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Abstract
Objective Deep learning approaches have attracted attention for improving the scoring accuracy in computed tomography-
less single photon emission computed tomography (SPECT). In this study, we proposed a novel deep learning approach 
referring to positron emission tomography (PET). The aims of this study were to analyze the agreement of representative 
voxel values and perfusion scores of SPECT-to-PET translation model-generated SPECT  (SPECTSPT) against PET in 17 
segments according to the American Heart Association (AHA).
Methods This retrospective study evaluated the patient-to-patient stress, resting SPECT, and PET datasets of 71 patients. 
The  SPECTSPT generation model was trained (stress: 979 image pairs, rest: 987 image pairs) and validated (stress: 421 image 
pairs, rest: 425 image pairs) using 31 cases of SPECT and PET image pairs using an image-to-image translation network. 
Forty of 71 cases of left ventricular base-to-apex short-axis images were translated to  SPECTSPT in the stress and resting 
state (stress: 1830 images, rest: 1856 images). Representative voxel values of SPECT and  SPECTSPT in the 17 AHA seg-
ments against PET were compared. The stress, resting, and difference scores of 40 cases of SPECT and  SPECTSPT were also 
compared in each of the 17 segments.
Results For AHA 17-segment-wise analysis, stressed SPECT but not  SPECTSPT voxel values showed significant error from 
PET at basal anterior regions (segments #1, #6), and at mid inferoseptal regions (segments #8, #9, and #10). SPECT, but 
not  SPECTSPT, voxel values at resting state showed significant error at basal anterior regions (segments #1, #2, and #6), and 
at mid inferior regions (segments #8, #9, and #11). Significant SPECT overscoring was observed against PET in basal-to-
apical inferior regions (segments #4, #10, and #15) during stress. No significant overscoring was observed in SPECTSPT 
at stress, and only moderate over and underscoring in the basal inferior region (segment #4) was found in the resting and 
difference states.
Conclusions Our PET-supervised deep learning model is a new approach to correct well-known inferior wall attenuation 
in SPECT myocardial perfusion imaging. As standalone SPECT systems are used worldwide, the  SPECTSPT generation 
model may be applied as a low-cost and practical clinical tool that provides powerful auxiliary information for the diagnosis 
of myocardial blood flow.
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Abbreviations
SPECT  Single-photon emission computed 

tomography
CT  Computed tomography
PET  Positron emission tomography
SPECTSPT  SPECT-to-PET translation model-generated 

SPECT
AHA  American Heart Association
SSS  Summed stress score
SRS  Summed rest score
SDS  Summed difference score
99mTc-MIBI  99MTc-methoxyisobutylisonitrile
RCA   Right coronary artery
LAD  Left anterior descending artery
LCX  Left circumflex artery
ROC  Receiver operating characteristic
CZT  Cadmium-zinc-telluride

Introduction

Myocardial single-photon emission computed tomography 
(SPECT) is used worldwide to diagnose myocardial ischemia 
[1]. Artefacts due to photon absorption significantly affect 
the specificity of ischemia diagnosis in myocardial SPECT 
[2]. Therefore, overcoming this well-known artefact is 
important for improving diagnostic accuracy in myocardial 
ischemia diagnosis using SPECT. Conventionally, artificial 
intelligence has been applied in nuclear cardiology to pre-
dict obstructive disease on SPECT [3]. Recently, an artificial 
intelligence-based attenuation correction has been demon-
strated [4]. Several attenuation correction approaches were 
proposed, such as generating attenuation maps (μ-maps) 
from emission images [5, 6] and predicting attenuation-
corrected images from non-attenuation-corrected images 
[7–10]. Both deep-learning models can generate attenuation-
corrected SPECT images, eliminating the need for patient 
radiation exposure by X-ray computed tomography (CT) for 
attenuation correction. Incidentally, advanced 13N ammonia 
positron emission tomography (PET) has high image quality 
and precision quantification compared with SPECT. There-
fore, PET images were used as references for attenuation-
corrected SPECT validation [11]. In other words, PET is 
currently the best imaging modality with the least artifacts 
due to photon attenuation in nuclear cardiology. Previously, 
an image processing approach was proposed for register-
ing SPECT images to PET images based on surface match-
ing [12]. However, this surface-matching approach, which 
utilized PET images as the gold standard nearly a quarter 
of a century ago, may not become the current mainstream 
technique. Focusing on this background of nuclear cardi-
ology with SPECT and PET, we hypothesized that image 
deep learning using SPECT and PET is potentially useful 

as a novel approach to correct specific SPECT artefacts. 
In this study, we proposed the SPECT-to-PET translation 
model-generated SPECT  (SPECTSPT) using a deep-learning 
model of same-patient SPECT and PET datasets. And we 
mainly assessed the performance of the correction for the 
attenuation artifacts in the inferior wall. First, we performed 
voxel-wise analysis of SPECT and  SPECTSPT with refer-
ence to PET. Second, we analyzed the agreement of SPECT 
and  SPECTSPT representative voxels values in 17 segments 
according to the American Heart Association (AHA) with 
reference to PET. Additionally, we compared visual scoring 
by SPECT and  SPECTSPT with PET scores because diagno-
sis based on visual scoring is still the standard in SPECT, 
including the summed stress score (SSS), summed rest score 
(SRS), and summed difference score (SDS) [1, 13].

Materials and methods

SPECT and PET datasets

This study was approved by the Institutional Review Board 
of Tokyo Women’s Medical University (5346) and Kyushu 
University (2022–127) and was conducted in accordance 
with the 1964 Declaration of Helsinki and all subsequent 
revisions. The requirement for written informed consent 
was waived. SPECT and PET short-axis images of ven-
tricular base-to-apex slices were obtained from 71 patients 
who underwent rest and stress myocardial 99mTc-methoxy-
isobutylisonitrile (99mTc-MIBI) SPECT and 13N ammonia 
PET for known or suspected coronary artery disease. 99mTc-
MIBI SPECT was performed using a dual-head SPECT/CT 
gamma-detector scanner (Symbia S; Siemens Healthcare, 
Erlangen, Germany) equipped with a smart zoom collimator. 
The acquisition time for each projection was 40 s after stress 
(approximately 185 MBq, 5 mCi) and 30 s at rest (approxi-
mately 555 MBq, 15 mCi). For stress imaging, each patient 
received an intravenous infusion of adenosine for 6 min 
(0.12 mg/kg/min), and 99mTc-MIBI was administered 3 min 
post infusion. Fifteen minutes after the 99mTc-MIBI injec-
tion, myocardial perfusion imaging was performed. After a 
150-min interval, myocardial perfusion imaging at rest was 
performed 15 min after the 99mTc-MIBI injection. Thirty 
projection datasets were obtained in a 128 × 128 matrix over 
a 180º arc. The reconstructed images were automatically 
reoriented to the short-axis images. The pixel size of the 
cine images was 2.4 × 2.4 mm, with a 2.4-mm slice thick-
ness (resolution: 0.4 pixels per mm). 13N ammonia PET was 
performed using a three-dimensional PET system (Biograph 
mCT; Siemens Healthcare, Erlangen, Germany). Repeat-
edly upgraded Syngo VA30A_HF07 software was used for 
dose correction (i.e., the difference in residual 13N ammonia 
activity between resting and stressed images). Sequential CT 



201Annals of Nuclear Medicine (2024) 38:199–209 

1 3

scans (120 kV, 20 mA, and 3-mm slice collimation) were 
acquired for attenuation correction. Electrocardiogram-gated 
image acquisition was performed immediately after the 
intravenous administration of 13N ammonia (approximately 
185 MBq, 5 mCi) for 10 min at 16 frames/cardiac cycle 
using the parallel list mode. After PET myocardial perfu-
sion imaging was performed at rest, the adenosine stress test 
was performed (0.12 mg/kg/min for 6 min). Three minutes 
after vasodilator administration, 13N ammonia was infused 
(approximately 555 MBq, 15 mCi), and myocardial perfu-
sion imaging was performed. Images were reconstructed 
using Fourier re-binning and filtered back-projection with 
a 12-mm three-dimensional Hann window for the ramp 
filter. The reconstructed images were automatically reori-
entated to short-axis images with a 128 × 128 matrix size. 
The pixel size of the cine images was 1.6 × 1.6 mm, with a 
1.6-mm slice thickness (resolution: 0.6 pixels per mm). In 
other words, the SPECT and PET images were reconstructed 
into sequential short-axis images with different voxel sizes. 
Consequently, all patients had a different number of images 
in the stress and resting states.

Generating SPECTSPT with deep learning

The training and validation data for generating  SPECTSPT 
were prepared for deep learning in 31 from the 71 cases. 
Image preprocessing was performed using MATLAB 
R2020a (version 9.8; MathWorks Inc., Natick, MA, USA) 
to set patient-to-patient-matched SPECT/PET image data-
sets. First, SPECT and PET images from the left ventricular 
base to the apex were selected for all cases. Second, because 
a different number of base-to-apex images was selected in 
SPECT and PET owing to the difference in slice thickness, 
the number of PET slices was aligned with those of SPECT 
by nearest-neighbor interpolation. Further, the in-plane 
pixel size of SPECT images was matched to that of PET 
by image enlargement and cropping. Since the pixel size of 
PET is 1.6 mm and SPECT is 2.4 mm, SPECT images were 
magnified 2.4/1.6 times and cropped with a matrix size of 
128 × 128, centered at the magnified image. Through this 
preprocessing, the same number of image datasets from the 
base to the apex in SPECT and PET were obtained in all 
cases. The image datasets of 31 cases (stress: 1400 image 
pairs, rest: 1412 image pairs) were randomly assigned to 
the training (stress: 979 image pairs, rest: 987 image pairs) 
and validation (stress: 421 image pairs, rest: 425 image 
pairs) datasets. Subsequently, the bit depth for all datasets 
was converted to 8 bits of portable network graphics files. 
Deep learning was performed using a specialized graphics 
processing unit (TITAN GeForce1080; Nvidia, Santa Clara, 
Calif, USA) to create an established image-to-image transla-
tion model [14]. The cost function is defined as the summa-
tion of two adversarial losses for translating  SPECTSPT and 

SPECT into the other image, along with the cyclic consist-
ency loss for these translations. Consequently, the models for 
SPT-SPECT generation from SPECT were concreted using 
50 epochs with a batch size of 8, a learning rate of 0.002, 
and a momentum optimizer (Fig. 1).

To test the  SPECTSPT-generating deep-learning model, 
a test dataset was prepared using the data of 40 of the 71 
cases that were not used for training or validation (stress: 
1830 images, rest: 1856 images). For input to the deep-learn-
ing model, base-to-apex SPECT images were converted to 
8 bits of portable network graphics files with a 256 × 256 
matrix size in the same manner as the training and valida-
tion datasets. The voxel values of SPECT, PET, and deep 
learning-derived  SPECTSPT images were converted to val-
ues of 0‒100, similar to an uptake value, according to the 
signal value of the 8-bit images (max = 255). Thereafter, the 
image sizes were downsized to 128 × 128 matrices, the same 
as the original image (Fig. 1). For voxel-wise analysis of 
SPECT and  SPECTSPT against PET, the normalized root-
mean-square-error, peak signal-to-noise ratio, and structural 
similarity index were quantified.

Calculation of the voxel values corresponding 
to the AHA 17‑segment model

First, the SPECT, PET, and  SPECTSPT sequential short-axis 
images were longitudinally divided into seven segments. 
Two segments each were assigned to the basal, middle, 
and apical regions, and one segment was assigned to the 
apex. Second, the maximum values of the slice profile were 
obtained corresponding to the polar coordinates of the 17 
AHA segments centered at the apex on the short-axis image. 
For example, in segment #1 (basal anterior), 60 profiles were 
set per a short-axis slice. Thus, the number of profiles in 
segment #1 was 60 multiplied by the number of slices cor-
responding to the basal region. Finally, the representative 
voxel values in each segment were calculated as the averaged 
maximum values of profiles corresponding to each segment.

Visual evaluation of SPECTSPT with myocardial 
perfusion scores

Two radiologists and one cardiologist who all had more than 
15 years of experience in cardiac nuclear medicine as a rou-
tine practice performed consensus scoring of the SPECT, 
PET, and  SPECTSPT myocardial perfusion images of 40 
cases. SPECT, PET, and  SPECTSPT scans were presented 
independently in a randomized order, and the evaluators 
were blinded to all patient information. Sixteen base-to-apex 
short-axis slices and eight slices in the vertical and horizon-
tal long-axis were displayed as a split image in the stress and 
resting states (Supplementary Fig. 1). In accordance with 
the interpretation conditions of the evaluators’ institution, 
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an uptake of 10%‒100% was displayed in RGB-color, no 
normal database was referred, and zooming and windowing 
were free. The evaluators determined the stress and resting 
scores in 17 segments on the SPECT, PET, and  SPECTSPT 
images. Defects were graded according to the regional 
uptake values as 0 to 4 of 5 scores as normal (75‒100%), 
mild defect (65‒74%), moderate defect (50‒64%), severe 
defect (40‒49%), and complete defect (< 40%), respectively. 
Notably, the uptake value was just the reference value for 
scoring, and the scores were determined by the evaluators 
based on their diagnostic experience.

Statistical analyses

All statistical analyses were performed using MATLAB with 
the Statistics and Machine Learning Toolbox R2020a (ver-
sion 9.8; MathWorks Inc., Natick, MA, USA). Differences 
were considered statistically significant at a P-value < 0.05. 
Normally distributed data are presented as the mean ± stand-
ard deviation and non-normally distributed data are 
presented as the median and interquartile range (IQR, 
25th–75th percentile). Based on the data distributions pro-
vided by the Shapiro–Wilk test [15], patient characteristics 
and 13N ammonia PET measurements between the training 
and validation groups and test groups were compared using 

the unpaired t-test or Mann–Whitney U test. The normal-
ized root-mean-square-error, peak signal-to-noise ratio, 
and structural similarity index against PET were compared 
between SPECT and  SPECTSPT by the paired t-test or Wil-
coxon matched-pairs signed rank test. The representative 
voxel values of SPECT and  SPECTSPT in the 17 AHA seg-
ments against those of PET were compared using the paired 
t-test or Wilcoxon matched-pairs signed rank test. Further, 
the errors of representative 17-segment voxel values of 
SPECT and  SPECTSPT against PET were also compared 
using the paired t-test or Wilcoxon matched-pairs signed 
rank test. The stress, resting, and difference scores of 40 test 
cases of SPECT and  SPECTSPT were compared to those of 
PET by the paired t-test or Wilcoxon matched-pairs signed 
rank test in each of the 17 AHA segments. The diagnostic 
ability of the presence of a PET defect area in the segments 
of the right coronary artery (RCA), left anterior descend-
ing artery (LAD), and left circumflex artery (LCX) using 
SPECT scores of SSS, SRS, and SDS in each segment were 
analyzed by receiver operating characteristic (ROC) analy-
sis. The presence of a PET defect was defined as one or more 
SSS, SRS, or SDS in each coronary segment. Additionally, 
the diagnostic ability of the presence of a PET defect area 
using both SPECT and  SPECTSPT scores was also analyzed 
by ROC analysis.

Fig. 1  The overall scheme of deep-learning and its representative 
example. The deep-learning model was trained with 31 SPECT and 
PET datasets using an image-to-image translation architecture (light 
blue box). SPECT-to-PET translation model-generated SPECT 
 (SPECTSPT) images from nonattenuation-corrected SPECT images 

(upper panel). The magenta box shows a representative example 
of the same patient on SPECT (left), PET (middle), and  SPECTSPT 
(right). SPECT single-photon emission computed tomography, PET 
positron emission tomography
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Results

Sixty-four of the 71 cases underwent SPECT examination 
followed by PET examination. Twenty-six patients under-
went SPECT and PET follow-up scans within 4 months 
because they were clinically stable. In 14 patients, a PET 
scan was performed at the latest 1 month after SPECT 
due to difficulty in distinguishing between ischemia and 
attenuation artifacts by SPECT. A total of 40 patients 
[14 and 26] were assigned to be test cases for deep learn-
ing. The remaining 31 patients were assigned as training 

cases who were scanned SPECT and PET within 3 years; 
however, we carefully confirmed that there were no clini-
cal changes between the imaging sessions. The absolute 
duration between SPECT and PET examinations in train-
ing cases was 415 (331–599) days and in test cases was 
46 ± 31 days. Table 1 compares the characteristics between 
the training (n = 31) and test (n = 40) groups. Although 
the percentage of cases with obesity was slightly higher 
in the training group than in the test group, no signifi-
cant differences were found in most patient background 
characteristics, cardiovascular risk factors, and clinical 
history information between the training and test groups. 

Table 1  Patient characteristics 
and N-13 ammonia PET 
measurements

Normal distributed data are presented as the mean ± standard deviation. Non-normal distributed data are 
presented as the median and interquartile range (IQR, 25th–75th percentile) with an underline
EDVi end-diastolic volume index, ESVi end-systole volume index, EF ejection fraction, MBF myocardial 
blood flow, MFR myocardial flow reserve

Training
(n = 31)

Test
(n = 40)

P value

Baseline characteristics
 Male, n (%) 22 (71) 32 (80) 0.38
 Age (years) 69 ± 9 65 ± 11 0.14
 Height (cm) 163 ± 9 164 ± 7 0.51
 Weight (kg) 65 ± 13 64 ± 11 0.60
 BMI (kg/m2) 24.6 ± 4.1 23.7 ± 3.3 0.29
 Obesity (BMI > 25) 15 (48%) 10 (25%) 0.04

Cardiovascular risk factor
 Anemia (Male: Hb < 13, Female: Hb < 11) 8 (26%) 10 (25%) 0.94
 Hypertension 20 (65%) 30 (75%) 0.34
 Dyslipidemia 17 (55%) 26 (65%) 0.39
 Diabetes mellitus 11 (35%) 22 (55%) 0.11
 Smoking 10 (32%) 15 (41%) 0.65

Clinical history
 RCA stenosis 5 (16%) 13 (33%) 0.12
 LAD stenosis 8 (26%) 12 (30%) 0.70
 LCX stenosis 7 (23%) 9 (23%)  > 0.99
 Previous PCI 8 (26%) 15 (38%) 0.30
 Previous CABG 3 (10%) 3 (8%) 0.75

Ammonia PET measurements
 Stressed EDVi (mL/m2) 58 (53–71) 69 ± 17 0.29
 Ventricular dilation (EDVi > 70) 10 (32%) 21 (53%) 0.76
 Resting EDVi (mL/m2) 49 (44–64) 59 ± 17 0.12
 Ventricular dilation (EDVi > 70) 6 (19%) 9 (23%) 0.07
 Stressed ESVi (mL/m2) 18 (13–31) 28 ± 15 0.03
 Ventricular dilation (ESVi > 25) 9 (29%) 22 (55%) 0.08
 Resting ESVi (mL/m2) 13 (9–24) 24 ± 14 0.06
 Ventricular dilation (ESVi > 25) 7 (23%) 16 (40%) 0.12
 Stressed EF (%) 68 ± 11 61 ± 13 0.02
 Resting EF (%) 74 (63–80) 64 ± 13 0.04
 Stressed MBF (mL/g/min) 2.0 ± 0.5 1.8 ± 0.4 0.06
 Resting MBF (mL/g/min) 0.9 (0.8–1.2) 1.0 ± 0.2 0.80
 Global MFR 2.2 ± 0.5 2.0 ± 0.6 0.12
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The stressed end-diastole ventricular volume index and 
ejection fraction in the stress and resting states in the test 
group were lower than those in the training group, how-
ever, there were no differences between the two groups in 
terms of the percentage of the ventricular dilation com-
pared with the previous normal value [16].

For voxel-wise analysis, the normalized root mean 
square errors of SPECT and  SPECTSPT with respect to 
PET were 0.032 ± 0.005 and 0.030 ± 0.006 in the stress 

state (P = 0.005) and 0.027 ± 0.005 and 0.035 ± 0.006 
(P < 0.0001) in the resting state, respectively. The respective 
peak signal-to-noise ratios were 17.1 ± 1.5 and 18.6 ± 1.5 
(P < 0.0001) and 16.4 ± 1.6 and 18.1 ± 1.4 (P < 0.01) and the 
respective structural similarity indices were 0.613 ± 0.039 
and 0.719 ± 0.044 (P < 0.0001) and 0.621 ± 0.039 and 
0.723 ± 0.042 (P < 0.0001), respectively. Figure 2 shows 
joint histograms that represent the voxel values of SPECT 
or  SPECTSPT corresponding to PET in the testing group with 

Fig. 2  Joint histograms that represent the voxel values of SPECT and 
 SPECTSPT corresponding to PET. Left row plots indicate PET voxel 
values (x) and SPECT voxel values (y) at stress (upper) and resting 
states (lower). Right row plots indicate PET voxel values (x) and 
 SPECTSPT voxel values (y) at stress (upper) and resting (lower) states. 

Counts of voxel were log10-scaled to color visualization in joint his-
tograms.  SPECTSPT, SPECT-to-PET translation model-generated 
SPECT; SPECT, single-photon emission computed tomography; 
PET, positron emission tomography
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a scatter plot and count of plots. The under-voxel-values 
of less than 25 of SPECT (but 50 and 75 of PET) were 
improved in  SPECTSPT in both stress and resting states.

For AHA 17-segment-wise analysis, box-and-whisker 
plots of the errors of representative voxel values against PET 
in 40 test patients are shown in Fig. 3. In the stress state, we 
observed significant errors in SPECT voxel values at basal 
anterior regions (segments #1, #6), and at mid inferoseptal 
regions (segments #8, #9, and #10) but not in  SPECTSPT. In 
the resting state, we observed significant errors in SPECT 
voxel values at basal anterior regions (segments #1, #2, and 
#6), and at mid-inferior regions (segments #8, #9, and #11). 
but not in  SPECTSPT. Further, at inferior regions in the base 
and middle of the ventricle (segments #4, #5, and #10), both 
SPECT and  SPECTSPT had significant errors with respect to 
PET; however,  SPECTSPT errors were smaller than SPECT. 
Errors were observed in  SPECTSPT voxel values in segments 
at apical regions (#14, #15, and #16) in the resting state but 
not in  SPECTSPT.

Figure 4 shows a colored polar map of the total error of 
40 test cases of myocardial perfusion scores of SPECT and 
 SPECTSPT against those of PET in 17 segments. Compared 
with the PET stress and resting scores, significantly over-
scoring of the SPECT stress scores at segments at inferior 
regions from base-to-apex (#4, #10, and #15) was observed. 
In contrast, no significant overscores were observed in 
 SPECTSPT during stress, and only a moderate overscore and 
moderate underscore at the basal inferior region of segment 
#4 in the resting and difference states were observed, respec-
tively. The presence of PET defect areas in the RCA, LAD, 
and LCX segments were diagnosed by SPECT summed 
scores with area under the curves of ROC (78%, 68%, and 
78%), sensitivities (53%, 33%, and 33%), and specificities 
(96%, 100%, and 100%), respectively. Similarly, the diagnos-
tic abilities for a PET defect area by SPECT and  SPECTSPT 
summed scores were area under the curves of ROC (85%, 
73%, and 89%), sensitivities (54%, 33%, and 56%), and 
specificities (100%, 100%, and 100%), respectively. Fig-
ure 5a (left) shows representative images of SPECT, PET, 
and attenuation-corrected  SPECTSPT of the same patient. 
The low accumulation in the middle inferolateral region on 
SPECT was corrected using  SPECTSPT. Figure 5b (right) 
shows bad correction in  SPECTSPT as the disappeared apical 
anterior defect area, whereas the defect areas were observed 
by SPECT and PET.

Discussion

According to the voxel-wise analyses, significant differences 
between the normalized root-mean-square-error of SPECT 
and  SPECTSPT with respect to PET were observed at the 
stress and resting states. However, the value of normalized 

root-mean-square-errors from both SPECT and  SPECTSPT 
are small compared to previous reports [8]. Consequently, 
the SPECT, PET, and  SPECTSPT images can be consid-
ered globally consistent. In the image similarity analysis 
by peak signal-to-noise ratio and the structural similarity 
index, slight but statistically significant increases in similar-
ity indices in  SPECTSPT rather than SPECT were observed 
at the stress and resting states. The similarity indices were 
lower than those observed in recent research on attenuation-
corrected SPECT generation from SPECT with deep learn-
ing [9]. However, this finding is reasonable because in this 
study only SPECT and PET images were compared. There-
fore, the SPECT and  SPECTSPT images can be considered 
strictly different with reference to PET images. Compari-
son of the joint histograms of both stress and resting states 
revealed that under-voxel-values in SPECT are improved in 
 SPECTSPT. According to the AHA segment-wise analysis, 
the representative voxel values of SPECT at mid-inferosep-
tal regions (segments #8, #9, and #10) were significantly 
smaller than PET, but there was no difference between PET 
and  SPECTSPT. Further, a comparison of resting voxel values 
at basal inferior regions (segments #4 and #5) revealed that 
the representative voxel values of SPECT and  SPECTSPT 
against PET were both significantly smaller than PET, but 
the errors of  SPECTSPT were significantly smaller than 
those of SPECT. In the comparison of the mean error to 
PET visual scores in SPECT and  SPECTSPT, we observed 
significant overscoring at the inferior wall at base-to-apex 
wall in SPECT were mostly corrected in  SPECTSPT as equal 
as PET. The image artifact in SPECT at the inferior wall is 
a well-known result of photon attenuation. It is also well-
known that prone images improve attenuation correction in 
the anterior, anteroseptal, lateral, and inferior areas [17]. 
Although prone imaging is a simple and useful clinical tech-
nique that does not require complex image reconstruction 
algorithms or software, it increases examination time due to 
the additional scan. Since prone position SPECT and PET 
data could not be used in this study, our inability to directly 
compare them is considered a study limitation. However, 
we believe that our PET-supervised deep learning model is 
a new approach to correct well-known attenuation in SPECT 
myocardial perfusion imaging without the need for an addi-
tional scan. While  SPECTSPT was effective in correcting 
attenuation in the inferior region, the disappearance of true 
defects in the anterior region due to overcorrection was also 
observed. We acknowledge that the disappearance of defects 
is a weakness of the estimation using deep learning. In this 
study, we did not label the training images with “true defect” 
or “false defect due to the attenuation”. The error of activity 
disappearance may be improved by adding meta information 
to the training images. However, the area under the curves 
for detecting the presence of PET defect areas in the RCA, 
LAD, and LCX segments tended to improve using summed 



206 Annals of Nuclear Medicine (2024) 38:199–209

1 3

Fig. 3  AHA 17-segment-wise box-and-whisker plots of the error 
voxel values with respect to PET in 40 test patients. Upper and lower 
plots are indicated at stress and resting states, respectively. The blue 
boxes represent the differences between the voxel value of SPECT 
and PET and the red boxes represent those of  SPECTSPT. The lines at 
the ends of the boxes indicate median values. The symbol “ + ” indi-
cates the mean value. The blue and red asterisks indicate significant 

differences in voxel values from SPECT and  SPECTSPT against PET. 
The black asterisk indicates a significant difference in error between 
SPECT and  SPECTSPT against PET. AHA, American Heart Associa-
tion;  SPECTSPT, SPECT-to-PET translation model-generated SPECT; 
SPECT single-photon emission computed tomography, PET positron 
emission tomography; **, P < 0.01; *, P < 0.05
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scores with both SPECT and  SPECTSPT than with only 
SPECT. Consequently,  SPECTSPT is expected to be applied 
in clinical situations to provide additional diagnostic support 
information in myocardial perfusion imaging but it is not an 
alternative imaging modality to SPECT.

In recent years, deep learning has been reported to gen-
erate SPECT images with CT attenuation correction from 
SPECT without attenuation correction [8, 18]. Conversely, 
dedicated cardiac SPECT scanners with cadmium-zinc-tel-
luride (CZT) detectors are clinically available [19]. Since 
dedicated cardiac SPECT scanners are designed compactly 
without CT, attenuation correction with deep learning based 
on attenuation-corrected SPECT as a training dataset is chal-
lenging [20]. Myocardial PET has become widely available 
for the quantitative assessment of myocardial perfusion 
[21–24]. This proposed method may be promising to apply 
to CT-less SPECT imaging by preparing patient-to-patient 

datasets of PET and SPECT images. Furthermore, similar to 
the CT-less deep-learning approaches, our proposed CT-less 
method reduces radiation exposure. Our  SPECTSPT genera-
tion method is a novel approach to strengthen the clinical 
usefulness of SPECT in nuclear cardiology.

We acknowledge some limitations of this study. First, 
this study had a small sample size from a single center. 
This limitation might be due to only a few institutions in 
our country, which have the required 13N ammonia produc-
tion. Since the number of images in the training set used for 
image generation was over 1000, it was considered sufficient 
for building an image-to-image translation model. However, 
model rebuilding and validation in larger and more diverse 
cohorts is essential. Second, only a few patients (n = 14) 
underwent a PET scan within 1 month due to the difficulty 
of distinguishing between ischemia and attenuation artifacts 
by SPECT. It is necessary to obtain a large number of cases 

Fig. 4  Colored polar map of the total error of 40 test cases of SPECT 
and SPECTSPT myocardial perfusion scores against PET in 17 seg-
ments. Blue, green, and red indicate the underestimated, equivalent, 
and overestimated mean error in the myocardial perfusion scores 
compared with those of PET, respectively. The asterisks indicate 

that the SPECT and  SPECTSPT scores are significantly different from 
those of PET.  SPECTSPT, SPECT-to-PET translation model-generated 
SPECT; SPECT single-photon emission computed tomography, PET 
positron emission tomography; **, P < 0.01; *, P < 0.05
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who underwent PET within one month due to an uncertain 
SPECT diagnosis and use them for both deep learning train-
ing and testing. Therefore, we plan to conduct a multicenter 
study and undertake further model refinement and valida-
tion. Third, both the training and testing groups had an insuf-
ficient and biased number of cases of obesity, RCA stenosis, 
and ventricular dilation, which are likely to produce well-
known SPECT artifacts. Although, in this study cohort, there 
was no difference in most clinical characteristics between 
the training and test groups, the cohort were considered that 
attenuation artifacts are patient-specific and affected by char-
acteristics such as sex, obesity, and ventricular size. We used 
an image-to-image translation network developed in a previ-
ous study [14]. U-Net network was used as the generator for 
this network [25]. The performance of the proposed model 
may be improved in the future by incorporating metadata 
such as patient height, weight, and the presence or absence 
of coronary stenosis into the down-sampling layer of U-Net 
as a numerical matrix [26]. Since this was the first attempt 
to translate SPECT images with PET as the supervisor, we 
needed to determine whether this deep learning approach 
worked well for attenuation correction using the simplest 
examinations possible. Further, accurate metadata were not 
always available in retrospective studies. We aim to improve 

our proposed SPECT-to-PET translation model in the near 
future.

In conclusion, this study is the first to generate PET-like 
images from SPECT images based on deep learning. We 
believe that our PET-supervised deep learning model is a 
new approach to correct well-known inferior wall attenua-
tion in SPECT myocardial perfusion imaging. Considering 
PET as the reference, our proposed  SPECTSPT is consist-
ent with SPECT, but strictly different in terms of the AHA 
17-segment model. This proposed method is a post-pro-
cessing deep-learning model that provides PET-like image 
information from CT-less SPECT images. Since standalone 
SPECT systems are used worldwide, the  SPECTSPT gen-
eration model may be applied as a low-cost and practical 
clinical tool that provides powerful auxiliary information 
for myocardial blood flow diagnosis.
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