Skip to main content
Log in

Heterogeneous Catalysts from Metallic Oxides and Lignocellulosic Biomasses Ash for the Valorization of Feedstocks into Biodiesel: an Overview

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Transesterifying various grade feedstocks is a way to reduce biodiesel production costs. Non-edible feedstocks are preferable. Feedstock blending also makes production flexible and economical. Transesterification is not feasible without having an effective and low-cost catalyst. Heterogeneous catalysts are found to be prioritized for simple and low-cost biodiesel production. Metal oxides are good candidates. Their use is well known and recent researches are concerned with developing methods to increase their activity, stability, and selectivity. Metal oxide blending and integrating with porous support are some of the methods. Ash derived from lignocellulosic biomass is also being studied as a relatively cheap and environmentally benign heterogeneous catalyst. Based on its composition, it can be considered as a supported mixed oxide catalyst. Its composition strongly depends on the inorganic chemical makeup of the lignocellulosic biomass and synthesis (mainly calcination) conditions. Alkali metal compounds–rich and silica-rich ashes can be employed as alkali catalysts and active site support respectively. This review intends to give an overview of the metallic oxide and lignocellulosic biomass ash-based catalysts that were examined for the transesterification of diverse feedstocks into biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rello FJ, Valero A, Adroher FJ (2008) Anisakid parasites of the pouting (Trisopterus luscus) from the Cantabrian Sea coast, Bay of Biscay, Spain. J Helminthol 82:287–291. https://doi.org/10.1017/S0022149X08006196

    Article  CAS  PubMed  Google Scholar 

  2. Kumar M, Sharma MP (2016) Selection of potential oils for biodiesel production. Renew Sustain Energy Rev 56:1129–1138. https://doi.org/10.1016/j.rser.2015.12.032

    Article  CAS  Google Scholar 

  3. Devaraj K, Veerasamy M, Aathika S et al (2019) Study on effectiveness of activated calcium oxide in pilot plant biodiesel production. J Clean Prod 225:18–26. https://doi.org/10.1016/j.jclepro.2019.03.244

    Article  CAS  Google Scholar 

  4. Mohamed MA (2017) Biofuel Production from Used Cooking Oil Using Pyrolysis Process. Int J Res Appl Sci Eng Technol 5:2971–2976. https://doi.org/10.22214/ijraset.2017.11410

  5. Abed KA, Gad MS, El Morsi AK et al (2019) Effect of biodiesel fuels on diesel engine emissions. Egypt J Pet 28:183–188. https://doi.org/10.1016/j.ejpe.2019.03.001

    Article  Google Scholar 

  6. Bhuiya MMK, Rasul MG, Khan MMK et al (2014) Second generation biodiesel: potential alternative to-edible oil-derived biodiesel. Energy Procedia 61:1969–1972. https://doi.org/10.1016/j.egypro.2014.12.054

    Article  Google Scholar 

  7. Kumar MV, Babu AV, Kumar PR (2018) The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine. Alexandria Eng J 57:509–516

    Article  Google Scholar 

  8. Nayab R, Imran M, Ramzan M et al (2022) Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials–a review. Fuel 328:125254

    Article  CAS  Google Scholar 

  9. Tabatabaei M, Aghbashlo M, Dehhaghi M et al (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239–303. https://doi.org/10.1016/j.pecs.2019.06.001

    Article  Google Scholar 

  10. Yaşar F (2020) Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel 264:116817. https://doi.org/10.1016/j.fuel.2019.116817

    Article  CAS  Google Scholar 

  11. Xie W, Wan F (2019) Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem Eng J 365:40–50

    Article  CAS  Google Scholar 

  12. Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Biodiesel production from non-edible plant oils. Energy Explor Exploit 34:290–318. https://doi.org/10.1177/0144598716630166

    Article  CAS  Google Scholar 

  13. Hassan MM, Fadhil AB (2021) Development of an effective solid base catalyst from potassium based chicken bone (K-CBs) composite for biodiesel production from a mixture of non-edible feedstocks. In: Energy Sources Part A Recover Util Environ Eff, pp 1–16. https://doi.org/10.1080/15567036.2021.1927253

  14. Fadhil AB, Sedeeq SH, Al-Layla NMT (2019) Transesterification of non-edible seed oil for biodiesel production: characterization and analysis of biodiesel. Energ Sourc, Part A Recover Util Environ Eff 41:892–901. https://doi.org/10.1080/15567036.2018.1520367

    Article  CAS  Google Scholar 

  15. Singh D, Sharma D, Soni SL et al (2020) A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553. https://doi.org/10.1016/j.fuel.2019.116553

    Article  CAS  Google Scholar 

  16. Karmakar B, Hossain A, Jha B et al (2021) Factorial optimization of biodiesel synthesis from castor-karanja oil blend with methanol-isopropanol mixture through acid/base doped Delonix regia heterogeneous catalysis. Fuel 285:119197. https://doi.org/10.1016/j.fuel.2020.119197

    Article  CAS  Google Scholar 

  17. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005

    Article  CAS  Google Scholar 

  18. Tan YH, Abdullah MO, Kansedo J et al (2019) Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renew Energy 139:696–706. https://doi.org/10.1016/j.renene.2019.02.110

    Article  CAS  Google Scholar 

  19. Yaşar F (2019) Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: its effects on some critical fuel properties and comparison with CaO. Fuel 255:115828. https://doi.org/10.1016/j.fuel.2019.115828

    Article  CAS  Google Scholar 

  20. Zhu Z, Liu Y, Cong W et al (2021) Soybean biodiesel production using synergistic CaO/Ag nano catalyst: process optimization, kinetic study, and economic evaluation. Ind Crops Prod 166:113479. https://doi.org/10.1016/j.indcrop.2021.113479

    Article  CAS  Google Scholar 

  21. Istadi I, Anggoro DD, Buchori L et al (2015) Active acid catalyst of sulphated zinc oxide for transesterification of soybean oil with methanol to biodiesel. Procedia Environ Sci 23:385–393. https://doi.org/10.1016/j.proenv.2015.01.055

    Article  CAS  Google Scholar 

  22. Jamil F, Al-Muhatseb AH, Myint MTZ et al (2018) Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). Energy Convers Manag 155:128–137. https://doi.org/10.1016/j.enconman.2017.10.064

    Article  CAS  Google Scholar 

  23. Védrine JC (2017) Heterogeneous catalysis on metal oxides. Catalysts 7:341. https://doi.org/10.3390/catal7110341

    Article  CAS  Google Scholar 

  24. Refaat AA (2011) Biodiesel production using solid metal oxide catalysts. Int J Environ Sci Technol 8:203–221. https://doi.org/10.1007/BF03326210

    Article  CAS  Google Scholar 

  25. Vasić K, Podrepšek GH, Knez Ž, Leitgeb M (2020) Biodiesel production using solid acid catalysts based on metal oxides. Catalysts 10:237. https://doi.org/10.3390/catal10020237

    Article  CAS  Google Scholar 

  26. Tanabe K (1985) Surface and catalytic properties of ZrO2. Mater Chem Phys 13:347–364. https://doi.org/10.1016/0254-0584(85)90064-1

    Article  CAS  Google Scholar 

  27. Endalew AK, Kiros Y, Zanzi R (2011) Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenerg 35:3787–3809. https://doi.org/10.1016/j.biombioe.2011.06.011

    Article  CAS  Google Scholar 

  28. Tanabe K, Fukuda Y (1974) Basic properties of alkaline earth metal oxides and their catalytic activity in the decomposition of diacetone alcohol. React Kinet Catal Lett 1:21–24. https://doi.org/10.1007/BF02075116

    Article  CAS  Google Scholar 

  29. Li H, Liu F, Ma X et al (2019) Catalytic performance of strontium oxide supported by MIL–100(Fe) derivate as transesterification catalyst for biodiesel production. Energy Convers Manag 180:401–410. https://doi.org/10.1016/j.enconman.2018.11.012

    Article  CAS  Google Scholar 

  30. Zhang Y, Niu S, Han K et al (2021) Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renew Energy 168:981–990. https://doi.org/10.1016/j.renene.2020.12.132

    Article  CAS  Google Scholar 

  31. Widiarti N, Suryana LA, Wijayati N et al (2017) Synthesis of SrO.SiO2 catalyst and its application in the transesterification reactions of soybean oil. Bull Chem React Eng & Catal 12:299–305. https://doi.org/10.9767/bcrec.12.2.804.299-305

    Article  CAS  Google Scholar 

  32. Sánchez Faba EM, Ferrero GO, Dias JM, Eimer GA (2020) Na-Ce-modified-SBA-15 as an effective and reusable bimetallic mesoporous catalyst for the sustainable production of biodiesel. Appl Catal A Gen 604:117769. https://doi.org/10.1016/j.apcata.2020.117769

    Article  CAS  Google Scholar 

  33. Chen XR, Ju YH, Mou CY (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737. https://doi.org/10.1021/jp0749221

    Article  CAS  Google Scholar 

  34. Dehghani S, Haghighi M (2017) Sono-sulfated zirconia nanocatalyst supported on MCM-41 for biodiesel production from sunflower oil: influence of ultrasound irradiation power on catalytic properties and performance. Ultrason Sonochem 35:142–151. https://doi.org/10.1016/j.ultsonch.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  35. Hu N, Ning P, He L et al (2021) Near-room temperature transesterification over bifunctional CunO-Bs/SBA-15 catalyst for biodiesel production. Renew Energy 170:1–11. https://doi.org/10.1016/j.renene.2021.01.118

    Article  CAS  Google Scholar 

  36. Dehghani S, Haghighi M (2020) Sono-enhanced dispersion of CaO over Zr-Doped MCM-41 bifunctional nanocatalyst with various Si/Zr ratios for conversion of waste cooking oil to biodiesel. Renew Energy 153:801–812. https://doi.org/10.1016/j.renene.2020.02.023

    Article  CAS  Google Scholar 

  37. Malhotra R, Ali A (2018) Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil. Renew Energy 119:32–44. https://doi.org/10.1016/j.renene.2017.12.001

    Article  CAS  Google Scholar 

  38. Olatundun EA, Borokini OO, Betiku E (2020) Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: a case of biowastes-to-wealth. Renew Energy 166:163–175. https://doi.org/10.1016/j.renene.2020.11.131

    Article  CAS  Google Scholar 

  39. Miladinović MR, Zdujić MV, Veljović DN et al (2020) Valorization of walnut shell ash as a catalyst for biodiesel production. Renew Energy 147:1033–1043. https://doi.org/10.1016/j.renene.2019.09.056

    Article  CAS  Google Scholar 

  40. Chen GY, Shan R, Shi JF, Yan BB (2015) Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process Technol 133:8–13. https://doi.org/10.1016/j.fuproc.2015.01.005

    Article  CAS  Google Scholar 

  41. Basumatary B, Basumatary S, Das B et al (2021) Waste Musa paradisiaca plant: an efficient heterogeneous base catalyst for fast production of biodiesel. J Clean Prod 305:127089. https://doi.org/10.1016/j.jclepro.2021.127089

    Article  CAS  Google Scholar 

  42. Abdul Mutalib AA, Ibrahim ML, Matmin J et al (2020) SiO2-rich sugar cane bagasse ash catalyst for transesterification of palm oil. Bioenergy Res 13:986–997. https://doi.org/10.1007/s12155-020-10119-6

    Article  Google Scholar 

  43. Laskar IB, Gupta R, Chatterjee S et al (2020) Taming waste: waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renew Energy 161:207–220. https://doi.org/10.1016/j.renene.2020.07.061

    Article  CAS  Google Scholar 

  44. Changmai B, Sudarsanam P, Rokhum L (2020) Biodiesel production using a renewable mesoporous solid catalyst. Ind Crops Prod 145:111911. https://doi.org/10.1016/j.indcrop.2019.111911

    Article  CAS  Google Scholar 

  45. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sustain Energy Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069

    Article  CAS  Google Scholar 

  46. Ramos MJ, Fernández CM, Casas A et al (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  CAS  PubMed  Google Scholar 

  47. Hazrat MA, Rasul MG, Khan MMK et al (2021) Techniques to improve the stability of biodiesel: a review. Environ Chem Lett 19:2209–2236

    Article  CAS  Google Scholar 

  48. Changmai B, Vanlalveni C, Ingle AP et al (2020) Widely used catalysts in biodiesel production: a review. RSC Adv 10:41625–41679. https://doi.org/10.1039/d0ra07931f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302. https://doi.org/10.1016/j.biombioe.2005.05.001

    Article  CAS  Google Scholar 

  50. Islam AKMA, Primandari SRP, Yaakob Z (2018) Non-edible vegetable oils as renewable resources for biodiesel production: South-East Asia perspective. In: Advances in Biofuels and Bioenergy. InTech, pp 201–215. https://doi.org/10.5772/intechopen.73304

  51. Giakoumis EG, Sarakatsanis CK (2019) A comparative assessment of biodiesel cetane number predictive correlations based on fatty acid composition. Energies 12:422. https://doi.org/10.3390/en12030422

    Article  CAS  Google Scholar 

  52. Saluja RK, Kumar V, Sham R (2016) Stability of biodiesel–a review. Renew Sustain Energy Rev 62:866–881

    Article  CAS  Google Scholar 

  53. Kouzu M, Kasuno T, Tajika M et al (2008) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87:2798–2806. https://doi.org/10.1016/j.fuel.2007.10.019

    Article  CAS  Google Scholar 

  54. De Lima AL, Ronconi CM, Mota CJA (2016) Heterogeneous basic catalysts for biodiesel production. Catal Sci Technol 6:2877–2891. https://doi.org/10.1039/c5cy01989c

    Article  Google Scholar 

  55. Malani RS, Choudhury HA, Moholkar VS (2020) Waste biorefinery based on waste carbon sources: case study of biodiesel production using carbon based catalysts and mixed feedstocks of nonedible and waste oils. In: Waste Biorefinery. Elsevier, pp 337–378. https://doi.org/10.1016/B978-0-12-818228-4.00013-7

  56. Meneghetti SMP, Meneghetti MR, Serra TM et al (2007) Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels 21:3746–3747. https://doi.org/10.1021/ef070039q

    Article  CAS  Google Scholar 

  57. Damanik N, Ong HC, Chong WT, Silitonga AS (2017) Biodiesel production from Calophyllum inophyllum−palm mixed oil. Energy Sources, Part A Recover Util Environ Eff 39:1283–1289. https://doi.org/10.1080/15567036.2017.1324537

    Article  CAS  Google Scholar 

  58. Adepoju TF, Ibeh MA, Udoetuk EN, Babatunde EO (2021) Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra coralline shell. Renew Energy 171:22–33. https://doi.org/10.1016/j.renene.2021.02.020

    Article  CAS  Google Scholar 

  59. Fadhil AB, Al-Tikrity ETB, Albadree MA (2017) Biodiesel production from mixed non-edible oils, castor seed oil and waste fish oil. Fuel 210:721–728. https://doi.org/10.1016/j.fuel.2017.09.009

    Article  CAS  Google Scholar 

  60. Adepoju TF (2020) Optimization processes of biodiesel production from pig and neem (Azadirachta indica a.Juss) seeds blend oil using alternative catalysts from waste biomass. Ind Crops Prod 149:112334. https://doi.org/10.1016/j.indcrop.2020.112334

    Article  CAS  Google Scholar 

  61. Adepoju TF, Ibeh MA, Asuquo AJ (2021) Elucidate three novel catalysts synthesized from animal bones for the production of biodiesel from ternary non-edible and edible oil blend: a case of Jatropha curcus, Hevea brasiliensis, and Elaeis guineensis oil. South African J Chem Eng 36:58–73. https://doi.org/10.1016/j.sajce.2021.01.002

    Article  Google Scholar 

  62. Moraes PS, Igansi AV, Cadaval TRS, Pinto LAA (2020) Biodiesel produced from crude, degummed, neutralized and bleached oils of Nile tilapia waste: production efficiency, physical-chemical quality and economic viability. Renew Energy 161:110–119. https://doi.org/10.1016/j.renene.2020.07.092

    Article  CAS  Google Scholar 

  63. Elgharbawy AS, Sadik WA, Sadek OM, Kasaby MA (2021) Maximizing biodiesel production from high free fatty acids feedstocks through glycerolysis treatment. Biomass Bioenerg 146:105997. https://doi.org/10.1016/j.biombioe.2021.105997

    Article  CAS  Google Scholar 

  64. Shi GL, Yu F, Yan XL, Li RF (2017) Synthesis of tetragonal sulfated zirconia via a novel route for biodiesel production. Journal Fuel Chem Technol 45:311–316. https://doi.org/10.1016/s1872-5813(17)30019-1

    Article  CAS  Google Scholar 

  65. Petchmala A, Laosiripojana N, Jongsomjit B et al (2010) Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4-ZrO2 catalysts. Fuel 89:2387–2392. https://doi.org/10.1016/j.fuel.2010.04.010

    Article  CAS  Google Scholar 

  66. Taufiq-Yap YH, Lee HV, Yunus R, Juan JC (2011) Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca-Mg mixed oxide catalyst: effect of stoichiometric composition. Chem Eng J 178:342–347. https://doi.org/10.1016/j.cej.2011.10.019

    Article  CAS  Google Scholar 

  67. Kuniyil M, Shanmukha Kumar JV, Adil SF et al (2021) Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arab J Chem 14:102982. https://doi.org/10.1016/j.arabjc.2020.102982

    Article  CAS  Google Scholar 

  68. Ezzati R, Ranjbar S, Soltanabadi A (2021) Kinetics models of transesterification reaction for biodiesel production: a theoretical analysis. Renew Energy 168:280–296. https://doi.org/10.1016/j.renene.2020.12.055

    Article  CAS  Google Scholar 

  69. Zhang J, Cui F, Xu L et al (2017) The development of novel Au/CaO nanoribbons from bifunctional building block for biodiesel production. Nanoscale 9:15990–15997. https://doi.org/10.1039/c7nr04890d

    Article  CAS  PubMed  Google Scholar 

  70. Vicente G, Martínez M, Aracil J, Esteban A (2005) Kinetics of sunflower oil methanolysis. Ind Eng Chem Res 44:5447–5454. https://doi.org/10.1021/ie040208j

    Article  CAS  Google Scholar 

  71. Okolie JA, Ivan Escobar J, Umenweke G et al (2022) Continuous biodiesel production: a review of advances in catalysis, microfluidic and cavitation reactors. Fuel 307:121821. https://doi.org/10.1016/j.fuel.2021.121821

    Article  CAS  Google Scholar 

  72. Anwar M, Rasul MG, Ashwath N, Nabi MDN (2019) The potential of utilising papaya seed oil and stone fruit kernel oil as non-edible feedstock for biodiesel production in Australia—a review. Energy Rep 5:280–297. https://doi.org/10.1016/j.egyr.2019.02.007

    Article  Google Scholar 

  73. Gowtham Rajan A, Sivasubramanian M, Gowthaman S, Ramkumar P (2021) Investigation of physical and chemical properties of tobacco seed oil fatty acid methyl ester for biodiesel production. Mater Today Proc 46:7670–7675. https://doi.org/10.1016/j.matpr.2021.02.081

    Article  CAS  Google Scholar 

  74. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  75. Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161. https://doi.org/10.1016/j.biortech.2010.10.080

    Article  CAS  PubMed  Google Scholar 

  76. Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 90:1502–1514. https://doi.org/10.1016/j.fuproc.2009.07.016

    Article  CAS  Google Scholar 

  77. Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. JAOCS, J Am Oil Chem Soc 73:1191–1195. https://doi.org/10.1007/BF02523383

    Article  CAS  Google Scholar 

  78. Biernat K (2018) Introductory chapter: prospective biofuels. In: Biofuels - State of Development. InTech, pp 4-11. https://doi.org/10.5772/intechopen.78663

  79. Alagumalai A, Mahian O, Hollmann F, Zhang W (2021) Environmentally benign solid catalysts for sustainable biodiesel production: a critical review. Sci Total Environ 768:144856. https://doi.org/10.1016/j.scitotenv.2020.144856

    Article  CAS  PubMed  Google Scholar 

  80. Mukhtar A, Saqib S, Lin H et al (2022) Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew Sustain Energy Rev 157:112012

    Article  CAS  Google Scholar 

  81. Gardy J, Rehan M, Hassanpour A et al (2019) Advances in nano-catalysts based biodiesel production from non-food feedstocks. J Environ Manage 249:109316. https://doi.org/10.1016/j.jenvman.2019.109316

    Article  CAS  PubMed  Google Scholar 

  82. Jamil F, Murphin Kumar PS, Al-Haj L et al (2021) Heterogeneous carbon-based catalyst modified by alkaline earth metal oxides for biodiesel production: parametric and kinetic study. Energy Convers Manag X 10:100047. https://doi.org/10.1016/j.ecmx.2020.100047

    Article  CAS  Google Scholar 

  83. Su F, Guo Y (2014) Advancements in solid acid catalysts for biodiesel production. Green Chem 16:2934–2957. https://doi.org/10.1039/c3gc42333f

    Article  CAS  Google Scholar 

  84. Liu F, Huang K, Zheng A et al (2018) Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry. ACS Catal 8:372–391. https://doi.org/10.1021/acscatal.7b03369

    Article  CAS  Google Scholar 

  85. Rashid U, Soltani S, Al-Resayes SI, Nehdi IA (2018) Metal oxide catalysts for biodiesel production. In: Metal Oxides in Energy Technologies. Elsevier, pp 303–319. https://doi.org/10.1016/B978-0-12-811167-3.00011-0

  86. Booramurthy VK, Kasimani R, Pandian S, Ragunathan B (2020) Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Environ Sci Pollut Res 27:20598–20605. https://doi.org/10.1007/s11356-020-07984-1

    Article  CAS  Google Scholar 

  87. Wan Omar WNN, Amin NAS (2011) Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Process Technol 92:2397–2405. https://doi.org/10.1016/j.fuproc.2011.08.009

    Article  CAS  Google Scholar 

  88. Al-Saadi A, Mathan B, He Y (2020) Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chem Eng Res Des 162:238–248. https://doi.org/10.1016/j.cherd.2020.08.018

    Article  CAS  Google Scholar 

  89. Patil P, Pratap A (2016) Preparation of zirconia supported basic nanocatalyst: a physicochemical and kinetic study of biodiesel production from soybean oil. J Oleo Sci 65:331–337. https://doi.org/10.5650/jos.ess15195

    Article  CAS  PubMed  Google Scholar 

  90. Shobhana-Gnanaserkhar A-M, AbdulKareem-Alsultan G et al (2020) Biodiesel production via simultaneous esterification and transesterification of chicken fat oil by mesoporous sulfated Ce supported activated carbon. Biomass Bioenerg 141:105714. https://doi.org/10.1016/j.biombioe.2020.105714

    Article  CAS  Google Scholar 

  91. Aleman-Ramirez JL, Moreira J, Torres-Arellano S et al (2021) Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel 284:118983. https://doi.org/10.1016/j.fuel.2020.118983

    Article  CAS  Google Scholar 

  92. Lee DW, Park YM, Lee KY (2009) Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal Surv from Asia 13:63–77. https://doi.org/10.1007/s10563-009-9068-6

    Article  CAS  Google Scholar 

  93. Maneerung T, Kawi S, Dai Y, Wang CH (2016) Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Convers Manag 123:487–497. https://doi.org/10.1016/j.enconman.2016.06.071

    Article  CAS  Google Scholar 

  94. Kouzu M, Hidaka JS (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel 93:1–12. https://doi.org/10.1016/j.fuel.2011.09.015

    Article  CAS  Google Scholar 

  95. Putra MD, Irawan C, Udiantoro et al (2018) A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. J Clean Prod 195:1249–1258. https://doi.org/10.1016/j.jclepro.2018.06.010

  96. Palitsakun S, Koonkuer K, Topool B et al (2021) Transesterification of Jatropha oil to biodiesel using SrO catalysts modified with CaO from waste eggshell. Catal Commun 149:106233. https://doi.org/10.1016/j.catcom.2020.106233

    Article  CAS  Google Scholar 

  97. Huang J, Zou Y, Yaseen M et al (2021) Fabrication of hollow cage-like CaO catalyst for the enhanced biodiesel production via transesterification of soybean oil and methanol. Fuel 290:119799. https://doi.org/10.1016/j.fuel.2020.119799

    Article  CAS  Google Scholar 

  98. Kirubakaran M, Arul Mozhi Selvan V (2021) Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat. Bioresour Technol Reports 14:100658. https://doi.org/10.1016/j.biteb.2021.100658

    Article  CAS  Google Scholar 

  99. Roschat W, Phewphong S, Khunchalee J, Moonsin P (2018) Biodiesel production by ethanolysis of palm oil using SrO as a basic heterogeneous catalyst. Mater Today Proc 5:13916–13921. https://doi.org/10.1016/j.matpr.2018.02.040

    Article  CAS  Google Scholar 

  100. Mierczynski P, Ciesielski R, Kedziora A et al (2015) Biodiesel production on MgO, CaO, SrO and BaO oxides supported on (SrO)(Al2O3) mixed oxide. Catal Letters 145:1196–1205. https://doi.org/10.1007/s10562-015-1503-x

    Article  CAS  Google Scholar 

  101. Rahman WU, Fatima A, Anwer AH et al (2019) Biodiesel synthesis from eucalyptus oil by utilizing waste egg shell derived calcium based metal oxide catalyst. Process Saf Environ Prot 122:313–319. https://doi.org/10.1016/j.psep.2018.12.015

    Article  CAS  Google Scholar 

  102. Dias JM, Alvim-Ferraz MCM, Almeida MF et al (2012) Selection of heterogeneous catalysts for biodiesel production from animal fat. Fuel 94:418–425. https://doi.org/10.1016/j.fuel.2011.10.069

    Article  CAS  Google Scholar 

  103. Istadi I, Prasetyo SA, Nugroho TS (2015) Characterization of K2O/CaO-ZnO catalyst for transesterification of soybean oil to biodiesel. Procedia Environ Sci 23:394–399. https://doi.org/10.1016/j.proenv.2015.01.056

    Article  CAS  Google Scholar 

  104. Roy T, Sahani S, Chandra Sharma Y (2020) Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. J Clean Prod 247:119166. https://doi.org/10.1016/j.jclepro.2019.119166

    Article  CAS  Google Scholar 

  105. Boro J, Konwar LJ, Thakur AJ, Deka D (2014) Ba doped CaO derived from waste shells of T striatula (TS-CaO) as heterogeneous catalyst for biodiesel production. Fuel 129:182–187. https://doi.org/10.1016/j.fuel.2014.03.067

    Article  CAS  Google Scholar 

  106. Thitsartarn W, Kawi S (2011) An active and stable CaO–CeO2 catalyst for transesterification of oil to biodiesel. Green Chem 13:3423–3430. https://doi.org/10.1039/c1gc15596b

    Article  CAS  Google Scholar 

  107. Singh V, Hameed BH, Sharma YC (2016) Economically viable production of biodiesel from a rural feedstock from eastern India, P. pinnata oil using a recyclable laboratory synthesized heterogeneous catalyst. Energy Convers Manag 122:52–62. https://doi.org/10.1016/j.enconman.2016.05.030

    Article  CAS  Google Scholar 

  108. Sulaiman NF, Hashim ANN, Toemen S et al (2020) Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification. Renew Energy 153:1–11. https://doi.org/10.1016/j.renene.2020.01.158

    Article  CAS  Google Scholar 

  109. Sahani S, Roy T, Chandra Sharma Y (2019) Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. J Clean Prod 237:117699. https://doi.org/10.1016/j.jclepro.2019.117699

    Article  CAS  Google Scholar 

  110. D’Cruz A, Kulkarni MG, Meher LC, Dalai AK (2007) Synthesis of biodiesel from canola oil using heterogeneous base catalyst. JAOCS, J Am Oil Chem Soc 84:937–943. https://doi.org/10.1007/s11746-007-1121-x

    Article  CAS  Google Scholar 

  111. Singh R, Kumar A, Sharma YC (2019) Biodiesel synthesis from microalgae (Anabaena PCC 7120) by using barium titanium oxide (Ba2TiO4)solid base catalyst. Bioresour Technol 287:121357. https://doi.org/10.1016/j.biortech.2019.121357

    Article  CAS  PubMed  Google Scholar 

  112. Maneechakr P, Karnjanakom S (2021) Systematic production of biodiesel fuel from palm oil over porous K2O@CaO catalyst derived from waste chicken eggshell via RSM/kinetic/thermodynamic studies. J Environ Chem Eng 9:106542. https://doi.org/10.1016/j.jece.2021.106542

    Article  CAS  Google Scholar 

  113. Ibrahim ML, Nik Abdul Khalil NNA, Islam A et al (2020) Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Convers Manag 205:112445. https://doi.org/10.1016/j.enconman.2019.112445

    Article  CAS  Google Scholar 

  114. Bahador F, Foroutan R, Nourafkan E et al (2021) Enhancement of biodiesel production from chicken fat using MgO and MgO@Na2O nanocatalysts. Chem Eng Technol 44:77–84. https://doi.org/10.1002/ceat.202000511

    Article  CAS  Google Scholar 

  115. López DE, Goodwin JG, Bruce DA, Lotero E (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen 295:97–105. https://doi.org/10.1016/j.apcata.2005.07.055

    Article  CAS  Google Scholar 

  116. Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  117. Khder AS, El-Sharkawy EA, El-Hakam SA, Ahmed AI (2008) Surface characterization and catalytic activity of sulfated tin oxide catalyst. Catal Commun 9:769–777. https://doi.org/10.1016/j.catcom.2007.08.022

    Article  CAS  Google Scholar 

  118. Munir M, Ahmad M, Saeed M et al (2021) Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst. Renew Sustain Energy Rev 138:110558. https://doi.org/10.1016/j.rser.2020.110558

    Article  CAS  Google Scholar 

  119. Dasta P, Singh AP, Singh AP (2022) Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater Today Proc 52:751–757

    Article  CAS  Google Scholar 

  120. Farias AFF, Torres SM, Longo E et al (2021) ZnO/bentonite hybrids obtained by a simple method of synthesis and applied as catalyst for biodiesel production. In: Functional Properties of Advanced Engineering Materials and Biomolecules. Springer, pp 1–25. https://doi.org/10.1007/978-3-030-62226-8_1

  121. Singh S, Mukherjee D, Dinda S et al (2020) Synthesis of CoO–NiO promoted sulfated ZrO2 super-acid oleophilic catalyst via co-precipitation impregnation route for biodiesel production. Renew Energy 158:656–667. https://doi.org/10.1016/j.renene.2020.05.146

    Article  CAS  Google Scholar 

  122. Dai YM, Li YY, Lin JH et al (2021) Applications of M2ZrO2 (M = Li, Na, K) composite as a catalyst for biodiesel production. Fuel 286:119392. https://doi.org/10.1016/j.fuel.2020.119392

    Article  CAS  Google Scholar 

  123. Ramli A, Farooq M, Naeem A et al (2017) Bifunctional heterogeneous catalysts for biodiesel production using low cost feedstocks: a future perspective. In: Front Bioenergy Biofuels, pp 285–307. https://doi.org/10.5772/65553

  124. Xie W, Zhao L (2014) Heterogeneous CaO-MoO3-SBA-15 catalysts for biodiesel production from soybean oil. Energy Convers Manag 79:34–42. https://doi.org/10.1016/j.enconman.2013.11.041

    Article  CAS  Google Scholar 

  125. Mansir N, Teo SH, Mijan NA, Taufiq-Yap YH (2021) Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catal Commun 149:106201. https://doi.org/10.1016/j.catcom.2020.106201

    Article  CAS  Google Scholar 

  126. Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application—a review. Ind Crops Prod 128:405–423. https://doi.org/10.1016/j.indcrop.2018.11.041

  127. Fatimah I, Purwiandono G, Sahroni I et al (2022) Recyclable catalyst of ZnO/SiO2 prepared from Salacca leaves ash for sustainable biodiesel conversion. South African J Chem Eng 40:134–143. https://doi.org/10.1016/j.sajce.2022.02.008

    Article  Google Scholar 

  128. de Barros SS, Pessoa Junior WAG, Sá ISC et al (2020) Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour Technol 312:123569. https://doi.org/10.1016/j.biortech.2020.123569

    Article  CAS  Google Scholar 

  129. Gouran A, Aghel B, Nasirmanesh F (2021) Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel 295:120542. https://doi.org/10.1016/j.fuel.2021.120542

    Article  CAS  Google Scholar 

  130. Sitepu EK, Sembiring Y, Supeno M et al (2022) Homogenizer-intensified room temperature biodiesel production using heterogeneous palm bunch ash catalyst. South African J Chem Eng 40:240–245. https://doi.org/10.1016/j.sajce.2022.03.007

    Article  Google Scholar 

  131. Nath B, Kalita P, Das B, Basumatary S (2020) Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel. Renew Energy 151:295–310. https://doi.org/10.1016/j.renene.2019.11.029

    Article  CAS  Google Scholar 

  132. Abnisa F, Sanni SE, Alaba PA (2021) Comparative study of catalytic performance and degradation kinetics of biodiesels produced using heterogeneous catalysts from kaolinite. J Environ Chem Eng 9:105569. https://doi.org/10.1016/j.jece.2021.105569

    Article  CAS  Google Scholar 

  133. Changmai B, Rano R, Vanlalveni C, Rokhum L (2021) A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production. Fuel 286:119447. https://doi.org/10.1016/j.fuel.2020.119447

    Article  CAS  Google Scholar 

  134. Babajide O, Petrik L, Musyoka N et al (2010) Use of coal fly ash as a catalyst in the production of biodiesel. Pet Coal 52:261–272

  135. Fatimah I, Rubiyanto D, Taushiyah A et al (2019) Use of ZrO 2 supported on bamboo leaf ash as a heterogeneous catalyst in microwave-assisted biodiesel conversion. Sustain Chem Pharm 12:100129. https://doi.org/10.1016/j.scp.2019.100129

    Article  Google Scholar 

  136. Yusuff AS, Bhonsle AK, Trivedi J et al (2021) Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renew Energy 170:302–314. https://doi.org/10.1016/j.renene.2021.01.101

    Article  CAS  Google Scholar 

  137. Zhang X, Huang W (2011) Biodiesel fuel production through transesterification of Chinese tallow kernel oil using KNO3/MgO catalyst. Procedia Environ Sci 11:757–762. https://doi.org/10.1016/j.proenv.2011.12.117

    Article  CAS  Google Scholar 

  138. Ayoola AA, Hymore FK, Omonhinmin CA et al (2020) Biodiesel production from used vegetable oil and CaO catalyst impregnated with KNO3 and NaNO3. AIMS Energy 8:527–537. https://doi.org/10.3934/ENERGY.2020.3.527

    Article  CAS  Google Scholar 

  139. Zinla D, Gbaha P, Koffi PME, Koua BK (2021) Characterization of rice, coffee and cocoa crops residues as fuel of thermal power plant in Côte d’Ivoire. Fuel 283:119250. https://doi.org/10.1016/j.fuel.2020.119250

    Article  CAS  Google Scholar 

  140. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  141. Sharma M, Khan AA, Puri SK, Tuli DK (2012) Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass Bioenerg 41:94–106. https://doi.org/10.1016/j.biombioe.2012.02.017

    Article  CAS  Google Scholar 

  142. Kim JH, Lee G, Park JE, Kim SH (2021) Limitation of k2co3 as a chemical agent for upgrading activated carbon. Processes 9:1000. https://doi.org/10.3390/pr9061000

    Article  CAS  Google Scholar 

  143. Reinmöller M, Sieradzka M, Laabs M et al (2021) Investigation of the thermal behaviour of different biomasses and properties of their low- and high-temperature ashes. Fuel 301:121026. https://doi.org/10.1016/j.fuel.2021.121026

    Article  CAS  Google Scholar 

  144. Výbohová E, Kučerová V, Andor T et al (2018) The effect of heat treatment on the chemical composition of ash wood. BioRes 13:8394–8408

    Article  Google Scholar 

  145. Mares EKL, Gonçalves MA, da Luz PTS et al (2021) Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: optimization of the biodiesel production process. Fuel 299:120887. https://doi.org/10.1016/j.fuel.2021.120887

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Addis Ababa Science and Technology University (AASTU) for giving us ample time to finish the review paperwork.

Author information

Authors and Affiliations

Authors

Contributions

Each of the mentioned authors made a substantial contribution to the development and writing of this article.

Corresponding author

Correspondence to Nurelegne Tefera Shibeshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekele, D.T., Shibeshi, N.T. & Reshad, A.S. Heterogeneous Catalysts from Metallic Oxides and Lignocellulosic Biomasses Ash for the Valorization of Feedstocks into Biodiesel: an Overview. Bioenerg. Res. 16, 1361–1379 (2023). https://doi.org/10.1007/s12155-022-10546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10546-7

Keywords

Navigation