Skip to main content
Log in

Factors Influencing Biochar-Strengthened Anaerobic Digestion of Cow Manure

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biochar shows great potential for enhancing anaerobic digestion (AD); however, the key factors for this remain unknown. This study evaluated the effects of pyrolysis temperature, porosity, and specific surface area (SSA) on the performance enhancement of biochar. The results showed that pyrolysis temperature played an essential role in enhancing the performance of biochar. The addition of cow manure biochar pyrolyzed at 400 °C (NFC-400) and mushroom bran biochar pyrolyzed at 550 °C (JKC-550) increased methane production by 81.30% and 77.59%, respectively, compared with that by the control. Therefore, NFC-400 showed increased gas production, while JKC-550 showed a shorter fermentation period. The SSA and porosity of biochar positively correlated with the pyrolysis temperature but not with biogas production, which indicated that their influence on AD performance enhancement by biochar was not critical.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

SSA:

Specific surface area

NF:

Alkaline cow manure

NFC:

Alkaline cow manure biochar

NFC-400:

Alkaline cow manure biochar pyrolyzed at 400 ℃

NFC-450:

Alkaline cow manure biochar pyrolyzed at 450 ℃

NFC-500:

Alkaline cow manure biochar pyrolyzed at 500 ℃

NFC-550:

Alkaline cow manure biochar pyrolyzed at 550 ℃

NFC-600:

Alkaline cow manure biochar pyrolyzed at 600 ℃

JK:

Mushroom bran

JKC:

Mushroom bran biochar

JKC-400:

Mushroom bran biochar pyrolyzed at 400 ℃

JKC-450:

Mushroom bran biochar pyrolyzed at 450 ℃

JKC-500:

Mushroom bran biochar pyrolyzed at 500 ℃

JKC-550:

Mushroom bran biochar pyrolyzed at 550 ℃

JKC-600:

Mushroom bran biochar pyrolyzed at 600 ℃

CK:

No biochar added

DIET:

Direct interspecies electron transfer

TS:

Total solid

VS:

Volatility solid

SEM:

Scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

PCoA:

Principal coordinate analysis

BET:

Brunner-Emmett-Teller

References

  1. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  2. Amha YM, Anwar MZ, Brower A, Jacobsen CS, Stadler LB, Webster TM et al (2018) Inhibition of anaerobic digestion processes: applications of molecular tools. Bioresour Technol 247:999–1014. https://doi.org/10.1016/j.biortech.2017.08.210

    Article  CAS  PubMed  Google Scholar 

  3. Masebinu SO, Akinlabi ET, Muzenda E, Aboyade AO (2019) A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew Sustain Energy Rev 103:291–307. https://doi.org/10.1016/j.rser.2018.12.048

    Article  CAS  Google Scholar 

  4. Frank RR, Davies S, Wagland ST, Villa R, Trois C, Coulon F (2016) Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production. Waste Manage 55:61–70. https://doi.org/10.1016/j.wasman.2016.06.038

    Article  CAS  Google Scholar 

  5. Luo X, Yuan X, Wang S, Sun F, Hou Z, Hu Q et al (2018) Methane production and characteristics of the microbial community in the co-digestion of spent mushroom substrate with dairy manure. Bioresour Technol 250:611–620. https://doi.org/10.1016/j.biortech.2017.11.088

    Article  CAS  PubMed  Google Scholar 

  6. Rasapoor M, Young B, Brar R, Sarmah A, Zhuang WQ, Baroutian S (2020) Recognizing the challenges of anaerobic digestion: critical steps toward improving biogas generation. Fuel 261:116497. https://doi.org/10.1016/j.fuel.2019.116497

    Article  CAS  Google Scholar 

  7. Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sustain Energy Rev 58:1486–1499. https://doi.org/10.1016/j.rser.2015.12.094

    Article  CAS  Google Scholar 

  8. Nartker S, Ammerman M, Aurandt J, Stogsdil M, Hayden O, Antle C (2014) Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry. Waste Manage 34(12):2567–2571. https://doi.org/10.1016/j.wasman.2014.08.017

    Article  CAS  Google Scholar 

  9. Tatara M, Makiuchi T, Ueno Y, Goto M, Sode K (2008) Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Biores Technol 99(11):4786–4795. https://doi.org/10.1016/j.biortech.2007.09.069

    Article  CAS  Google Scholar 

  10. Liu B, Williams I, Li Y, Wang L, Bagtzoglou A, McCutcheon J et al (2016) Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors. Biosens Bioelectron 79:435–441. https://doi.org/10.1016/j.bios.2015.12.077

    Article  CAS  PubMed  Google Scholar 

  11. Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475. https://doi.org/10.1016/j.bios.2012.12.048

    Article  CAS  PubMed  Google Scholar 

  12. Zaidi AA, RuiZhe F, Shi Y, Khan SZ, Mushtaq K (2018) Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int J Hydrogen Energy 43(31):14202–14213. https://doi.org/10.1016/j.ijhydene.2018.05.132

    Article  CAS  Google Scholar 

  13. Lou L, Huang Q, Lou Y, Lu J, Hu B, Lin Q (2019) Adsorption and degradation in the removal of nonyiphenol from water by cells immobilized on biochar. Chemosphere 228:676–684. https://doi.org/10.1016/j.chemosphere.2019.04.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harvey OR, Herbert BE, Rhue RD, Kuo L-J (2011) Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ Sci Technol 45(13):5550–5556. https://doi.org/10.1021/es104401h

    Article  CAS  PubMed  Google Scholar 

  15. Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015

  16. Cao B, Sun Y, Guo J, Wang S, Yuan J, Esakkimuthu S et al (2019) Synergistic effects of co-pyrolysis of macroalgae and polyvinyl chloride on bio-oil/bio-char properties and transferring regularity of chlorine. Fuel 246:319–329. https://doi.org/10.1016/j.fuel.2019.02.037

    Article  CAS  Google Scholar 

  17. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  PubMed  Google Scholar 

  18. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143. https://doi.org/10.1021/es8002684

    Article  CAS  PubMed  Google Scholar 

  19. Sun T, Levin BD, Guzman JJ, Enders A, Muller DA, Angenent LT et al (2017) Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat Commun 8:14873. https://doi.org/10.1038/ncomms14873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma J, Pan J, Qiu L, Wang Q, Zhang Z (2019) Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion. Biores Technol 293:122026. https://doi.org/10.1016/j.biortech.2019.122026

    Article  CAS  Google Scholar 

  21. Waqas M, Aburiazaiza AS, Miandad R, Rehan M, Barakat MA, Nizami AS (2018) Development of biochar as fuel and catalyst in energy recovery technologies. J Clean Prod 188:477–488. https://doi.org/10.1016/j.jclepro.2018.04.017

    Article  CAS  Google Scholar 

  22. Yuan H-Y, Ding L-J, Zama EF, Liu P-P, Hozzein WN, Zhu Y-G (2018) Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate. Environ Sci Technol 52(21):12198–12207. https://doi.org/10.1021/acs.est.8b04121

    Article  CAS  PubMed  Google Scholar 

  23. Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5(10):8982–8989. https://doi.org/10.1039/c2ee22459c

    Article  CAS  Google Scholar 

  24. Lü F, Luo C, Shao L, He P (2016) Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res 90:34–43. https://doi.org/10.1016/j.watres.2015.12.029

  25. Luo C, Lü F, Shao L, He P (2015) Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res 68:710–718. https://doi.org/10.1016/j.watres.2014.10.052

    Article  CAS  PubMed  Google Scholar 

  26. Mumme J, Srocke F, Heeg K, Werner M (2014) Use of biochars in anaerobic digestion. Biores Technol 164:189–197. https://doi.org/10.1016/j.biortech.2014.05.008

    Article  CAS  Google Scholar 

  27. Shen Y, Forrester S, Koval J, Urgun-Demirtas M (2017) Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production. J Clean Prod 167:863–874. https://doi.org/10.1016/j.jclepro.2017.05.135

    Article  CAS  Google Scholar 

  28. Jang HM, Choi Y-K, Kan E (2018) Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure. Biores Technol 250:927–931. https://doi.org/10.1016/j.biortech.2017.11.074

    Article  CAS  Google Scholar 

  29. Pan J, Ma J, Liu X, Zhai L, Ouyang X, Liu H (2019) Effects of different types of biochar on the anaerobic digestion of chicken manure. Biores Technol 275:258–265. https://doi.org/10.1016/j.biortech.2018.12.068

    Article  CAS  Google Scholar 

  30. Fagbohungbe MO, Herbert BMJ, Hurst L, Li H, Usmani SQ, Semple KT (2016) Impact of biochar on the anaerobic digestion of citrus peel waste. Biores Technol 216:142–149. https://doi.org/10.1016/j.biortech.2016.04.106

    Article  CAS  Google Scholar 

  31. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  32. Wang Y, Xie Q, Sun S, Huang B, Zhang Y, Xu Y et al (2018) Probiotics-fermented Massa Medicata Fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis. Appl Microbiol Biotechnol 102(24):10713–10727. https://doi.org/10.1007/s00253-018-9438-y

    Article  CAS  PubMed  Google Scholar 

  33. Pan J, Ma J, Zhai L, Liu H (2019) Enhanced methane production and syntrophic connection between microorganisms during semi-continuous anaerobic digestion of chicken manure by adding biochar. J Clean Prod 240:118178. https://doi.org/10.1016/j.jclepro.2019.118178

    Article  CAS  Google Scholar 

  34. Martinez EJ, Rosas JG, Sotres A, Moran A, Cara J, Sanchez ME et al (2018) Codigestion of sludge and citrus peel wastes: evaluating the effect of biochar addition on microbial communities. Biochem Eng J 137:314–325. https://doi.org/10.1016/j.bej.2018.06.010

  35. Montalvo S, Guerrero L, Borja R, Sánchez E, Milán Z, Cortés I et al (2012) Application of natural zeolites in anaerobic digestion processes: a review. Appl Clay Sci 58:125–133. https://doi.org/10.1016/j.clay.2012.01.013

    Article  CAS  Google Scholar 

  36. Ma J, Bashir MA, Pan J, Qiu L, Liu H, Zhai L et al (2018) Enhancing performance and stability of anaerobic digestion of chicken manure using thermally modified bentonite. J Clean Prod 183:11–19. https://doi.org/10.1016/j.jclepro.2018.02.121

  37. Wang P, Ye H, Yin Y-X, Chen H, Bian Y-B, Wang Z-R et al (2019) Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv Mater 31(4):1805134. https://doi.org/10.1002/adma.201805134

    Article  CAS  Google Scholar 

  38. Sanchez-Monedero MA, Cayuela ML, Roig A, Jindo K, Mondini C, Bolan N (2018) Role of biochar as an additive in organic waste composting. Biores Technol 247:1155–1164. https://doi.org/10.1016/j.biortech.2017.09.193

    Article  CAS  Google Scholar 

  39. Chen S, Rotaru A-E, Shrestha PM, Malvankar NS, Liu F, Fan W et al (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019. https://doi.org/10.1038/srep05019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu B, Yang Q, Yao F, Chen S, He L, Hou K et al (2019) Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. Biores Technol 294:12235. https://doi.org/10.1016/j.biortech.2019.122235

    Article  CAS  Google Scholar 

  41. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591. https://doi.org/10.1038/nrmicro1931

    Article  CAS  PubMed  Google Scholar 

  42. Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biol Med 37(3):287–303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034

    Article  CAS  Google Scholar 

  43. Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B (2014) Resources and biological activities of natural polyphenols. Nutrients 6(12):6020–6047. https://doi.org/10.3390/nu6126020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang K, Mao J, Chen B (2019) Reconsideration of heterostructures of biochars: morphology, particle size, elemental composition, reactivity and toxicity. Environ Pollut 254:113017. https://doi.org/10.1016/j.envpol.2019.113017

    Article  CAS  PubMed  Google Scholar 

  45. Smith JA, Nevin KP, Lovley DR (2015) Syntrophic growth via quinone-mediated interspecies electron transfer. Front Microbiol 6:121. https://doi.org/10.3389/fmicb.2015.00121

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cheng H-H, Whang L-M, Lin C-A, Liu IC, Wu C-W (2013) Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Biores Technol 141:233–239. https://doi.org/10.1016/j.biortech.2013.03.141

    Article  CAS  Google Scholar 

  47. Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M et al (2018) Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 102(12):5045–5063. https://doi.org/10.1007/s00253-018-8976-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li D, Song L, Fang H, Li P, Teng Y, Li Y-Y et al (2019) Accelerated bio-methane production rate in thermophilic digestion of cardboard with appropriate biochar: dose-response kinetic assays, hybrid synergistic mechanism, and microbial networks analysis. Biores Technol 290:121782. https://doi.org/10.1016/j.biortech.2019.121782

    Article  CAS  Google Scholar 

  49. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189. https://doi.org/10.1196/annals.1419.019

    Article  CAS  PubMed  Google Scholar 

  50. Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen W-H et al (2018) A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Biores Technol 247:1095–1106. https://doi.org/10.1016/j.biortech.2017.09.103

    Article  CAS  Google Scholar 

  51. Nelson MC, Morrison M, Schanbacher F, Yu Z (2012) Shifts in microbial community structure of granular and liquid biomass in response to changes to infeed and digester design in anaerobic digesters receiving food-processing wastes. Biores Technol 107:135–143. https://doi.org/10.1016/j.biortech.2011.12.070

    Article  CAS  Google Scholar 

  52. Qi Q, Sun C, Cristhian C, Zhang T, Zhang J, Tian H et al (2021) Enhancement of methanogenic performance by gasification biochar on anaerobic digestion. Biores Technol 330:124993. https://doi.org/10.1016/j.biortech.2021.124993

    Article  CAS  Google Scholar 

  53. Lovley DR (2017) Happy together: microbial communities that hook up to swap electrons. ISME J 11(2):327–336. https://doi.org/10.1038/ismej.2016.136

    Article  CAS  PubMed  Google Scholar 

  54. Cheng H, Hong P-Y (2020) Nanoparticles applied in membrane bioreactors: potential impact on reactor performance and microbial communities. In: Hernández-Maldonado AJ, Blaney L (eds) Contaminants of emerging concern in water and wastewater, Butterworth-Heinemann, Oxford, pp 207–236. https://doi.org/10.1016/B978-0-12-813561-7.00007-9

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32060245), the Open Project of Major Basic Research of Inner Mongolia Autonomous Region (No. 201503001–4-3), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22065), and the Natural Science Foundation of Inner Mongolia (No. 2018MS03064).

Author information

Authors and Affiliations

Authors

Contributions

Jiangang Pan: funding acquisition, project administration, supervision, writing review and editing. Jiahui Sun: data curation, writing—original draft. Narisu Ao: conceptualization, methodology, formal analysis, investigation. Yuanyuan Xie: data curation, formal analysis. Aiai Zhang: data curation, investigation. Zhuoxing Chen: writing—review and editing. Lu Cai: supervision, writing—review.

Corresponding author

Correspondence to Lu Cai.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Anaerobic Digestion

Supplementary Information

E-supplementary data of this word can be found in online version of the paper.

Supplementary file1 (DOCX 1900 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Sun, J., Ao, N. et al. Factors Influencing Biochar-Strengthened Anaerobic Digestion of Cow Manure. Bioenerg. Res. 17, 1145–1154 (2024). https://doi.org/10.1007/s12155-022-10396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10396-3

Keywords

Navigation