Skip to main content

Advertisement

Log in

Upgrading of Diammonium Hydrogen Phosphate on Wood and High-Value as an Efficient Derived Carbon

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The coupling of DAP (2.9–29 wt%) and pre-carbonization (300 °C, 1 h) of a woody biomass waste (fast growing) was aimed to improve the carbon yield for pyrolysis technology. After the pretreatment, the pyrolysis experiment was performed at 500–900 °C under hypoxic conditions. The introduction of DAP (2.9%) could enhance the solid yields 2 times for biomass, and the calorific value was elevated from 22.57 kJ/kg for the carbonized biomass to 24.67 kJ/kg in carbonization. The further pyrolysis results showed that the comparable solid yield (85%), gas yield (4.1%), and liquid yield (21%) of CPDP were obtained by the above modification of biomass. The phenolic and toluene compounds of the tar were reduced by 37.3% and 7%, the temperature of the main gas precipitation peaks was decreased by 78 °C, and the released of methane was more than 3 times. This work for the first time proves the effectiveness of improving the carbon fixation and deoxidation performance from biomass via the pretreatment by DAP impregnation and the carbonization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 155:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    Article  CAS  Google Scholar 

  2. Xia LJ, Hao WQ, Qin JJ et al (2018) Carbon emission reduction and promotion policies considering social preferences and consumers’ low-carbon awareness in the cap-and-trade system. J Cleaner Prod 195:1105–1124. https://doi.org/10.1016/j.jclepro.2018.05.255

    Article  Google Scholar 

  3. Li H, Wang SY, Yuan XZ et al (2018) The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization. Bioresour Technol 249:574–581. https://doi.org/10.1016/j.biortech.2017.10.046

    Article  CAS  PubMed  Google Scholar 

  4. Guo H, Cui J, Li JH (2022) Biomass power generation in China: status, policies and recommendations. Energy Rep 8:687–696. https://doi.org/10.1016/j.egyr.2022.08.072

    Article  Google Scholar 

  5. Wang Z, Lei T, Yang M et al (2017) Life cycle environmental impacts of cornstalk briquette fuel in China. Appl Energy 192:83–94. https://doi.org/10.1016/j.apenergy.2017.01.071

    Article  Google Scholar 

  6. Meng WX, Liu XJ, Song HQ et al (2021) Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today 40:101273. https://doi.org/10.1016/j.nantod.2021.101273

    Article  CAS  Google Scholar 

  7. Yang BJ, Liu B, Chen JT et al (2022) Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode. Chem Eng J 429:132392. https://doi.org/10.1016/j.cej.2021.132392

    Article  CAS  Google Scholar 

  8. Bridgeman TG, Jones JM, Williams A et al (2010) An investigation of the grindability of two torrefied energy crops. Fuel 89:3911–3918. https://doi.org/10.1016/j.fuel.2010.06.043

    Article  CAS  Google Scholar 

  9. Adeleke AA, Odusote JK, Ikubanni PP et al (2020) The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass. Heliyon 6:22–32. https://doi.org/10.1016/j.heliyon.2020.e03582

    Article  CAS  Google Scholar 

  10. Pradhan P, Mahajani SM, Arora A (2018) Production and utilization of fuel pellets from biomass: a review. Fuel Process Technol 181:215–232. https://doi.org/10.1016/j.fuproc.2018.09.021

    Article  CAS  Google Scholar 

  11. Alcazar-Ruiz A, Ortiz ML, Dorado F et al (2022) Gasification versus fast pyrolysis bio-oil production: a life cycle assessment. J Cleaner Prod 336:130373. https://doi.org/10.1016/j.jclepro.2022.130373

    Article  CAS  Google Scholar 

  12. Bajwa DS, Peterson T, Sharma N et al (2018) A review of densified solid biomass for energy production. Renew Sustain Energy Rev 96:296–305. https://doi.org/10.1016/j.rser.2018.07.040

    Article  Google Scholar 

  13. Cortazar M, Santamaria L, Lopez G et al (2021) Fe/olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. J Ind Eng Chem 99:364–379. https://doi.org/10.1016/j.jiec.2021.04.046

    Article  CAS  Google Scholar 

  14. Yin Y, Yang C, Li M et al (2021) Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: a review. Sci. Total Environ 798:149294. https://doi.org/10.1016/j.scitotenv.2021.149294

    Article  CAS  PubMed  Google Scholar 

  15. Sikarwar VS, Zhao M, Clough P et al (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977. https://doi.org/10.1039/C6EE00935B

    Article  CAS  Google Scholar 

  16. Xu C, Donald J, Byambajav E et al (2010) Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89:1784–1795. https://doi.org/10.1016/j.fuel.2010.02.014

    Article  CAS  Google Scholar 

  17. Lin JH, Cui CW, Sun SC et al (2022) Synergistic optimization of syngas quality and heavy metal immobilization during continuous microwave pyrolysis of sludge: competitive relationships, reaction mechanisms, and energy efficiency assessment. J Hazard Mater 438:129451. https://doi.org/10.1016/j.jhazmat.2022.129451

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Lei H, Zou R et al (2021) Biochar-driven simplification of the compositions of cellulose-pyrolysis-derived biocrude oil coupled with the promotion of hydrogen generation. Bioresour Technol 334:125251. https://doi.org/10.1016/j.biortech.2021.125251

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Venderbosch R, Fang Y (2018) Co-processing of crude and hydrotreated pyrolysis liquids and VGO in a pilot scale FCC riser setup. Fuel Process Technol 181:157–165. https://doi.org/10.1016/j.fuproc.2018.09.023

    Article  CAS  Google Scholar 

  20. Wang L, Guo Y, Zhu Y et al (2010) A new route for preparation of hydrochars from rice husk. Bioresour Technol 101:9807–9810. https://doi.org/10.1016/j.biortech.2010.07.031

    Article  CAS  PubMed  Google Scholar 

  21. Wantaneeyakul N, Kositkanawuth K, Turn SQ et al (2021) Investigation of biochar production from copyrolysis of rice husk and plastic. ACS Omega 6:28890–28902. https://doi.org/10.1021/acsomega.1c03874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Zhu Z, Shen B et al (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598. https://doi.org/10.1016/j.energy.2019.01.035

    Article  CAS  Google Scholar 

  23. Zheng A, Fan Y, Wei, et al (2020) Chemical looping gasification of torrefied biomass using NiFe2O4 as an oxygen carrier for syngas production and tar removal. Energy Fuels 34(5):6008–6019. https://doi.org/10.1021/acs.energyfuels.0c00584

    Article  CAS  Google Scholar 

  24. Nguyen NM, Alobaid F, May J et al (2020) Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor. Energy 202:117744. https://doi.org/10.1016/j.energy.2020.117744

    Article  CAS  Google Scholar 

  25. Mateusz T, Kazimierz M, Sylwester K et al (2019) An investigation of biomass grindability. Energy 183:116–126. https://doi.org/10.1016/j.energy.2019.05.167

    Article  Google Scholar 

  26. Oginni O, Singh K (2020) Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars. J Environ Chem Eng 8:104169. https://doi.org/10.1016/j.jece.2020.104169

    Article  CAS  Google Scholar 

  27. Kipngetich P, Kiplimo R, Tanui JK et al (2023) Effects of carbonization on the combustion of rice husks briquettes in a fixed bed. Clean Eng Technol 13:100608. https://doi.org/10.1016/j.clet.2023.100608

    Article  Google Scholar 

  28. Kong G, Wang KJ, Zhang X et al (2022) Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars. Bioresour Technol 363:127960. https://doi.org/10.1016/j.biortech.2022.127960

    Article  CAS  PubMed  Google Scholar 

  29. Sena da Fonseca B, Ferreira Pinto AP, Piçarra S et al (2021) Consolidating efficacy of diammonium hydrogen phosphate on artificially aged and naturally weathered coarse-grained marble. J Cult Herit 51:145–156. https://doi.org/10.1016/j.culher.2021.08.003

    Article  Google Scholar 

  30. Kowalewicz K, Vorndran E, Feichtner F et al (2021) In-vivo degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds. Materials 14:946. https://doi.org/10.3390/ma14040946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar H, Kumar V, Sharma S et al (2021) Thermophysical properties of amino acids L-serine and L-leucine in aqueous diammonium hydrogen phosphate solutions: volumetric and acoustic studies. J Mol Liq 344:117780. https://doi.org/10.1016/j.molliq.2021.117780

    Article  CAS  Google Scholar 

  32. Li Y, Tan ZW, Zhu YJ et al (2022) Effects of P-based additives on agricultural biomass torrefaction and particulate matter emissions from fuel combustion. Renew Energ 190:66–77. https://doi.org/10.1016/j.renene.2022.03.101

    Article  CAS  Google Scholar 

  33. Menardo S, Balsari P, Tabacco E et al (2015) Effect of conservation time and the addition of lactic acid bacteria on the biogas and methane production of corn stalk silage. BioEnergy Res 8:1810–1823. https://doi.org/10.1007/s12155-015-9637-7

    Article  CAS  Google Scholar 

  34. Guo ZZ, Zhang J, Liu H et al (2017) Development of a nitrogen-functionalized carbon adsorbent derived from biomass waste by diammonium hydrogen phosphate activation for Cr(VI) removal. Power Technol 318:459–464. https://doi.org/10.1016/j.powtec.2017.06.024

    Article  CAS  Google Scholar 

  35. Wang C, Lei H, Qian M et al (2020) Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis. Sustain Energ Fuels 4:4614–4624. https://doi.org/10.1039/D0SE00652A

    Article  CAS  Google Scholar 

  36. Xu DH, Lin JH, Sun SC et al (2022) Microwave pyrolysis of biomass model compounds for bio-oil: formation mechanisms of the nitrogenous chemicals and DFT calculations. Energ Convers Manage 262:115676. https://doi.org/10.1016/j.enconman.2022.115676

    Article  CAS  Google Scholar 

  37. Wang CX, Zou R, Qian M et al (2022) Improvement of the carbon yield from biomass carbonization through sulfuric acid pre-dehydration at room temperature. Bioresource Technol 355:127251. https://doi.org/10.1016/j.biortech.2022.127251

    Article  CAS  Google Scholar 

  38. Peng B, Tong XY, Cao S et al (2020) Carbon emission calculation method and low-carbon technology for use in expressway construction. Sustainability 12:1–18. https://doi.org/10.3390/su12083219

    Article  Google Scholar 

  39. Yang RT, Steinberg M (1976) Reaction kinetics and differential thermal analysis. J Phys Chem C 80:965–968. https://doi.org/10.1021/j100550a009

    Article  CAS  Google Scholar 

  40. Dobele G, Rossinskaja G, Telysheva G et al (1999) Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J Appl Phys 49:307–317. https://doi.org/10.1016/S0165-2370(98)00126-0

    Article  CAS  Google Scholar 

  41. Lu ZM, Chen XX, Yao SC et al (2019) Feasibility study of gross calorific value, carbon content, volatile matter content and ash content of solid biomass fuel using laser-induced breakdown spectroscopy. Fuel 258:116150. https://doi.org/10.1016/j.fuel.2019.116150

    Article  CAS  Google Scholar 

  42. Shamsuddin MS, Yusoff N, Sulaiman MA (2016) Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chem 19:558–565. https://doi.org/10.1016/j.proche.2016.03.053

    Article  CAS  Google Scholar 

  43. Guizan C, EscuderoSanz FJ, Salvador S (2014) Effects of CO2 on biomass fast pyrolysis: reaction rate, gas yields and char reactive properties. Fuel 116:310–320. https://doi.org/10.1016/j.fuel.2013.07.101

    Article  CAS  Google Scholar 

  44. Gündüz F, Akbulut Y, Koyunoğlu C et al (2022) Obtaining the best temperature parameters for co-carbonization of lignite (yatağan)-biomass (peach seed shell) by structural characterization. Heliyon 8(9):e10636. https://doi.org/10.1016/j.heliyon.2022.e10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pütün E, Ateş F, Pütün AE (2008) Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel 87:815–824. https://doi.org/10.1016/j.fuel.2007.05.042

    Article  CAS  Google Scholar 

  46. Liao L, Zheng JH, Zhang Y et al (2021) Impact of torrefaction on entrained-flow gasification of pine sawdust: an experimental investigation. Fuel 289:119919. https://doi.org/10.1016/j.fuel.2020.119919

    Article  CAS  Google Scholar 

  47. Olugbade TO, Ojo OT (2020) Biomass torrefaction for the production of high-grade solid biofuels: a review. BioEnergy Res 13:999–1015. https://doi.org/10.1007/s12155-020-10138-3

    Article  CAS  Google Scholar 

  48. Lu CJ, Chen YT, Wang H, Li Y-J et al (2021) Palladium-catalyzed dearomative allylation of indoles with cyclopropyl acetylenes: access to indolenine derivatives11Electronic supplementary information (ESI) available: copies of NMR spectra. Org Bio Chem 19(3):635–644. https://doi.org/10.1039/d0ob02103b

    Article  CAS  Google Scholar 

  49. Shao T, Song XL, JiangY F et al (2023) Vanillin-catalyzed highly sensitive luminol chemiluminescence and its application in food detection. Spectrochim Acta A Mol Biomol Spectrosc 294:1386–1425. https://doi.org/10.1016/j.saa.2023.122535

    Article  CAS  Google Scholar 

  50. Han LF, Zhang EY, Yang Y et al (2020) Highly efficient U(VI) removal by chemically modified hydrochar and pyrochar derived from animal manure. J Cleaner Prod 264:121542. https://doi.org/10.1016/j.jclepro.2020.121542

    Article  CAS  Google Scholar 

  51. Zhang HP, Wang JX, Ye L et al (2023) Investigation into biochar supported Fe-Mo carbides catalysts for efficient biomass gasification tar cracking. Chem Eng J 454:140072. https://doi.org/10.1016/j.cej.2022.140072

    Article  CAS  Google Scholar 

  52. Zhang L, Yao ZL, Zhao LX et al (2021) Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar. Energy 232:120927. https://doi.org/10.1016/j.energy.2021.120927

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, Inner Mongolia Natural Science Foundation of China and Basic Scientific Research Projects of Universities directly under Autonomous Region (Grant numbers 52266015, 2020MS05043, 2022LHMS02004, 2022FX05, 2022FX07, 133 and 134).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yishen Chen and Meifeng Wu. The first draft of the manuscript was written by Li Wang. Reviewing and editing were conducted by Yunji Pang. Conceptualization and supervision were carried by Jia Xu. Calculation was performed by Xiaowei Li.

Corresponding author

Correspondence to Yisheng Chen.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1027 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, M., Pang, Y. et al. Upgrading of Diammonium Hydrogen Phosphate on Wood and High-Value as an Efficient Derived Carbon. Bioenerg. Res. 16, 2604–2615 (2023). https://doi.org/10.1007/s12155-023-10599-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10599-2

Keywords

Navigation