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Abstract We have previously identified a neuroprotective
effect associated with empty (E1−, E3−, E4−) adenovirus
vector delivery in a model of light-induced, photoreceptor
cell death. In this study, we further characterize this
protective effect in light-injured retina and investigate its
molecular basis. Dark-adapted BALB/c mice, aged 6–
8 weeks, were exposed to standardized, intense fluorescent
light for 96 or 144 h. Prior to dark adaptation, all mice
received intravitreous injection of 1×109 particles of an
empty (E1−, E3−, E4−) adenovirus vector in one eye and
vehicle in the other. Following light challenge of 96 or
144 h, histopathological analysis and quantitative photore-
ceptor cell counts were conducted. Semiquantitative assess-
ment of messenger ribonucleic acid (mRNA) for the
apoptosis related genes: p50, p65, IkBa, caspase-1, cas-
pase-3, Bad, c-Jun, Bax, Bak, Bcl-2, c-Fos, and p53 using
quantitative reverse transcriptase polymerase chain reaction
was performed on eyes following 12 h of light exposure.
Following 96 h of light exposure, the photoreceptor cell
density for E1−, E3−, E4− adenovirus vector and vehicle-

injected eyes were 87.5±9.5 and 79.3±10.1, respectively,
(p=0.79). After 144 h of light exposure, the photoreceptor
cell density was preserved in vector-injected eyes as
compared to vehicle treated eyes, 68.9±10.0 and 49.2±4.6,
respectively (p=0.016). Relative mRNA levels of c-Fos
and c-Jun at 12-h light exposure after injection differed
significantly between vector- and vehicle-injected eyes (p=
0.036, 0.016, respectively). The expression of the other
apoptosis-related genes evaluated was not significantly
affected. This study investigates the molecular basis of
photoreceptor neuroprotective pathway induction associat-
ed with E1−, E3−, E4− adenovirus vectors. The results
indicate that empty adenovirus vectors protect photorecep-
tors from light-induced degeneration by the modulation of
apoptotic pathways. Gene expression changes suggest that
the suppression of c-Fos and c-Jun upregulation contributes
significantly to the neuroprotective effect. Understanding
the molecular basis of the neuroprotective pathway induc-
tion in photoreceptors is critical to the development of
novel therapies for retinal degenerations.
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Introduction

Adenovirus (AdV), adeno-associated virus, and lentivirus
vector platforms continue in active development for ocular
gene therapy [1–3]. A number of factors determine the
relative advantages and disadvantages of each platform and
include but are not limited to vector tropism, transduction
efficiency, transgene size, latency, duration of expression,
vector-related toxicity, and integration requirements for
transgene expression. Associated and potentially therapeu-
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tic effects of the empty or null vectors themselves are
described but are not well understood [4, 5]. While the
magnitude of the reported protective effect is small
compared to that resulting from, e.g., overexpression of a
specific neuroprotective transgene, such as pigment epithe-
lium-derived factor (PEDF), the effect is significant [5], and
to date, there has been no attempt to optimize for
therapeutic benefit. Understanding the mechanistic origin
of these phenomena may lead to greater understanding of
neuroprotection, photoreceptor degeneration, and the
requirements for future therapy.

There are clinical settings (e.g., chronic disease) in which
prolonged transgene expression may be desired. Currently,
the risk of prolonged gene expression is unknown for most
proteins and must be evaluated on a protein-by-protein basis.
In the eye for example, even increased expression of wild-
type rhodopsin or peripherin/rds can result in the degener-
ation of photoreceptors [6, 7]. Expression changes induced
by the vector platform itself are potentially long-term
results of vector administration that must be considered. It
is conceivable that platform-induced gene expression
changes could persist for longer than those induced by
transgene expression and should be understood.

Replication-deficient AdV vectors are typically charac-
terized by a large capacity, short latency, transduction of
both dividing and nondividing cells, high expression levels,
and relative ease of production. AdV vectors, however,
induce multigene response including dose-dependent ocular
immune responses that are associated with inflammation
and shorter periods of expression [8–10] Among the genes
induced by AdV vectors is nuclear factor kappa B (NFkB),
a key regulator of apoptosis [11]. We have previously
reported that intraocular AdV-mediated gene transfer of
PEDF significantly increased retinal cell survival following
retinal ischemia–reperfusion injury [12] and light-induced
photic injury [5]. The protective effects of PEDF were in
part attributed to the modulation of apoptotic pathways [5,
12]. The molecular basis of a separate protective effect
noted in the empty (E1−, E3−, E4−) AdV vector is not yet
understood and is evaluated in this study.

Materials and methods

Animals

Female BALB/c mice were used at 4 to 8 weeks of
age. The animals were housed under a 12-h (7:00 A.M. to
7:00 P.M.) light/dark cycle with 60 lux at the center of the
cage prior to the start of experiments. The animals were
anesthetized by intramuscular injection of 80 mg/kg of
ketamine hydrochloride. All of the animals were treated
under deep sedation in accordance with the Association for

Research in Vision and Ophthalmology resolution on the
use of animals in research.

Light-induced retinal degeneration alone was induced in
six control mice by a predetermined level of fluorescent
light exposure sufficient to induce degenerative change.
Twenty-four mice received intravitreous injection of ade-
noviral vectors or vehicle (3% trehalose) followed by light
exposure.

Adenoviral vectors and intraocular injection procedures

The vectors are deleted for E1A, E1B, E3, and E4 and lack
an inserted transgene. The specific empty vector has been
reported in prior publication as AdNull.11 (GenVec,
Gaithersburg, MD, USA) [13]. Mice in the experimental
group were injected prior to excessive light exposure. Mice
received either no injection, vehicle injection, or intra-
vitreous injection of 1×109 particles of AdNull.11. Intra-
vitreous injection was performed with a Hamilton syringe
fitted with a 33-gauge beveled needle (Hamilton, Reno,
NV, USA). The needle was passed through the sclera at the
equator into the vitreous cavity. The injection occurred with
direct observation of the needle in the center of the vitreous
cavity. Eyes with intraocular hemorrhages, lens trauma, or
other complication during the viral injection were excluded
from this study.

Exposure to light

Immediately after vector delivery, rats were dark adapted
for 3 or 72 h. Following dark adaptation, all eyes were
carefully examined by slitlamp biomicroscopy and indirect
ophthalmoscope, to rule out the presence of ocular injury or
toxicity. Eyes with any signs of trauma or inflammation
were excluded from further study.

The animals were then housed in an animal cage that
was surrounded on all sides by commercially available
fluorescent tubes (EFD21EN, Toshiba, Tokyo). Light
exposure was continuous at a constant 2,500 lux as
measured at the center of the cage. No area of the cage
allowed avoidance of the diffused 2,500-lux light. The
temperature in the center of the cage during the period of
light exposure was maintained at room temperature. All
experiments were conducted in a well-ventilated space. The
animals had access to water at all times. Animals in the
control and treatment groups were exposed to identical
environmental conditions throughout the experimental
period.

Morphometric analysis

Eyes with or without viral vector administration prior to
light exposure were enucleated after 96 or 144 h of light
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exposure. All eyes were immediately fixed in 4% parafor-
maldehyde in phosphate-buffered saline (PBS) for 60 min.
After rinsing with PBS, the eyes were oriented in optimum
cutting temperature embedding compound (OCT; Miles
Diagnostics, Elkhart, IN, USA) with the cornea facing
forward and with 12 o’clock positioned superiorly and then
snap frozen in liquid nitrogen after which they were stored
at −80°C until sectioning. At cryosectioning, five serial
sections (10 μm), beginning at the superior edge of the
optic nerve, were obtained at 100-μm intervals. In sections
including the optic nerve, the optic nerve tissue was excluded
from cell counts. All specimens were processed using
Hematoxylin staining (Contrast-blue, KPL Laboratory,
Gaithersburg, MD, USA).

The number of nuclear cells in the outer nuclear layer
(ONL) was counted in two sample areas, in each of ten
standard sections, per eye. The areas to be counted were
assigned in a standard fashion such that retina located
approximately 200 μm from the optic nerve, lacking
artifacts such as retinal detachment, tissue distortion, and
staining artifact, were used. The mean ONL cell count was
then calculated for each eye and analyzed statistically.

Apoptosis-related gene expression analysis

Eyes treated with no injection, vehicle injection, or
injection with AdV vector were enucleated after 12 h of
continuous light exposure. Naïve eyes, without injection or
light exposure, were also enucleated following 15 h of dark
adaptation for gene expression analysis. The retina was
removed from experimental eyes and immediately frozen in
liquid nitrogen. Retinal tissue was stored at −80°C until
ribonucleic acid (RNA) preparation.

Total retinal RNA was isolated by the acid guanidine
thiocyanate–phenol–chloroform extraction method using
TRIzol® (Invitrogen, Carlsbad, CA, USA). We utilized
DNaseI (RNase-free; TAKARA BIO) to remove genomic
deoxyribonucleic acid (DNA) contamination. Two hundred
nanograms of total RNA was applied to reverse transcrip-
tion with 25 U of SuperScript II reverses transcriptase
(Invitrogen) in a thermal cycler (GeneAmp PCR system
9700, Applied Biosystems) to generate complementary
DNA (cDNA). Quantitative reverse transcriptase polymer-
ase chain reaction (qRT-PCR) was carried out with 10 ng of
cDNA using Assay-on-Demand™ Gene Expression for 12
apoptosis-related genes (p53, c-Fos, c-Jun, Bad, Bak, Bax,
Bcl-2, Caspase-1, Caspase-3, IkB, p50NFkB, and
p65NFkB). We used acidic ribosomal phosphoprotein P0
(Applied Biosystems) as an endogenous control gene [14].
qRT-PCR was performed in triplicate for each sample with
a commercial system (ABI PRISM® 7900HT Sequence
Detection System, Applied Biosystems). The expression
level of each gene was assigned arbitrary units (relative to

baseline samples) using described comparative Ct methods
[15, 16].

Statistical analysis

Statistical analysis of all eyes was performed using paired
or unpaired t test. p values less than 0.05 were prospec-
tively assigned as the value required for the reporting of
significance.

Results

Effect of intravitreous injection of empty AdV
in light-induced photoreceptor cell death

Three days prior to initiation of light exposure, female
BALB/c mice received no injection or intravitreous
injection of 1×109 particles of empty AdV. Typical
histologic changes are shown in Fig. 1. In uninjected eyes,
the photoreceptor cell density and the thickness of the ONL
were predictably reduced corresponding to the time course
of light injury (Fig. 1a–c). In contrast, photoreceptor cell
density was relatively preserved in eyes following intra-
vitreous injection of empty AdV as compared to
corresponding uninjected eyes (Fig. 1d,e).

Morphometric analysis was performed to quantitatively
compare photoreceptor cell counts in each group. The
photoreceptor cell counts of uninjected eyes at baseline,
96 h, and 144 h were 108.8±7.3, 79.3±10.1, and 49.2±4.6
(mean±SD), respectively. Following intravitreous injection
with empty AdV, the photoreceptor cell counts at 96 and
144 h were 87.5±9.5 and 68.9±10.0, respectively. These
results represent significant preservation of the photorecep-
tor layer in eyes treated with empty AdV at 144 (p=0.016)
but not at 96 h (p=0.79; Fig. 2).

Apoptosis-related gene expression analysis

The apoptosis-related genes tested in this study were p53,
c-Fos, c-Jun, Bad, Bak, Bax, Bcl-2, Caspase-1, Caspase-3,
IkB, p50NFkB, and p65NFkB. Retinal mRNAs of the four
anti-apoptosis genes were Bcl-2, IkB, p50NFkB and
p65NFkB. The eight pro-apoptosis genes were p53, c-Fos,
c-Jun, Bad, Bak, Bax, Caspase-1 and Caspase-3. Relative
messenger RNA (mRNA) expression levels of c-Fos
increased in the retinas with light exposure alone (p=
2.37×10−10) and light exposure and vehicle injection
(p=0.017) when compared to untreated baseline eyes.
Relative mRNA levels of c-Fos in the retinas treated with
light exposure and empty AdV injection were preserved and
less than those in the retinas with light exposure alone
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(p=1.51×10−7) and light exposure and vehicle injection
(p=0.036; Fig. 3a).

The results of relative mRNA expression levels of c-Jun
were similar to c-Fos expression. c-Jun gene expression
levels were induced and significantly higher in the retinas
with light exposure alone (p=3.10×10−5) and light expo-
sure and vehicle injection (p=1.16×10−3) when compared
to untreated baseline eyes. The intravitreous injection of
empty AdV in eyes with light exposure inhibited the
induction of mRNA expression of c-Jun in the retinas with
light exposure alone (p=7.69×10−4) and with light expo-
sure and vehicle injection (p=0.016; Fig. 3b). The mRNA
expression levels of other genes tested (p53, Bad, Bak, Bax,
Bcl-2, Caspase-1, Caspase-3, IkB, p50NFkB, and
p65NFkB) were not significantly changed between eyes

with light exposure and vehicle injection and eyes with
light exposure and empty AdV injection (Table 1).

Discussion

The molecular basis of a retinal neuroprotective effect
associated with intravitreous delivery of an empty AdV
vector, in the setting of intense retinal light exposure, is

Fig. 2 Morphometric analysis of nuclear cell count in ONL of
light-exposed retina. Outer nuclear cell counts of vehicle-injected eyes
with 0, 96, or 144 h of continuous light exposure (solid circles) were
108.8±7.3, 79.3±10.1, and 49.2±4.6, respectively. Outer nuclear cell
counts of AdV-injected eyes with 96 or 144 h of light exposure (open
circles) were 87.5±9.5 and 68.9±10.0, respectively. After 144 h of
light exposure, the photoreceptor cell density was preserved in vector-
injected eyes as compared to vehicle treated. Asterisk, p=0.016 (error
bars=1 SD)

Fig. 3 Analysis of c-Fos (a) and c-Jun (b) mRNA levels in retinas of
BALB/c mice by qRT-PCR. Mice were either kept in darkness (black
column) or exposed to 2,500 lux for 12 h with no injection (dark gray
column), vehicle injection (light gray column), or AdV injection
(open column). c-Fos and c-Jun mRNA expressions were reduced in
retinas of vector-injected eyes when compared to retinas of vehicle-
injected eyes (asterisk, p=0.036, cross, p=0.016)

Fig. 1 Light micrographs of the treated and untreated BALB/c retinas
following light exposure. Mice received no injection (a), intravitreous
injection of vehicle (b, c), or 1×109 viral particles of empty AdV
vector (d, e). Three days after injection, the mice were exposed to
continuous fluorescent light (2,500 lux) for 0 (a), 96 (b, d), and 144 h

(c, e). Eyes injected with empty AdV showed moderate protection of
photoreceptor cells (d, e) when compared to vehicle-injected eyes (b,
c). GCL Ganglion cell layer, INL inner nuclear layer, ONL outer
nuclear layer, RPE retinal pigment epithelial layer (Scale: bar=20 μm)
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explored in this work. Mean ONL cell counts were
significantly protected (63% preserved) in empty vector-
injected eyes as compared to eyes injected with vehicle
(45% preserved), following 144 h of intense light exposure.
Associated gene expression changes suggest that the
protective effect involves the suppression of transient
upregulation of c-Fos and c-Jun, both components of
transcription factor AP-1.

The photoreceptor response to light injury is complex
and the result of a multigenic gene response. Current
understanding in this area is reviewed by Wenzel et al. [17].
Acute bright light exposure is reported to induce changes in
the mitochondrial membrane potential that may be associ-
ated with the induction of photoreceptor apoptosis [18].
Bcl-2 family members are known to regulate mitochondrial
membrane permeability and integrity [19, 20] However, the
ameliorative effect of Bcl-2 overexpression in a transgenic
model following excessive light exposure is incompletely
understood with points of controversy remaining [21, 22].
Reports indicating that the ablation of the proapoptotic Bcl-
2 family members Bax and Bak protect the retina against
light damage support a neuroprotective effect for BCL-2
[23]. In general, photo-oxidative stress is believed to
downregulate NFkB via involvement of caspase-1, result-
ing in apoptosis of photoreceptor cells [24, 25].

In this study, gene expression changes show significant
suppression of c-Fos and c-Jun upregulation, both constit-
uents of transcription factor AP-1. Intensive visible light
exposure induces apoptotic photoreceptor cell death by
activation of the transcription factor AP-1 and AP-1
activation is believed to be essential for light-induced

photoreceptor apoptosis [17]. AP-1 is a complex that
consists either of heterodimers of members of the Fos and
Jun family or homodimers of members of the Jun family
[26, 27]. Light exposure induces complexes of c-Fos, c-Jun,
and JunD proteins [28], but JunD is not essential for retinal
light damage [29]. The absence of c-Fos is reported to
completely prevent light-induced apoptotic photoreceptor
cell death [30]. Grimm et al. have evaluated activation of
several apoptosis-related genes during light-induced photo-
receptor degeneration in wild-type mice (strain 129SV/Bl6
or BALB/c) and found that intensive light exposure
induced c-Fos and c-Jun gene upregulation [31]. Although
the setting (duration and intensity) of light exposure were
different than those in this study, these findings are
consistent with those reported here. Lastly, while the
Grimm study observed upregulation of the caspase-1 gene
[31], we did not detect significant expression change in
caspase-1 gene expression following empty AdV injection.

Reichel et al. have reported that an AdV vector
expressing the β-galactosidase reporter gene had a protec-
tive effect in the rd mouse model of retinal degeneration
[4]. While it was not determined whether the protective
effect was related to the β-galactosidase protein or the
vector, it was negated by immune suppression with
depletion of both CD4+ and CD8+ T cells. They therefore
hypothesized that the immune response to vector and/or
transgene products was protective. The vector used in the
current study is a human adenoviral vector, serotype 5,
similar to that used in the study by Reichel et al. [4]. We
may therefore speculate that the downregulation of c-Fos
and c-Jun could result, at least in part, from immune
responses initiated by intraocular injection of the AdV
vector. AdV vectors have been tested in human subjects
[32, 33], and safety data are available from a phase I
clinical trial [33]. An inflammatory response has been
considered a disadvantage of this vector platform, but
induced immune responses may also have beneficial effects
in the setting of retinal degeneration.

We have previously demonstrated that the intravitreous
injection of the AdV vector with the a similar genetic
backbone to the vector used in this study resulted in the
transduction of cells predominantly in the iris, cornea, and
ciliary body but not in photoreceptors [34]. It is interesting
to note that several studies have demonstrated that the AdV
vector induces modification of endogenous multigene
expression [34–37]. We thus hypothesize that the intra-
vitreous injection of the AdV vector modifies the endog-
enous gene expression in the transduced cells of the eye,
which might secrete the neuroprotective protein. In future
experiments, we will test this hypothesis and others
regarding the mechanism of the effect of the AdV vector
on neuroprotection, which could provide additional oppor-
tunities for the development of new treatments.

Table 1 Comparison of relative mRNA levels between eyes with
light exposure and vehicle injection and eyes with light exposure and
AdV injection

Genes Light+vehiclea Light+AdVb p value

p53 0.52±0.03 0.16±0.03 0.069
c-Fos 3.53±0.95 1.01±0.11 0.036c

c-Jun 0.20±0.03 0.11±0.02 0.016c

Bad 0.13±0.03 0.09±0.01 0.277
Bak 0.33±0.03 0.34±0.05 0.932
Bax 0.32±0.04 0.28±0.02 0.309
Bcl-2 0.04±0.01 0.05±0.01 0.669
Caspase-1 0.02±0.004 0.02±0.01 0.624
Caspase-3 0.02±0.002 0.02±0.002 0.184
IkB 5.22±1.87 1.01±0.18 0.068
p50NFkB 0.56±0.18 0.17±0.03 0.067
p65NFkB 0.69±0.10 0.53±0.09 0.307

Data are mean±SD.
a Relative mRNA levels of the retina treated with light exposure and
vehicle injection
b Relative mRNA levels of the retina treated with light exposure and
AdV injection
c Significant
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In summary, our data indicate that intravitreous injec-
tion of an E1−, E3−, E4− AdV vector increases photore-
ceptor cell survival resulting from intense light exposure.
Associated gene expression changes suggest that the
protective effect involves suppression of transient upregu-
lation of c-Fos and c-Jun genes, both constituents of
transcription factor AP-1. The findings provide insight into
AdV vector-induced neuroprotective pathways associated
with photoreceptor rescue and may have eventual thera-
peutic implications for retinal degenerations.
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