diabetic uraemia and treatment of renal failure. Lancet. 1994;343:1519–22.

    Article  PubMed  CAS  Google Scholar 

  63. Ono Y, Aoki S, Ohnishi K. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res Clin Pract. 1998;41:131–7.

    Article  PubMed  CAS  Google Scholar 

  64. Murata T, Nagai R, Ishibashi T. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia. 1997;40:764–9.

    Article  PubMed  CAS  Google Scholar 

  65. Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001;85:746–53.

    Article  PubMed  CAS  Google Scholar 

  66. Stitt AW, Moore JE, Sharkey JA, et al. Advanced glycation end products in vitreous: structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Visual Sci. 1998;39:2517–23.

    CAS  Google Scholar 

  67. Fosmark DS, Bragadottir R, Stene-Johansen I, et al. Increased vitreous levels of hydroimidazolone in type 2 diabetes patients are associated with retinopathy: a case–control study. Acta Ophthalmol Scand. 2007;85:618–22.

    Article  PubMed  CAS  Google Scholar 

  68. Gardiner TA, Anderson HR, Stitt AW, et al. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol. 2003;201:328–33.

    Article  PubMed  CAS  Google Scholar 

  69. Schalkwijk CG, Ligtvoet N, Twaalfhoven H, et al. Amadori albumin in type 1 diabetic patients: correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes. 1999;48:2446–53.

    Article  PubMed  CAS  Google Scholar 

  70. Hammes HP, Brownlee M, Edelstein D, et al. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia. 1994;37:32–5.

    Article  PubMed  CAS  Google Scholar 

  71. Frank RN. On the pathogenesis of diabetic retinopathy. A 1990 update. Ophthalmology. 1991;98:586–93.

    PubMed  CAS  Google Scholar 

  72. Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 2005;11:2279–99.

    Article  PubMed  CAS  Google Scholar 

  73. Yamagishi S, Amano S, Inagaki Y, et al. Advanced glycation end productsinduced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun. 2002;290:973–8.

    Article  PubMed  CAS  Google Scholar 

  74. Yamagishi S, Inagaki Y, Amano S, et al. Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product induced injury through its antioxidative properties. Biochem Biophys Res Commun. 2002;296:877–82.

    Article  PubMed  CAS  Google Scholar 

  75. Yamagishi S, Amano S, Inagaki Y, et al. Beraprost sodium, a prostaglandin I2 analogue, protects against advanced gycation end products-induced injury in cultured retinal pericytes. Mol. Med. 2002;8:546–50.

    PubMed  CAS  Google Scholar 

  76. Hammes HP, Lin J, Renner O, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes. 2002;51:3107–12.

    Article  PubMed  CAS  Google Scholar 

  77. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.

    Article  PubMed  CAS  Google Scholar 

  78. Murata T, Ishibashi T, Khalil A, et al. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Ophthalmic Res. 1995;27:48–52.

    Article  PubMed  CAS  Google Scholar 

  79. Yamagishi S, Nakamura K, Matsui T, et al. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem. 2006;281:20213–20.

    Article  PubMed  CAS  Google Scholar 

  80. Okamoto T, Yamagishi S, Inagaki Y, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J. 2002;16:1928–30.

    PubMed  CAS  Google Scholar 

  81. Okamoto T, Yamagishi S, Inagaki Y, et al. Incadronate disodium inhibits advanced glycation end products-induced angiogenesis in vitro. Biochem Biophys Res Commun. 2002;297:419–24.

    Article  PubMed  CAS  Google Scholar 

  82. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991;139:81–100.

    PubMed  CAS  Google Scholar 

  83. Moore TC, Moore JE, Kaji Y, et al. The role of advanced glycation end products in retinal microvascular leukostasis. Investig Ophthalmol Vis Sci. 2003;44:4457–64.

    Article  Google Scholar 

  84. Lu M, Perez VL, Ma N, et al. VEGF increases retinal vascular ICAM-1 expression in vivo. Investig Ophthalmol Vis Sci. 1999;40:1808–12.

    CAS  Google Scholar 

  85. Yamagishi S, Matsui T, Nakamura K, et al. Olmesartan blocks inflammatory reactions in endothelial cells evoked by advanced glycation end products by suppressing generation of reactive oxygen species. Ophthalmic Res. 2007;40:10–5.

    Article  PubMed  CAS  Google Scholar 

  86. Inagaki Y, Yamagishi S, Okamoto T, et al. Pigment epitheliumderived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production inmicrovascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia. 2003;46:284–7.

    PubMed  CAS  Google Scholar 

  87. Mitamura Y, Takeuchi S, Matsuda A, et al. Monocyte chemotactic protein-1 in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmologica. 2001;215:415–8.

    Article  PubMed  CAS  Google Scholar 

  88. Hammes HP, Martin S, Federlin K, et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA. 1991;88(11):555–58.

    Google Scholar 

  89. Chibber R, Molinatti PA, Wong JSK, et al. The effect of aminoguanidine and tolrestat on glucose toxicity in bovine retinal capillary pericytes. Diabetes. 1994;43:758–63.

    Article  PubMed  CAS  Google Scholar 

  90. Klein R, Klein BEK, Moss SE, et al. The Wisconsin Epidemiologic study of diabetic retinopathy XIV. Ten-year incidence and progression of diabetic retinopathy. Arch Ophthalmol. 1994;112:1217–28.

    Article  PubMed  CAS  Google Scholar 

  91. Chibber R, Molinatti PA, Rosatto N, et al. Toxication of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia. 1997;40:156–64.

    Article  PubMed  CAS  Google Scholar 

  92. Yamagishi S, Ueda S, Matsui T, et al. Pigment epithelium-derived factor (PEDF) prevents advanced glycation end products (AGEs)-elicited endothelial nitric oxide synthase (eNOS) reduction through its anti-oxidative properties. Protein Pept Lett. 2007;14:832–5.

    Article  PubMed  CAS  Google Scholar 

  93. Schmidt AM, Hori O, Chen JX, et al. Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.

    Article  PubMed  CAS  Google Scholar 

  94. Howard EW, Benton R, Ahern-Moore J, et al. Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res. 1996;228:132–7.

    Article  PubMed  CAS  Google Scholar 

  95. Haitoglou CS, Tsilibary EC, Brownlee M, et al. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem. 1992;267:12404–7.

    PubMed  CAS  Google Scholar 

  96. Koga K, Yamagishi S, Okamoto T, et al. Serum levels of glucose-derived advanced glycation end products are associated with the severity of diabetic retinopathy in type 2 diabetic patients without renal dysfunction. Int J Clin Pharmacol Res. 2002;22:13–7.

    PubMed  CAS  Google Scholar 

  97. Turk Z, Ljubic S, Turk N, et al. Detection of autoantibodies against glycation end products and AGE immune complexes in serum of patients with diabetes mellitus. Clin Chim Acta. 2001;303:105–15.

    Article  PubMed  CAS  Google Scholar 

  98. Sugiyama S, Miyata T, Ueda Y, et al. Plasma levels of pentosidine in diabetic patients: an advanced glycation end product. J Am Soc Nephrol. 1998;9:1681–8.

    PubMed  CAS  Google Scholar 

  99. Wagner Z, Wittmann I, Mazak I, et al. N(epsilon)-(carboxymethyl) lysine levels in patients with type 2 diabetes: role of renal function. Am J Kidney Dis. 2001;38:785–91.

    Article  PubMed  CAS  Google Scholar 

  100. Dorrian CA, Cathcart S, Clausen J, et al. Factors in human serum interfere with the measurement of advanced glycation end products. Cell Mol Biol. 1998;44:1069–79.

    PubMed  CAS  Google Scholar 

  101. Genuth S, Sun W, Cleary P, et al. DCCT Skin Collagen Ancillary Study Group. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 2005;54:3103–11.

    Article  PubMed  CAS  Google Scholar 

  102. Hartog JW, de Vries AP, Lutgers HL, et al. Accumulation of advanced glycation end products, measured as skin autofluorescence, in renal disease. Ann NY Acad Sci. 2005;1043:299–307.

    Article  PubMed  CAS  Google Scholar 

  103. Bierhaus A, Hofmann MA, Ziegler R, et al. AGE and their interaction with AGE-receptors in vascular disease and diabetes. I. The AGE cononcept. Cardiovasc Res. 1998;37:586–600.

    Article  PubMed  CAS  Google Scholar 

  104. Khalifah RG, Baynes JW, Hudson BG. Amadorins: novel post-amadori inhibitors of advanced glycation end-products. Biochem and Biophysical Res Commun. 1999;257:251–8.

    Article  CAS  Google Scholar 

  105. Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94:6474–9.

    Article  PubMed  CAS  Google Scholar 

  106. Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    Article  PubMed  CAS  Google Scholar 

  107. Uribarri J, Peppa M, Cai W, et al. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J Am Soc Nephrol. 2003;14:728–31.

    Article  PubMed  CAS  Google Scholar 

  108. Yamagishi S, Nakamura K, Matsui T, et al. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69:666–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Junior Research Fellowship grant (F. no. 17-7/2011(SA-I)) from the University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, Y., Saxena, S., Mishra, A. et al. Advanced glycation end products and diabetic retinopathy. j ocul biol dis inform 5, 63–69 (2012). https://doi.org/10.1007/s12177-013-9104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12177-013-9104-7

Keywords

Navigation