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Abstract
Objective The aim of this study was to propose and verify a universal method of left ventricular myocardium segmentation, 
able to operate on heart gated PET data with different sizes, shapes and uptake distributions. The proposed method can 
be classified as active model method and is based on the BEAS (B-spline Explicit Active Surface) algorithm published by 
Barbosa et al. The method was implemented within the Pmod PCARD software package. Method verification by comparison 
with reference software and phantom data is also presented in the paper.
Methods The proposed method extends the BEAS model by defining mechanical features of the model: tensile strength and 
bending resistance. Formulas describing model internal energy increase during its stretching and bending are proposed. The 
segmentation model was applied to the data of 60 patients, who had undergone cardiac gated PET scanning. QGS by Cedars-
Sinai and ECTb by Emory University Medical Centre served as reference software for comparing ventricular volumes. The 
method was also verified using data of left ventricular phantoms of known volume.
Results The results of the proposed method are well correlated with the results of QGS (slope: 0.841, intercept: 0.944 ml, 
R2: 0.867) and ECTb (slope: 0.830, intercept: 2.109 ml, R2: 0.845). The volumes calculated by the proposed method were 
very close to the true cavity volumes of two different phantoms.
Conclusions The analysis of gated PET data by the proposed method results in volume measurements comparable to estab-
lished methods. Phantom experiments demonstrate that the volume values correspond to the physical ones.

Keywords Segmentation method · Gated PET imaging · Volume quantification, left ventricle, cardiology

Introduction

Segmentation is one of the most important steps of image 
processing in cardiac diagnostics. It allows volume cal-
culation [1, 2] and plays an important role when deriving 
regional time activity curves for signal modeling [3–6] 
or for heart muscle strain approximation [7, 8]. The aim 
of this study was to propose a flexible method for human 
gated PET left ventricular myocardium segmentation, which 
operates on heart data of different sizes, shapes and uptake 
distributions.

The proposed method can be classified as an active model 
segmentation algorithm. The idea of active model segmenta-
tion is to modify position and shape of the model, so that it 
best satisfies some energy functions [9]. The classic formu-
lation of active model segmentation was described by Kass 
et al. [10]. They proposed a model restricted by its stiffness 
and elasticity, which is deformed in the energy field derived 
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from image gradient. The idea represents a group of methods 
called edge-based active models. They were further devel-
oped in several works, e.g. [11–14]. Region-based active 
models represent another approach, which is less sensitive 
to image noise. It was first proposed by Chan and Vese [15], 
who defined the model as dependent on the energy derived 
from differences in pixel mean values inside and outside the 
model boundary. Based on their work, many features and 
energy functions were formulated [16–18]. To increase the 
method efficiency, Lankton and Tannenbaum [19] proposed 
a localized approach, in which just the neighborhood of the 
model is taken into account during image feature analysis. 
Such a solution connected with an explicit form of model 
description [20, 21] was used by Barbosa et al., develop-
ing the B-spline Explicit Active Segmentation (BEAS) 
algorithm [22, 23]. They described in a spherical coordi-
nate system a B-spline surface model stretched on a set of 
nodes, whose angle coordinates are locked and their posi-
tions described by only one explicit coordinate—the radius 
(r) [24]. To make the method more effective in epicardium 
and endocardium segmentation, an extended definition of 
the BEAS model energy is proposed in this study.

The model was implemented and tested using the soft-
ware package Pmod PCARDP, Pmod Technologies LLC 
[25]. This paper presents the model definition, describes 
its application to human gated PET data as well as physi-
cal phantom data and presents the results of left ventricular 
volume measurements compared to the ones obtained using 
the reference software packages: QGS—quantitative gated 
SPECT [26] and Emory cardiac toolbox ECTb [27].

Materials and methods

Model energy definition

Barbosa et  al., proposed in [22] the following model 
description:

where � and � are angle coordinates and r is a radius coor-
dinate in the spherical coordinate system with origin inside 
the model, �d uniform symmetric B-spline function in two-
dimensional space, c[k] the B-spline coefficients, and p is a 
point of coordinates (�, �) . Model nodes k are located on a 
rectangular grid with spacing h.

The energy function, which drives the model shape modi-
fication, was proposed as follows:

(1)r = �(�, �) =
∑
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h
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where H�(x) is the Heaviside function [28], � an image 
space and fin and fout are formulae defining energy inside 
and outside the model:

where I(x) is the pixel intensity in point x , and u and v are 
mean pixel intensities inside and outside the model. The 
authors proved that the direction of the function (2) mini-
mization can be determined from its gradient with respect 
to B-spline coefficients [22]:

where �  is the model surface and

Finally, when running the segmentation algorithm, model 
shape is modified iteratively by B-spline coefficient recal-
culation for minimization of EI:

where t is an iteration number and � is a step scaling factor 
defined by the user as one of the method parameters. The 
above formulas express the global idea of the BEAS algo-
rithm. Authors have also presented a localized version of the 
formulas, which take into account only pixel values in the 
neighborhood of the model nodes. This makes an algorithm 
more precise and faster.

The model description is extended in this work by the fea-
tures analogous to mechanical tensile strength and bending 
resistance. These additional elements are called internal model 
energy in what follows.

According to the model definition (1), surface nodes can 
move only along lines defined by their angle coordinates, so 
model stretching corresponds to increasing the difference 
in r values for the neighboring nodes. We propose the fol-
lowing formulation of the energy Es resulting from model 
stretching:

where �(x) is a constant corresponding to model stiff-
ness in the point x . Energy for a node defined by the 
angle coordinates can be expressed as the superposi-
tion of the finite differences of �(x) in both directions 
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[29]. Minimization direction and node speed are then deter-
mined from the energy gradient:

Stretching energy defined in this way will be minimal, 
when the model takes the shape of a sphere.

The definition of the bending energy EB is expressed 
using a second derivative of the model function:

where �(x) is a constant corresponding to model bending 
resistance in point x . Energy for the node defined by the 
angle coordinates can be expressed as the superposition of 
the second-order finite differences of �(x).

Analogous to (8), direction and speed of model adjust-
ments leading to minimal energy EE are determined from 
fourth derivative of the model with respect to its parameters 
(9):

Overall energy of the proposed model contains the fol-
lowing components: image energy defined in BEAS method 
EI (2), stretching energy ES (7) and bending energy EB (9):

Direction of the energy minimization and speed of 
the model nodes is the resultant of all component energy 
gradients:

where �(x) , �(x) and �(x) weigh the influence of the different 
components on the overall energy.

Segmentation

The segmentation algorithm works similarly as the one 
presented in [22]. In each iteration, it calculates the overall 
model energy as well as direction and speed of modification 
of the model. Modification vectors for all model nodes are 
multiplied by a step factor � before being applied. If a step 
leads to energy decrease, � is multiplied by a speed increase 
factor �d and the algorithm moves to the next iteration step. 
If the step leads to energy increase, the model modification 
is not applied and � is divided by a speed decrease factor 
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�z . The algorithm is stopped either after a maximal number 
(maxI) of iterations has been reached, or if the energy could 
not be reduced by defined number 

(
maxIz

)
of trials . To bal-

ance the role of the different energy components, each of 
them is normalized to the range [0,1] using the following 
formula:

where Ekmin and Ekmax are minimum and maximum values 
of the energy across the whole model. Taking (13) into con-
sideration, Eq. (11) gets the following form:

The model and algorithm have been implemented in the Java 
programming language within Pmod PCARD tool [25]. As 
the left ventricular wall needs to be segmented, the method 
is applied to epicardium and endocardium segmentation 
separately. The space between these segments is considered 
as the myocardium segment. The implementation puts both 
epicardial and endocardial models in the same coordinates 
system, i.e. point r = 0 is common for both of them. It also 
supports mutual restrictions of the models, preventing one 
model from moving too far from another one. In practice, 
endocardium segmentation is performed first. In the sub-
sequent epicardial segmentation, the r coordinates of the 
model are restricted to a physiologically justified wall range. 
This restriction is required because the epicardial wall is 
often not well delineated due to signal from neighboring 
organs (e.g. liver), or due to lack of signal in regions with 
abnormal perfusion (e.g. because of infarct scar).

Parameters describing contribution of different types of 
energy to the overall value (α, β, γ) were calculated using 
the routine based on the Powell’s method of function mini-
mization [30]. To find the best fitting parameters, a series of 
segmentations with α, β and γ values changing within the 
range [0,1] were performed and their results were compared 
to the reference segments outlined manually. Quality of the 
segmentation was quantified using Dice index [31] between 
the found myocardium segment and a reference one. The 
minimized cost function was defined as the one’s comple-
ment of the Dice index, i.e. 1-Dice index. The starting point 
of the minimization algorithm was set to α = 0.5, β = 0.5 and 
γ = 1 with the default step for all three values 0.1. The cal-
culated energy contribution parameter values as well as the 
other method parameters are listed in Table 1.

The proposed segmentation method requires an initial 
model definition. In the PCARD tool a separate algorithm 
obtains it. It requires a priori setting of parameters describ-
ing the left ventricle approximately: long axis length, base 
radius and wall thickness. Furthermore, it requires that the 
data are resliced to short-axis orientation, with the heart 
long axis along the z-direction. The wall approximations 
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are obtained by tracing rays from the long axis and analyzing 
the uptake profiles along them. An example of the resulting 
epi- and endocardial segments outlined on gated PET data 
averaged across all gates is shown in Fig. 1. They form the 
input for the energy-based segmentation described above. 
An example of the results applied to human gated PET data 
(eight bins) is shown in Fig. 2.

In PET data, the valve that closes the ventricular base is 
not visible. Therefore, additional post processing is required 
to approximate the valve plane. The following algorithm was 
implemented. First a mask of the myocardium is obtained 
using the Otsu threshold determined from the pixel histo-
gram [32]. Having the data oriented in the short-axis pro-
jection, the center of mass in each slice between the apical 

and the basal plane is determined from the mask. From each 
center, rays are cast at equal angles. For each angle, the most 
basal slice is determined, for which the ray intersects with 
the mask. It is assumed that the intersection point in the 
middle of the mask wall belongs to the valve plane (valve 
point). The valve points in all angular directions provide an 
approximation of the valve plane. Hence, a plane is fitted 
to all valve points. An example of the initial segmentation 
after trimming by the fitted valve plane is shown in Fig. 3.

Validation

To validate the new segmentation method, clinical as well 
as phantom data were processed and the results compared 

Table 1  Segmentation method 
parameters used for the 
validation

Epicardium, parameters used for epicardial segmentation; endocardium, parameters used for endocardial 
segmentation

Parameters Epicardium Endocardium

maxI Maximum number of iterations 100 100
maxIz Maximum number of iterations with no energy decrease 5 5
λ Algorithm step factor 1.3 1.3
λd Speed increase factor 1.1 1.1
λz Speed decrease factor 1.1 1.1
d B-spline function degree 2 2
N × M Number of model surface nodes (Φ × θ) 36 × 18 18 × 9
α Model stiffness weight 0.4 0.4
β Model bending resistance weight 0.6 0.6
γ Image energy weight 1 1
S Side of a cubic neighborhood in which the local image 

energy is calculated
20 [mm] 20 [mm]

ML Approximate length of left ventricle long axis 75 [mm]
MR Approximate left ventricle base radius 30 [mm]
MW Approximate thickness of left ventricle muscle 10 [mm]

Fig. 1  Pre-segmentation results on gated PET data averaged across all gates. Epicardial (white contour) and endocardial (red contour) segments 
shown in the figure are input for the proposed segmentation method
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Fig. 2  Segmentation results for cardiac gated PET data (eight equal bins)

Fig. 3  Epicardial and endocardial segments just after model segmentation (upper) and restriction (lower) to the valve plane
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to those obtined using two software packages widely used 
in the clinical practice, QGS—Quantitative Gated SPECT, 
Cedars-Sinai Medical Center [26], and Emory Cardiac 
Toolbox (ECTb), Emory University Medical Center [27].

The new method was incorporated in the Pmod 
PCARDP Tool, version 3.902. It represents a localized 
version [19] calculating image energy EI (2) only in a 
cubic neighborhood of the current node.

The phantom data obtained during acquisition of two 
left ventricle phantoms of a known volume were analyzed. 
The phantoms were: an anthropomorphic phantom (Heart/
Thorax Phantom, RSD Inc.) and a simplified isolated ven-
tricular phantom Cardiac Insert Model ECT/CAR/I (BIO-
DEX Medical Systems). The first phantom will be further 
referred to as the phantom A and the latter will be referred 
to as the phantom B.

The phantom A was filled with 18FDG, using a total 
activity of 37 MBq (1 mCi). To reproduce the proportions 
of activity usually observed in a human study, the heart 
wall (including the three defects provided by the producer 
to simulate perfusion defects) was filled with a concentra-
tion similar to the liver, whilst the concentration of the 
cardiac cavities (atria and ventricles) was one-fourth and 
that of the thorax one-tenth; finally the lungs were kept 
free of activity. After completion of the filling procedure, 
the phantom was laid on the PET/CT Gemini TOF scan-
ner couch and the acquisition was performed. A CT study 
for attenuation correction was collected and then the data 
were acquired using the gated PET protocol, with the elec-
trodes connected to a volunteer outside the scanner room 
to simulate the ECG signal for gating. The gated PET 
acquisition was reconstructed using the iterative method 
3D-RAMLA (45 slices, matrix 144 × 144, voxel dimen-
sions: 4 × 4 × 4 mm) with two iterations and three subsets, 
after decay, attenuation, random, scatter and time of flight 
correction. Before the final reconstruction of the images, 
the alignment of CT and PET images was controlled and 
corrected if necessary. Since the producer provides just 
the total volume of the cardiac cavities, the measurement 
of the left ventricular volume was performed by weighing 
the empty heart insert with a high precision balance, and 
then repeating the measurement after having slowly filled 
the sole left ventricular cavity with colored water through 
the proper injection hole, taking care of avoiding the over-
flow of the water in the nearby right ventricular cavity that 
communicates with the left one above the septum. The 
resulting volume was 75 ml.

The wall cavity of the phantom B was filled with 
185 MBq (5 mCi) of 18FDG, and the images were acquired 
with a standard gated PET protocol for 10 min on a Discov-
ery 710 PET scanner (GE) and then iteratively reconstructed 
with VUE point HD (18 subsets, two iterations). The ven-
tricular cavity volume, reported by the producer to be about 

60 ml, was measured as above described and found to be 
exactly 63 ml.

Besides the phantom data, a patient population of 60 
patients, who had undergone cardiac PET scanning in both 
stress and rest conditions, has been analyzed. In particular, 
there were 29 patients studied because of suspected micro-
vascular dysfunction in the setting of hypertrophic or dilated 
cardiomyopathy, or of secondary left ventricular hypertro-
phy, and 31 patients studied because of known or suspected 
coronary artery disease. Within the population, there were 
no patients with wide and severe resting or inducible perfu-
sion defects.

Patients were studied with a standard resting and stress 
protocol using a PET/CT Gemini TOF scanner (Philips) as 
previously described [33]. Patients were submitted to CT 
imaging for attenuation correction, followed by resting study 
with administration of 370 MBq of 13NH3 in slow bolus and 
dynamic list mode acquisition lasting 9 min. Immediately 
thereafter, an eight-frame gated PET acquisition was started 
for additional 5 min. After 60 min, the stress study was per-
formed using similar modalities, with the administration of 
0.56 mg/kg of dipyridamole over 4 min. After 3 min of dipy-
ridamole completion, 370 MBq of 13NH3 was injected and 
a second dynamic study acquired, again followed by a gated 
PET acquisition. No electrocardiographic or respiratory gat-
ing was applied. The study was then reconstructed using the 
same modalities described above for the phantom studies. 
Rest and stress end-systolic and end-diastolic volumes were 
obtained using the software mentioned above.

Results

Physical models

The phantom data were analyzed using QGS and PCARD 
using the proposed algorithm. The results compared to the 
real phantom volume are presented in Table 2. The mean 
relative error between QGS measurements and the physical 
volume is 6.66% and the mean relative error for PCARDP 
is 3.59%.

Table 2  Estimated volume measurements compared with the true 
phantom volumes (63[ml] and 75[ml])

Volume volume measurement, Error relative error compared to the 
physical volume

Phantom PCARD QGS [ml]

Volume [ml] Error [%] Volume [ml] Error [%]

A. 63 [ml] 65 3.17 63 0.00
B. 75 [ml] 78 4.00 85 13.33
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Clinical data

For logistic reasons, it was not possible to analyze all 60 
patients using all three programs. The following pair-wise 
comparisons were feasible: PCARD compared to QGS (31 
patients), PCARD compared to ECTb (18 patients), ECTb 
compared to QGS (18 patients). For each patient, two vol-
umes (EDV, ESV) were calculated under stress and rest con-
ditions, resulting in four observations for each patient. The 
results are shown as scatter plots in Figs. 4, 5 and 6. Each 
scatter plot presents the comparison of the measured LV 
volume between two programs as well as the result of the 
linear regression analysis performed using the least squares 
method. All pair-wise comparisons result in R2 higher than 
0.8 and slope direction slightly smaller than 1.

Some points on the scatter plots are visibly more distant 
from the regression line than the points. All of them are the 
examples of not healthy patients. In Fig. 7, the data of a 
patient with a severe form of hypertrophic cardiomyopathy 
(HCM), already in a dilative phase, are shown. In Figs. 8 
and 9, examples of patient data with septal hypertrophy are 
displayed. Although the patient suffers from a septal hyper-
trophy, the segmentation results are correct in the septal 
sectors. In Fig. 9, the lateral basal sector inaccuracy shows 
underestimation of the left ventricular volume.

Discussion

The presented scatter plots and linear regression results 
demonstrate a good correlation ( R2 > 0.8 ) between results 
obtained by the new segmentation method and the reference 

results obtained by clinically used software. The linear 
regression equations suggest that there is a scaling factor 
of approximately 0.84 between PCARD and the reference 
results. It is unclear where this factor comes from. When 
processing phantom data, PCARD only slightly overesti-
mated the true volumes, whereas QGS results were not con-
sistent: for the simplified phantom QGS estimated the exact 
volume, whereas it overestimated the volume by 13% for the 
anthropomorphic phantom.

Correlation between QGS and ECTb is better than 
with PCARD. It is notable, however, that three different 

Fig. 4  Scatter plot of left ventricle volumes obtained using Pmod 
PCARD and QGS software. Dashed line represents identity line. 
Plain line represents the linear regression line expressed by the fol-
lowing equation: VPCARD = 0.8413VQGS + 0.9467 . VPCARD is 
volume obtained using Pmod PCARD. VQGS is volume obtained by 
QGS.  R2 is the coefficient of determination

Fig. 5  Scatter plot of left ventricle volumes obtained using Pmod 
PCARD and ECTb software. Dashed line represents identity line. 
Plain line represents the linear regression line expressed by the fol-
lowing equation: VPCARD = 0.8302VECTb + 2.1086 . VPCARD is vol-
ume obtained using Pmod PCARD. VECTb is avolume obtained by 
ECTb. R2 is the coefficient of determination

Fig. 6  Scatter plot of left ventricle volumes obtained using Pmod 
ECTb and QGS software. Dashed line represents identity line. Plain 
line represents the linear regression line expressed by the follow-
ing equation: VECTb = 0.9537VQGS + 6.1034 . VECTb is volume 
obtained using ECTb. VQGS is volume obtained by QGS. R2 is the 
coefficient of determination
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Fig. 7  Segmentation result in the end-systolic frame for the case with severe form of hypertrophic cardiomyopathy (HCM) in the dilative phase. 
Epicardial (white contour) and endocardial (red contour) segments are shown

Fig. 8  Segmentation result in the end-systolic frame for the case with septal hypertrophy. Epicardial (white contour) and endocardial (red con-
tour) segments are shown

Fig. 9  Segmentation result in the end-systolic frame for the case with septal hypertrophy. Epicardial (white contour) and endocardial (red con-
tour) segments are shown. The segmentation inaccuracy can be observed in the lateral basal sectors
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data sets had to be used for the comparisons, and manual 
interventions in PCARD were restricted to the short-axis 
reorientation. The scatter plots indicate some clear outli-
ers. In practice, in the case of an erroneous segmentation 
result due to unusual heart geometry, the geometric param-
eters axis length and base radius of the method would be 
adjusted to improve the segmentation output. In Figs. 7, 8 
and 9, the data correlating to the outlier point can be seen. 
The segmentation results in Figs. 7 and 8 are favorable for 
the proposed segmentation method.

Among the limitations of the proposed method, one 
should mention the deficiency in valve plane fitting algo-
rithm if there is lack of perfusion in the heart basal layer 
either on lateral or septal side. Such regions with low 
signal level, resulting from e.g. infarction may result in 
detected valve plane shift towards heart mid layer and in 
LV volume underestimation.

Despite existence of the scaling factor for absolute vol-
ume calculations, the proposed method can be applied for 
left ventricular gated PET analysis. Phantom experiments 
show that the volume values obtained using PCARD are 
in agreement with the real values.

This study was not conceived for assessing the clini-
cal implications of the proposed segmentation method 
nor to evaluate possible advantages over other established 
approaches. However, since each of so-far implemented 
methodologies can face difficulties in specific patients, 
the availability of another segmentation method could be 
useful. The phantom measurements seem favorable for 
PCARD; however, due to the small number of measure-
ments, the results are not conclusive.

The segmentation method is derived from the BEAS 
algorithm, dedicated for ultrasound imaging. Its develop-
ment proposed in this paper made it appropriate for gated 
PET data. Further stiffness and elasticity parameters modi-
fications may allow adjusting the method to other imag-
ing modalities, such as magnetic resonance or computed 
tomography.

Conclusions

The analysis of gated PET clinical data by the proposed 
method results in volume measurements comparable to 
established methods. As the phantom experiments also 
demonstrate that the volume values correspond to the 
physical ones, it can be concluded, that the proposed seg-
mentation method can be recognized as a good alternative 
for the reference methods.
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