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Abstract
Purpose of Review  Coronary artery disease (CAD) is a common and etiologically complex disease worldwide. Current 
guidelines for primary prevention, or the prevention of a first acute event, include relatively simple risk assessment and 
leave substantial room for improvement both for risk ascertainment and selection of prevention strategies. Here, we review 
how advances in big data and predictive modeling foreshadow a promising future of improved risk assessment and precision 
medicine for CAD.
Recent Findings  Artificial intelligence (AI) has improved the utility of high dimensional data, providing an opportunity to 
better understand the interplay between numerous CAD risk factors. Beyond applications of AI in cardiac imaging, the van-
guard application of AI in healthcare, recent translational research is also revealing a promising path for AI in multi-modal 
risk prediction using standard biomarkers, genetic and other omics technologies, a variety of biosensors, and unstructured 
data from electronic health records (EHRs). However, gaps remain in clinical validation of AI models, most notably in the 
actionability of complex risk prediction for more precise therapeutic interventions.
Summary  The recent availability of nation-scale biobank datasets has provided a tremendous opportunity to richly char-
acterize longitudinal health trajectories using health data collected at home, at laboratories, and through clinic visits. The 
ever-growing availability of deep genotype-phenotype data is poised to drive a transition from simple risk prediction algo-
rithms to complex, “data-hungry,” AI models in clinical decision-making. While AI models provide the means to incorporate 
essentially all risk factors into comprehensive risk prediction frameworks, there remains a need to wrap these predictions in 
interpretable frameworks that map to our understanding of underlying biological mechanisms and associated personalized 
intervention. This review explores recent advances in the role of machine learning and AI in CAD primary prevention and 
highlights current strengths as well as limitations mediating potential future applications.
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Coronary Artery Disease

CAD is the leading cause of mortality and morbidity in the 
USA and Europe and among the most prevalent and severe 
manifestation of cardiovascular disease [1, 2]. CAD is char-
acterized by atherosclerotic lesions, whereby plaques con-
sisting of fatty deposits, inflammatory white blood cells, and 
smooth muscle cells accumulate and obstruct the coronary 
arteries [3]. Early symptoms of obstructive CAD due to vas-
cular stenosis can result in angina, arrhythmias, and transient 
ischemic attacks [4]. Progressive intracoronary thrombosis 
with plaque rupture can eventually develop into a complete 
blockage, leading to myocardial infarction, heart failure, and 
sudden cardiac death [5]. Other vascular diseases are also 
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common in patients with CAD, such as carotid atheroscle-
rosis, peripheral arterial disease, and stroke [4]. CAD is a 
complex multifactorial disease with nearly 300 risk factors 
statistically associated with its development [6–8]. CAD also 
shows significant heterogeneity across geographic regions, 
which makes generalized early diagnosis difficult to achieve. 
Despite WHO Member States global action plan for the pre-
vention and control of CAD, the prevalence of CAD and 
CAD-related healthcare costs have continued to increase 
[9–11]. Thus, there continues to be a pressing need to build 
an early prevention eco-system to reduce the global public 
health burden of CAD.

CAD Risk Factors

CAD risk factors can be divided into (1) modifiable risk 
factors (including hypertension, hyperlipidemia, hyper-
uricemia, diabetes mellitus, obesity, smoking, psychoso-
cial stress, diet, sedentary lifestyle, and socioeconomic 
status), (2) non-modifiable risk factors (including age, gen-
der, and genetic factors), and (3) risk-enhancing comorbid 
disease factors (including non-alcoholic fatty liver disease 
(NAFLD), chronic kidney disease (CKD), systemic lupus 
erythematosus (SLE), rheumatoid arthritis (RA), inflamma-
tory bowel disease (IBD), hypercoagulability, human immu-
nodeficiency (HIV), thyroid disease). Some of these risk 
factors can be captured by laboratory measurements, indi-
ces or biomarkers for daily clinical practice, and target for 
treatments — including vital signs (body temperature, pulse 
rate, respiration rate, heartbeat rate, blood pressure), body 
mass index (BMI), ankle-brachial index (ABI), coagulation 
indexes, cardiac calcium score, lipids/lipoproteins (LDL 
cholesterol, HDL cholesterol, total cholesterol triglycerides, 
lipoprotein(a), homocysteine), high-sensitivity c-reactive 
protein (hsCRP), and inflammatory cytokines.

Primary Prevention of CAD

Current primary prevention guidelines in the USA and UK 
involve the use of additive risk assessment tools (includ-
ing Reynolds score, Framingham risk score, pooled cohort 
risk equations (PCE), and QRISK), each including some of 
the risk factors above, and generally assigning individuals 
into low-, intermediate-, and high-risk populations. General 
recommendations for primary prevention include “Life’s 
Simple 8”: to get active, acquire adequate sleep, eat bet-
ter, lose weight, stop smoking, control cholesterol, manage 
blood pressure, and reduce blood sugar. For at-risk popula-
tions identified by guideline algorithms, the first-line inter-
vention remains lifestyle modification including smoking 
cessation, Mediterranean diet, intentional weight loss, and 
increasing physical activity. Guidelines typically recom-
mend medications for individuals considered to be at higher 

risk or carrying the presence of abnormal levels of specific 
biomarkers. The mainstay therapy in primary prevention is 
lipid lowering with statins, ezetimibe, and PCSK9 inhibitors. 
Other major biomarkers targeted for primary prevention of 
CAD are controlled via hypertension management (blood 
pressure lowering agents) and diabetes management (SGLT2 
inhibitors, GLP1 receptor agonists). Numerous other con-
tributory conditions and corresponding primary prevention 
approaches included lipidome remodeling (N-3 fatty acids), 
gut microbiome remodeling (small molecules, prebiotics, 
probiotics, or cyclic peptides [12]), antiplatelet (aspirin), 
anticoagulation (low-dose rivaroxaban), anti-inflammatory 
(colchicine), and vaccination (influenza and COVID-19) or 
PrEP (HIV). Multiple biomarkers may be targeted with a 
single therapeutic agent with polypills.

Emerging Opportunities for AI in Early CAD 
Risk Assessment

AI models provide an opportunity to combine CAD risk fac-
tors into more complex risk assessment models, empower-
ing physicians to make clinical decisions by harnessing the 
wealth of available health information for each individual 
[13]. There is not much dispute about the potential value of 
predictive models in cardiology, especially in early CVD 
detection [13]. Numerous studies have indicated that the per-
formance of machine learning (ML)-based risk assessment 
models may exceed traditional risk assessments, even when 
simply using well-established cardiovascular disease (CVD) 
risk factors [14–16]. Moreover, data with different modali-
ties, e.g., ECGs, chest X-rays, laboratory values, and poly-
genic risk scores (PRS), can be harnessed in these models 
to drive multi-modal precision CAD prevention [17]. When 
combined with genetic data, risk assessments can be made 
earlier, potentially leading to improved primary prevention 
[18]. Through genetic insights, we can measure the impact 
of familial ties on CVD and detect those predisposed to risk 
well ahead of the primary indicators of atherogenesis [19].

Most learning applications are achieved through super-
vised learning approaches, requiring labeled ground truth 
training data [20]. However, many of the available super-
vised learning algorithms (including generalized linear 
models (GLM), support vector machines (SVM), or deci-
sion trees) contend with the bias-variance tradeoff [21]. 
This tradeoff represents a situation where a model may 
overly adapt to its training data, known as overfitting, 
or conversely, may be too generalized, thereby missing 
intricate data patterns and resulting in underfitting [22]. 
Ensemble prediction models, by their very nature, attempt 
to navigate this tradeoff by amalgamating various algo-
rithms or utilizing multiple iterations of a single algorithm 
through several forest and boosting methods (AdaBoost, 
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LightGBM, CatBoost, and XGBoost), aiming to strike an 
optimal balance between bias and variance [23]. Further, 
modern computing hardware has revitalized a subfield 
of AI inspired from biological neuron connectivity — 
deep learning (DL) — which now includes novel neural-
network architectures successful in different domains, 
namely, convolutional neural networks (CNNs) for image 
recognition, recurrent neural networks (RNNs) for time 
series forecasting, and attention-based models for natu-
ral language processing (NLP) including large language 
models (LLM) [24, 25]. Finally, unsupervised AI methods, 
including some DL methods, can also enable improved 
clinical diagnosis of CAD by learning representative pat-
terns free from human hypotheses in order to capture cryp-
tic early symptoms from high dimensional data [26, 27].

At a high level, these major predictive modeling 
approaches can be applied to combine CAD risk factors 
into AI models in the following ways: (1) combining tradi-
tional biomarkers in AI models, (2) integrating additional 
genetic and other omic risk factors into more comprehen-
sive risk assessment models, (3) including sensor-based 
feeds for real-time risk detection, (4) integrating various 
imaging modalities for active disease detection, and (5) 
capturing other data from EHRs using AI. In the remainder 
of this review, we will discuss the recent specific applica-
tions of AI for CAD primary prevention, considering each 
class of CAD risk factor, and provide our view on the 
necessary future iterations of these approaches in order to 

produce actionable insights linking causal mechanisms to 
preventive interventions (Fig. 1).

Laboratory Biomarker Risk Assessment with AI

Simply combining traditional risk factors or contemporary 
risk tools into more complex predictive frameworks has 
provided evidence of low-hanging fruit for AI models in 
CAD risk assessment [16, 28–33]. For example, Petrazzini 
et al. built an EHR score from tabular clinical features with 
ML framework (random forest, gradient boosted trees, 
SVM stacked model) and improved CAD prediction from 
ASCVD score by 12% in the BioMe Biobank and 9% in the 
UK Biobank [34]. Further gains in CAD risk assessment 
accuracy have also been described with ensemble predic-
tion models [35]. ML approaches have also facilitated novel 
biomarker identification and prioritization, including purine-
related metabolites [36], apolipoprotein B [37], glutathione 
peroxidase-3 [38], epicardial adipose tissue [39], sleep heart 
rate variability [40], plasma lipids (184 lipids in lipidome) 
[41], and serum sphingolipids [42]. AI models can also be 
used to impute biomarker levels when direct determination 
is not available [43–46]. The success of these stack and/or 
ensemble prediction models suggest multiple health trajec-
tories leading to CAD, with actionable information poten-
tially more accurately captured by these complex models 
relative to the more simple, traditional, linear risk scoring 
approaches [47].

Fig. 1   Opportunities for AI-driven CAD prevention and management
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Genetically Informed Risk Assessment Models

CAD risk has a strong genetic component driven by the 
interplay of environmental factors with genetic susceptibil-
ity factors ranging from monogenic (Mendelian) to highly 
polygenic risk [19]. Twin studies suggest a heritability of 
50–60% for fatal CAD [48, 49]. Genetic risk assessment 
based on germline DNA provides a robust orthogonal pre-
dictor to laboratory biomarker-based risk factors and allows 
for early risk screening before other clinical measurements 
become informative [50–56]. CAD polygenic risk scores 
ranging from dozens to thousands of common variants can 
convey risk explaining between ~ 10% [57, 58] and ~ 40% [7, 
59, 60] of disease heritability. A high CAD PRS is associ-
ated with increased benefit from lipid lowering interven-
tions, including both statins [61–63] and PCSK9 inhibitors 
[64, 65]. These observations provide an opportunity to 
prioritize lipid lowering interventions for individuals pre-
dicted to receive improved benefit in the context of a stand-
ard guideline-based risk assessment framework [60, 66–69]. 
Linear and non-linear combinations of multiple PRSs have 
also been demonstrated to improve the polygenic prediction 
[70–72]. However, it is currently unclear how to best com-
bine genetic information with clinical risk factors to demon-
strate significant clinical benefit in large cohorts [55, 73–76].

AI approaches have been applied to GWAS data for a num-
ber of purposes including the identification of novel prognos-
tic/causal markers and druggable targets [77–80]. ML/DL 
models for systematic post-GWAS analysis include those for 
functional annotation, functional fine-mapping, or functional 
scoring (pathogenicity or cell-specific importance scoring) 
to infer underlying regulatory mechanisms of non-coding 
CAD risk loci [81–87], and improving of the accuracy and 
cross-ancestry transferability of CAD-PRS [88, 89]. Other 
examples incorporate biological networks to further insights, 
like GCN-GENE, a DL model which leveraged propagation 
of GWAS signals in biological networks to identify additional 
CAD-related genes [90], or GenNet [91], another approach 
leveraging biological networks to perform genotype-to-phe-
notype mapping and improving risk assessment.

These risk factors, separated into biological pathways, 
interact with the environment in differing ways and may be 
further amenable to tree-based learning methods for the con-
struction of genetic risk models theoretically able to capture 
differing gene-by-environmental interactions across diverse 
populations [79, 92–94]. Despite evidence of complex inter-
actions between genetics and environment in mediating CAD 
risk [95, 96], existing linear risk prediction models including 
genetic risk often do not capture gene–gene or gene-environ-
mental interactions in risk assessment [97–100]. AI models 
provide an opportunity to capture these complex relation-
ships. Forrest et al. implemented a random forest-based ML 
system to this end for the cross-sectional detection of CAD 

and achieved AUROC as 0.89 [101]. Nam et al. used a semi-
supervised multi-layered network to devise a network-based 
MI risk score including interactions between PheWAS and 
PRS features, achieving an AUC improvement of 28.29% 
compared to PRS-alone model [102]. Steinfeldt et al. pre-
sented NeuralCVD from a deep survival machine to outper-
form linear algorithms (SCORE, ASCVD, QRISK3, and lin-
ear cox model) and identified an interaction of clinical risks 
and PRSs [103]. However, few studies have succeeded in 
applying these concepts in large-scale, longitudinal, incident 
CAD risk prediction [104]. To optimize the efficacy of these 
models in primary prevention, rigorous prospective stud-
ies with guideline recommendations are vital, as they hold 
the potential to both elucidate incident risk predictions and 
guide evidence-based preventive interventions [105–107].

Multi‑omics Data for Precision Risk Assessment

High-throughput transcriptomic, epigenetic, proteomic, 
and genomic technologies have enabled other comprehen-
sive biomarker surveys in CAD [108–110]. These analytes 
provide signatures of the current physiological state, which 
may then be used to diagnose CAD or provide predictions 
of risk for future events. For example, transcriptomic pro-
files can be used to detect regulatory signatures that capture 
the current biological or pathological state of tissue. Few 
studies have progressed beyond cross-sectional detection of 
potential biomarkers to the prospective prediction of CAD 
events and myonecrosis. One exception includes transcrip-
tomic predictors of impeding acute myocardial infarction 
(AMI) events from whole blood-derived circulating endothe-
lial cells (CECs) [111–114]. The CEC transcriptomic signa-
ture potentially represents the biological state at the site of 
plaque rupture, serving as a biomarker of its present state, 
and potentially predictive of risk earlier than conventional 
biomarkers such as troponin and CK-MB. Another example 
of the utility of transcriptomic data includes a recent study 
which constructed a single-nucleus atlas of chromatin acces-
sibility in human coronary arteries and identified specific 
cell-type regulatory mechanisms. By employing a statisti-
cal genetics and ML strategy, the study prioritized candi-
date regulatory variants and mechanisms for CAD loci and 
revealed detailed mechanisms connecting cell types, causal 
genes, and CAD risk variants in diverse populations [87].

Additionally, since CAD risk varies in relation to diverse 
exogenous and endogenous factors such as environment, 
diet, and lifestyle, DNA methylation signatures associated 
with CAD may be a proxy for exogenous exposures over 
time. Thus far, DNA methylation, integrated with genetic 
and clinical features, has been used to predict the risk of 
early heart failure, large-artery atherosclerosis stroke, and 
the risk of CAD via supervised learning with some suc-
cess. However, few of these studies have demonstrated 
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generalizability in diverse and independent datasets. One 
study developed an ensemble predictor for incident CAD 
risk in different cohorts and combined them using a cross-
study learning approach. This study demonstrated the feasi-
bility of a genome-wide, epigenomic risk score for the pre-
diction of future CAD events, possibly in individuals who 
would not be identified by other conventional risk metrics, 
but true clinical utility of epigenome risk scores remains to 
be demonstrated [100, 115, 116].

Proteomic studies appear to have similar value in situ-
ations where traditional risk assessment methods have 
limited predictive power for certain high-risk individuals. 
These scenarios include those with high risk of recurrent 
atherosclerotic events that require more intensive therapeutic 
interventions, individuals with known CAD risk but with 
well-controlled LDL-cholesterol and blood pressure, as well 
as those with multiple chronic conditions. In one example, 
researchers developed prognostic risk models based on 
plasma proteomics coupled with AI that can better predict 
cardiovascular outcomes within a relatively short period 
of time [117]. It was also suggested that the plasma pro-
teome predictor could act as a universal surrogate endpoint 
for CAD, providing an avenue to improve patient outcomes 
through selective drug allocation and better monitoring in 
phase 2 clinical trials. In addition, plasma proteomics has 
been used to develop models for survival prediction after 
AMI [118, 119], prediction of recurrent events [120, 121], 
and improved assessment of risk for primary events [122].

Finally, dysregulation of gut microbiome has been shown 
to be associated with many chronic inflammatory diseases 
and is connected to the emergence and progression of several 
CAD-related risk factors [123]. However, it remains a major 
challenge to disentangle the possible impact of metabolic 
disruptions on a dysfunctional gut microbiota vs an imbal-
anced gut microbiota that more causally drives pathogenesis, 
potentially exacerbating ischemic heart disease processes at a 
later stages [124–126]. AI strategies such as shallow learning 
algorithms (random forest, support vector machine, and neu-
ral network etc.) are generally only useful for classification 
and identification of taxonomic differences between healthy 
and diseased individuals [123, 127]. They are not yet able 
to disentangle the interplay of reactive vs potentially causal 
changes that are observed in an abnormal microbiome.

Real‑Time Sensor‑Based Risk Monitoring 
for Early Detection and Prevention of CAD 
Using AI

While biomarkers provide intermittent snapshots of health, 
smart medical devices and biosensors have the potential 
to revolutionize CAD risk monitoring by allowing real-
time, longitudinal, collection of risk factor information 

and trajectory estimation [128, 129]. Wireless networks, 
remote data centers, and edge computing enable weara-
bles to monitor risk factors in real time [130, 131]. This 
eventual internet of things (IoT) also includes AI-assisted 
wearables that promise to provide accurate point-of-care 
diagnosis [132, 133], and will eventually cross-over into 
omics and laboratory-based biomarkers through the use of 
biochemical sensors. Initially, by building upon baseline 
applications of portable sensors for the automatic moni-
toring of cardiac rhythm disturbances, future iterations 
of cardiac biosensors could detect acute cardiovascular 
events and longitudinal factors to build up a personal risk 
baseline [128, 134–138]. In this section, we review recent 
applications and provide future perspectives on the use 
of various digital health and biosensor devices for CAD 
prevention with state-of-art AI approaches [139].

Heart Rhythm (Cardiac Signal) Monitoring

Central to CAD is the heart and the change of mechani-
cal, colorimetric, and electrical signals it produces with 
each heartbeat. These physical signals can be measured 
by electrodes, optical sensors, or motion sensors and inter-
preted into various biosignals including electrocardiogram 
(ECG), photoplethysmogram (PPG), stereocardiogram 
(SCG), phonocardiogram (PCG), ballistocardiogram 
(BCG), gyrocardiogram (GCG), or impulse cardiogram 
(ICG) for cardiac monitoring [140]. These signals can in 
turn be used to detect cardiac risks like atrial fibrillation 
and/or other heart rhythm disturbances indicative of future 
disease risk or pathology [141]. For example, He et al. 
extracted features of 30 dimensions from PPG signals 
to assess hemorrhagic risk in patients with CAD using 
an XGBoost regression model and achieving an AUC of 
0.76 with tenfold cross validation [142]. Neural network-
based models promise to improve sensor based prediction 
through their ability to denoise, annotate, and perform fea-
ture extraction on time traces [143–147]. ECG, PPG, and 
SCG can be used for remote heart condition monitoring 
when deployed using wearable devices, especially dur-
ing exercise [148]. And with AI-assisted early abnormal 
signal detection, cardiac signals can be further used for 
CAD diagnosis and prediction [149–152]. While many 
of these algorithms operate on 12-lead ECG data, some 
researchers have demonstrated comparable performance 
with single-lead ECGs [152–154]. Despite advances in 
detecting specific cardiovascular abnormalities, the full 
utility of sensor-based signals for long-term risk predic-
tion remains unproven. Addressing challenges such as 
confounding variables, temporal ambiguity, distinguish-
ing genuine signals from noise, and population variability 
would be a further obstacle to overcome.
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Physical Activity Monitoring

Although lifestyle can be difficult to ascertain in a sin-
gle clinic visit, it is been identified as mediating sev-
eral risk factors for CAD. Lifestyle risk factors can be 
measured via accelerometer-based step counting, energy 
expenditure [155], sleeping composites [156, 157], and 
other factors [120, 139]. These activity metrics can then 
be included in ML models for prediction of cardiac out-
comes. For instance, Nguyen et al. measured accelerom-
eter-measured daily total movements and found an asso-
ciation between this measure of physical activity and risk 
of incident CVD in women and young adult [158, 159]. 
Triaxial accelerometer-based physical activity data has 
been used to demonstrate CAD risk factor reduction by 
changing chronoactivity [160, 161]. And Huang et al. 
designed an ensemble ML algorithm for the prediction 
of coronary artery calcium from predictors including sev-
eral lifestyle and physical activity features [162]. Despite 
the breakthrough in AI and wearable technology [163, 
164], the current studies in the field are limited to benefit 
with cardiac telerehabilitation in patients with CAD [165, 
166]. Actual, real-time, and useful inclusion of physical 
activity measures in prediction of incident CAD risk has 
yet to be demonstrated.

Biochemical Sensors

Biochemical sensors transform a biochemical analyte 
into an electronic signal, often using an integrated opti-
cal, acoustic, magnetic, or electrochemical sensing array 
operating in biofluids like blood, sweat, saliva, or urine. 
This technology can be used to conduct non-invasive, 
cost-effective, multi-analytes scans of human metabo-
lites, and in quick response to lifestyle influences [167]. 
These scans have been used in CAD prediction models, 
integrating multi-modal signals of BP, temperature, ECG, 
glucose, hemoglobin, and oxygen levels, and achieving 
97% accuracy with a minimum redundancy maximum 
relevance feature selection [168]. Multiple vital signs 
including electrodermal activity can also be combined in 
ML models to aid in the detection of sleep stages, which 
can then be used to improve CAD risk prediction [169, 
170]. More unusual examples include the use of chemical 
gas sensors for the detection of CAD risk via an electronic 
nose [171]. Or novel quantum sensing approaches used 
to detect cardiac amyloidosis [172]. Biochemical sens-
ing is an up-and-coming application area where clinical 
validation is still pending [173]. Economical deployment 
of these sensors and a system of interpretation and alerts 
will be the major challenge to overcome with these infor-
mation-rich technologies.

Environmental Sensing

Sensing can extend beyond the body and range from local 
neighborhood environmental monitoring [174], to include 
larger structural elements of society [175]. Several cohort 
studies have demonstrated the value of wearable sensors by 
capturing the complex gene-environment interactions [176] as 
well as the impact of longitudinal actionable changes [177]. 
One promising area of research involves the use of GPS tech-
nology and other environmental sensors to collect real-time 
data on an individual’s exposure to air pollution, water quality, 
and other environmental factors that may increase their risk 
of CAD [178]. This can be valuable in developing personal-
ized prevention strategies that consider an individual’s unique 
travel patterns and contextual background [179, 180]. In addi-
tion to environmental factors, social factors play an important 
role in the development of CAD, such as social interaction and 
community engagement [181]. Integrating this data poten-
tially enables AI-powered wearables to recognize regions with 
heightened environmental risk factors and provide tailored 
lifestyle coaching to reduce the incidence of CAD through 
sustainable behavioral changes [182, 183]. These applications 
are likely to be further into the future as a deeper understand-
ing of the interplay between endogenous and environmen-
tal risk factors must be appreciated before these datastreams 
extend to individual level vs population level utility.

Advanced Applications of AI in Noninvasive 
Imaging for CAD Risk Evaluation

AI has been increasingly applied to cardiovascular imag-
ing for risk stratification of CAD, by virtue of its ability 
to accurately quantify prognostic biomarkers from image 
data, in addition to the reduction in cost and improvement 
in image acquisition and interpretation. This section sum-
marizes recent promising applications of AI across various 
noninvasive imaging modalities, including coronary artery 
calcium imaging, coronary computed tomography (CT) 
angiography, peri-coronary/epicardial adipose tissue imag-
ing, nuclear imaging, and retinal imaging, for the improved 
risk assessment of CAD, which can better guide decision-
making in the primary prevention of CAD.

Coronary Artery Calcium Scoring

As coronary artery calcium (CAC) is a highly specific fea-
ture of atherosclerosis, CAC scoring (CACS) has emerged 
as a powerful and widely available means of predicting risk 
for atherosclerotic cardiovascular diseases, particularly 
useful for guiding primary prevention therapy decisions 
[184–186]. AI approaches have gained great attention due 
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to their promising automation capabilities for annotation of 
the calcified lesions. Sandstedt et al. used a ML model that 
integrates patient-specific heart-centric coordinates, local 
voxel images, and the coronary territory map to evaluate 
the diagnostic efficacy of this AI-driven, automated CACS 
software against semi-automated software, using the same 
ECG-gated CT images [187]. In this study, the AI-based 
method was less time-demanding, with an excellent correla-
tion and agreement with the semi-automated one. The lim-
ited accessibility of ECG-gated CT represents a critical issue 
restricting its routine use. The millions of people undergo 
routine chest CT scans and demonstrate CAC, but its quan-
titation is not feasible yet. In this regard, recent studies have 
focused on the application of convolutional neural networks 
(CNN) to a wide range of CT examination types, including 
low-dose chest CT and radiation therapy planning CT, and 
suggest that AI-based CACS quantification is robust across 
the different CT protocols [188, 189]. The future applica-
tion of AI-based CAC assessment is the microcalcification 
quantification, since the current methods are limited to 
advanced calcification. Considering that microcalcifications 
can induce to vascular stiffening and plaque rupture [190], 
AI-based microcalcification quantification can allow further 
risk stratification in primary prevention of individuals with 
normal results by conventional imaging.

Coronary CT Angiography

Coronary CT angiography (CCTA) is another important 
modality that can provide information on the risk of sub-
sequent acute coronary syndrome (ACS). Although CACS 
reflects overall coronary atherosclerosis burden and is use-
ful for predicting the risk of CAD, lesion-specific coronary 
plaque burden and high-risk plaque features, major deter-
minants for ACS risk, can be only assessed by CCTA [191, 
192]. However, the analysis of coronary plaque volume and 
features requires a high level of human expertise and time-
consuming protocols, even compared to that needed for 
CACS measurement. Recent advances in AI have enabled 
more rapid and accurate assessment of plaque volume and 
characteristics. Lin et al. used DL model with the hierarchical 
convolutional long short-term memory network to segment 
the coronary arteries and showed that this DL-based plaque 
volume quantification was comparable to that measure by 
intravascular ultrasound (IVUS), a well-established refer-
ence standard, with a shorter analysis time (5.65 s versus 
25.66 min for experts) [193]. Araki et al. utilized IVUS in a 
framework combining SVM and PCA to achieve AUC 0.98 
in the risk assessment for CAD [194]. Al’Aref et al. applied 
XGBoost to train and tune using 10-fold stratified cross-val-
idation on CCTA images and found that this technique could 
be useful for identifying high-risk plaque features [195]. 
Han et al. joined the clinical characteristics, biomarkers, and 

CCTA-derived variables toward better identify rapid coro-
nary plaque progression in high-risk CAD patients [196]. 
Li et al. implemented a combined reinforcement multitask 
progressive time-series networks model using patients’ basic 
patient information with family history, blood biochemical 
indicators, echocardiography reports, and coronary angiogra-
phy data on different time to predict the occlusion degree of 
eight coronary arteries [197]. Combined with traditional risk 
factors, biomarkers or plaque features, CCTA metrics could 
aid the risk stratification for CAD risk prediction [198, 199].

Detection of vascular inflammation and novel therapies tar-
geting inflammation have become promising fields of CAD 
research [200–203]. Peri-coronary and epicardial adipose tis-
sue have attracted growing interest, because these imaging 
markers can reflect the inflammation. However, their meas-
urement is not considered suitable for clinical practice due to 
the need of a tedious manual process. A recent study demon-
strated that DL model allows fully automated quantification 
of epicardial adipose tissue with a comparable accuracy and a 
shorter analysis time (1.57 s versus 15 min for experts) [204]. 
Furthermore, peri-coronary adipose tissue CT attenuation is 
the current state-of-the-art method to assess coronary spe-
cific inflammation. However, this technique does not account 
for the complex spatial relationship among voxels. Recent 
studies suggest that the CT-based radiomics coupled with AI 
improve the discrimination of MI or the prediction of cardiac 
risk beyond CT attenuation-based model [205, 206].

Nuclear Imaging

Current cardiac nuclear imaging is dominated by myocar-
dial perfusion and viability assessment using the flagship 
techniques of single photon emission computed tomography 
(SPECT) and positron emission tomography (PET) [207] 
and its role in the primary prevention of CAD has been 
limited so far [208, 209]. However, at least two scenarios 
provide perspectives on cardiac nuclear imaging, expand-
ing their use in primary prevention with the assistance of 
AI. First, considering that the usage of biomarkers for risk 
stratification in primary prevention can vary according to 
their predictive value [210], which can be improved by the 
implementation of AI, there are still chances that myocardial 
perfusion imaging (MPI) can be used for primary prevention 
in the subclinical stage of CAD. Two recent studies highlight 
this possibility [211]. The first study comparing quantita-
tive versus visual MPI in subtle perfusion defects proved 
that total perfusion deficit quantified automatically allowed 
more precise risk stratification [212]. The following study 
described a DL model significantly surpassing the diagnostic 
accuracy of standard quantitative analysis and visual reading 
for MPI [213]. Another possibility of future use of cardiac 
nuclear imaging for primary prevention of CAD under the 
assistance of AI can be related to the prediction of high-risk 
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atherosclerotic plaques associated with a near-term athero-
thrombotic event such as myocardial infarction. Clinical 
studies suggested the inflammatory activities in atheroscle-
rotic plaques measured by 18F-fluorodeoxyglucose (FDG) 
PET or microcalcification tracked by 18F-sodium fluoride 
(NaF) PET combined with CT in atherosclerotic plaques are 
related to cardiovascular events [214–216]. Though there 
is limited evidence that this can be applied to the primary 
prevention of CAD, one recent study developed a ML model 
incorporating quantitative measures of 18F-NaF PET that 
successfully predicted the future risk of myocardial infarc-
tion in patients with stable CAD [217, 218].

Retinal Imaging

Though there have been several reports on its correlation 
to CAD, retinal imaging has not been a conventional risk 
stratification method for the primary prevention of CAD 
[219, 220]. However, recent studies using DL algorithms 
shed light on retinal imaging as a potential tool to pre-
dict and stratify the risk of CAD. Trained on data from 
284,335 patients, the Google AI team employed deep 
learning algorithms to accurately predict cardiovascular 
risk factors like age, gender, smoking status, systolic blood 
pressure, and major cardiac events such as heart attacks 
from retinal images [221]. In a study using DL algorithms 
trained on 216,152 retinal images, researchers investigated 
the algorithm’s ability to predict CAC scores and stratify 
cardiovascular disease risk. The results showed that the 
DL method, based on retinal images, could predict CAC 
as determined by CT scans with equal effectiveness in 
anticipating cardiovascular events [222]. Most recently, 
after training DL models with retinal and cardiovascular 
magnetic resonance (CMR) images together, the research-
ers showed that their algorithm could predict not only the 
mass or volume of the heart but also future myocardial 
infarction just using the retinal images and demographic 
data [223]. Since retinal scans are comparatively cheap and 
routinely used in many optician practices, with more vali-
dation studies, AI-based retinal images might be pushed 
up as a new risk stratification tool for primary prevention.

Enhancing CAD Prediction Through 
AI‑Enabled Integration of Personal Health 
Data and Large Language Models

Increased accessibility of personal EHRs and other digital 
health data sources provides a rich substrate from which 
to generate ML-based risk assessment models [224, 225]. 
Emerging nationwide biobanks have expedited the imple-
mentation of these models in care delivery [225, 226]. AI is 

well suited to parse the sparse yet high dimensional data in 
EHRs [227]. Recent efforts have begun to demonstrate how 
genetic risk can be systematically integrated more directly 
with a wider spectrum of relevant risk factors for risk assess-
ment [228, 229]. ML and NLP approaches have been applied 
for CVD prediction through parsing structured or unstruc-
tured medical big data [230–232]. More specifically, lan-
guage models — essentially, pre-trained models that can be 
fine-tuned for various natural language tasks, each of which 
previously required individual network models — have 
revolutionized natural language processing (NLP) in recent 
years. They have become pervasive in NLP, largely due to 
the success of the transformer architecture [233] and its high 
compatibility with massively parallel computing hardware. 
It is now widely recognized that scaling up language models 
— in terms of training and model parameters — can enhance 
both performance and sample efficiency across a variety of 
downstream NLP tasks [234].

To date, one of the largest language models trained with 
unstructured EHR data — ClinicalBERT [235] — has been 
developed to characterize reasons for statin nonuse in a 
multiethnic, real-world, ASCVD cohort. ClinicalBERT 
includes 110 million parameters and was trained using 0.5 
billion words from the publicly available MIMIC-III data-
set. The study revealed that around 40% of ASCVD patients 
lacked formal statin prescriptions. ClinicalBERT effectively 
detected statin nonuse and primary reasons for this nonuse 
from unstructured clinical notes — prevalently, patient-
level reasons (such as side effects and personal preferences) 
and clinical-level reasons (i.e., practices that deviate from 
established guidelines). By guiding targeted interventions 
to address statin nonuse, clinical LLMs like ClinicalBERT 
potentially provide a pathway to address important treatment 
gaps in cardiovascular medicine.

Even larger clinical LLMs have been developed — for 
example, GatorTron [236] and Med-PaLM 2 [237]. Gator-
Tron scaled up to a size of 8.9 billion parameters using a 
corpus with 90 billion words from clinical notes, scientific 
literature, and general English text. It achieved SOTA per-
formance on 5 clinical NLP tasks at various linguistic levels 
(clinical named entity recognition (CNER), medical relation 
extraction (MRE), semantic textual similarity (STS), natural 
language inference (NLI), and medical question answering 
(MQA)) when compared with three existing clinical/bio-
medical LM. Remarkably, GatorTron performed consider-
ably better in the most complex NLP tasks (NLI and MQA) 
compared with existing smaller clinical LMs (BioBERT 
and ClinicalBERT). Google’s Med-PaLM 2 scored up to 
86.5% on USMLE MedQA — comparable to an expert 
doctor — setting a new state-of-the-art and demonstrating 
the potential of clinical large LM for advanced applications 
such as MedQA.
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A fascinating property of LLMs is emergence, which 
results from scale [234]. For instance, GPT-3 [238], which 
boasts 175 billion parameters compared to GPT-2’s 1.5 bil-
lion, enables in-context learning, in which the LLM can 
adapt to a specific downstream task simply by receiving a 
prompt (a natural language description of the task). Intrigu-
ingly, this emergent property was neither explicitly trained 
for nor initially expected to arise [239]. An important con-
sequence of this aspect is the sociological shift within the 
NLP community toward general-purpose models, i.e., when 
scaling enables a few-shot prompt-based general-purpose 
model to outperform previous SOTA performance held by 
fine-tuned, task-specific models.

Liévin et al. recently explored the capacity of general-
purpose LLMs to reason through complex medical questions 
[239]. Utilizing a human-aligned version of GPT-3 (Instruct-
GPT [240]), they addressed multiple-choice questions from 
medical exams (USMLE and MedQA) as well as medical 
research queries (PubMedQA). Their investigation employed 
various techniques: chain-of-thought (CoT) prompts for step-
by-step reasoning, grounding by augmenting the prompt 
with search results, and few-shot learning by prefacing the 
question with example question–answer pairs. A medical 
domain expert reviewed and annotated the model’s rea-
soning for a subset of the USMLE questions. Remarkably, 
even with the most basic prompting schemes, zero-shot 
GPT-3 outperformed domain-specific BERT baselines. CoT 
prompting emerged as a particularly effective strategy. By 
combining multiple CoTs, they discovered that GPT-3 could 
achieve unprecedented performance on medical questions. 
Moreover, CoT prompting rendered the zero-shot GPT-3 
predictions interpretable, revealing a good comprehension 
of the context, correct recall of domain-specific knowledge, 
and non-trivial reasoning patterns. They also noted that the 
incorporation of few-shot prompt-based learning further 
improved performance. Lately, Nori et al. ran similar tests 
on GPT-4 [241], the state-of-the-art LLM at the time of this 
writing [242]. Without any specialized prompt engineering, 
GPT-4 exceeded the passing score for the USMLE exam by 
more than 20 points and outshined earlier general-purpose 
models (GPT-3.5) as well as models that have been specifi-
cally fine-tuned on medical knowledge.

In applications where safety is paramount, such as health-
care, the efficacy of LLMs hinges on their ability to produce 
outputs that are both factually accurate and comprehensive. 
The increased conversational abilities of LLMs like GPT-4 
enable new paradigms such as multi-agent LLMs. For exam-
ple, dialog-enabled resolving agents (DERA) is a simple, 
interpretable forum for models to communicate feedback 
and iteratively improve output [243]. Dialog is structured 
as a discussion between two types of agents: a researcher, 
who processes information and identifies key problem com-
ponents, and a decider, who has the authority to synthesize 

the researcher’s information and makes final determinations 
on the output. DERA was evaluated on three tasks with a 
clinical focus. In the areas of medical conversation summa-
rization and care plan generation, it demonstrated significant 
improvement over the baseline GPT-4 performance, as evi-
denced by both human expert preference assessments and 
quantitative metrics.

Although impressive, these results are not yet on par with 
human performance. For example, while chain-of-thought 
prompting approaches suggest the emergence of reasoning 
patterns that align reasonably well with human approaches to 
medical problem-solving, they still expose significant gaps 
in knowledge and reasoning. Interestingly, only the largest 
GPT models were capable of answering medical questions 
in a zero-shot setting. This leads to the speculation that the 
smaller models cannot hold the intricate factual knowledge 
needed to address specialized medical queries, and that the 
ability to reason about medical questions only emerges in 
the largest models. LLMs are expensive to train and require 
the development of safeguards before being deployed into 
real-world systems. Notoriously, LLMs have a propensity to 
magnify the societal biases inherent in their training data, 
can fabricate information based on the data encoded in their 
parameters, and it is possible to extract training data from 
LLM, with larger models being more likely to memorize 
training data [244, 245]. Therefore, deploying LLMs into 
sensitive sectors like healthcare must be undertaken with 
great caution [246, 247]. Nonetheless, LLM are powerful 
instruments and therefore hold the potential to transform 
the field of machine intelligence applied to healthcare and 
primary prevention (CAD and beyond).

Current Limitations and Future 
Considerations

The journey to integrate AI into healthcare demands both 
foundational investment and a cultural shift [248]. This sec-
tion examines challenges encompassing data availability, 
data security and privacy, interpretability, and the pivotal 
role of adequate representation and reduced bias when 
deploying AI for CAD prevention [249].

Access to diverse and comprehensive datasets is the 
bedrock of AI’s efficacy in healthcare transformation. How-
ever, regulatory constraints and fragmented data storage can 
impede the development and evaluation of AI models. Even 
though digital health platforms provide vast datasets ideal 
for AI, the lack of unified data processing and sharing frame-
works necessitates considerable curation efforts. Metadata 
tagging protocols should be standardized to enhance reli-
ability, comparability, and scalability. Accurately harmoniz-
ing data from varied platforms and technologies is formi-
dable but indispensable for creating effective AI models. 



224	 Current Cardiovascular Risk Reports (2023) 17:215–231

1 3

Initiatives like interdisciplinary consortiums for AI training, 
technology interfaces for model validation, and open-source 
sharing of datasets and computational methods are poten-
tial solutions [250, 251]. A synchronized strategy for data 
recording and storage, compatible with diverse devices, is 
essential [252].

Protecting data throughout AI model lifecycles is para-
mount. These models, trained on vast and sometimes sensi-
tive datasets, warrant meticulous care to safeguard patient 
confidentiality. While strategies like data masking and pseu-
donymization bolster data privacy during AI development, 
residual risks of data exposure persist. Leveraging AI within 
decentralized data architectures that emphasize privacy has 
been proposed [253–255], though its true merit in alleviat-
ing privacy concerns is yet to be validated. Unified efforts 
from researchers, institutions, and regulatory authorities are 
vital to foster inclusivity during data collection, ensuring AI 
models that are both potent and secure, thereby benefiting 
healthcare management and patient outcomes [256, 257].

The intricacies of AI algorithms, often labeled as “black 
boxes” due to their opaque decision-making processes, pre-
sent hurdles in building trust among healthcare providers and 
patients [258]. Successful AI adoption in healthcare neces-
sitates its alignment with clinical practices and guidelines, 
promoting an interoperable and sustainable care delivery sys-
tem [259]. Incorporating AI into clinical workflows demands 
a holistic approach, involving AI-human collaboration among 
healthcare professionals, data experts, and specialists [260]. 
This integration is not just about the technology but also about 
reshaping the decision-making processes in healthcare. Algo-
rithmic solutions targeting lifestyle modifications and empha-
sizing transparent, actionable predictive pathways are also 
emerging to address this quandary [261]. The seamless fusion 
of AI into existing clinical workflows, ensuring interpretability 
and adherence to guidelines, is of utmost importance [262].

A commitment to inclusivity in healthcare AI is essential, 
ensuring data covers a wide spectrum of populations. Bias 
mitigation is vital to prevent AI from inadvertently intensify-
ing health inequities. Yet, datasets harnessed for AI often lack 
a balance inclusion of diverse ethnic and cultural communi-
ties, undermining a model’s broad relevance [263]. To coun-
ter this, current efforts are underway to diversify ethnic and 
ancestral makeup of the participant pool [264]. Among them, 
digital health innovations present opportunities to include 
often-overlooked groups in medical research, enhancing the 
accuracy of AI predictions in disease prevention [226, 265]. 
Tailoring models regionally and adopting transfer learning 
methods can help bridge performance gaps across demo-
graphics [266]. With the flexibility of AI, it could further 
facilitate precise bias identification and correction, proving 
superior to conventional risk assessment methods [267]. Such 
proactive measures are vital for AI’s effective integration into 
healthcare, promoting health equity [268].

In summary, while there are many challenges to imple-
menting AI in healthcare, there are also promising solutions 
and opportunities to improve patient outcomes. A coordi-
nated effort is needed to address these challenges and to 
ensure that AI is used ethically and responsibly in healthcare 
management [269, 270].
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