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Introduction

The intensity of severe climate events, such as heatwaves, 
torrential rainfall, prolonged droughts, and violent storms, 
has emerged as a worldwide issue in recent times. This con-
cerning pattern greatly enhances the susceptibility of com-
munities, especially in urban and rural regions, presenting 
a huge hazard and requiring thorough planning. Numeri-
cal climate models provide valuable predictions of shifting 
weather patterns, but precisely identifying and forecasting 
extreme occurrences remains a serious challenge (Flaounas 
et al. 2022; Mezősi 2022; Olaoluwa et al. 2022).

Statistical conventional approaches remain center of 
analyzing extreme climatic conditions, offering vital under-
standing of the features and patterns of these occurrences. 
The methods encompass Extreme Value Theory (EVT), 
Block Maxima (BM), and Peaks-Over-Threshold (POT) 
approaches, Generalized Extreme Value (GEV) distribution, 
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Abstract
The accurate identification of extreme weather events (EWEs), particularly cyclones, has become increasingly crucial due 
to the intensifying impacts of climate change. In the Indian subcontinent, the frequency and severity of cyclones have 
demonstrably risen, highlighting the need for reliable detection methods to minimize casualties and economic losses. 
However, the inherent limitations of low-resolution data pose significant challenges to traditional detection methods. Deep 
learning models offer a promising solution, enabling the precise identification of cyclone boundaries crucial for assessing 
regional impacts using global climate models data. By leveraging the power of deep learning, we can significantly enhance 
our capabilities for cyclone detection and contribute to improved risk mitigation strategies in the vulnerable Indian sub-
continent. Therefore, this paper introduces an edge-enhanced super-resolution GAN (EESRGAN) leveraging an end-to-
end detector network. The proposed approach comprised of a generator network equipped by residual-in-residual dense 
block (RRDB) and discriminator containing Faster RCNN detector. The precise patterns of cyclone had been effectively 
extracted to help boundary detection. Extensive experiments have been conducted on Community Atmospheric Model 
(CAM5.1) data taken into account only seven variables. Four matrices including precision, recall, intersection over union, 
and mean average precision have been considered to assess the proposed approach. The results have been found very 
effective while achieving accuracy up to 86.3% and average precision (AP) of 88.63%. Moreover, the proposed method 
demonstrates its superiority while compared with benchmarks object detectors methods. Thus, the proposed method can 
be employed in the area of extreme climate detection and could enrich the climate research domain.

Keywords Extreme cyclone detection · Deep learning · GAN · Faster R-CNN · Community atmospheric model 
(CAM5.1)
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Index Threshold Method (ITM), and Partial Duration Series 
(PDS) approach (Hulme 2014). Despite their robust theo-
retical basis, simple implementation and understandable 
outcomes, their limitations include susceptibility to data 
quality issues, reliance on the assumption of stationarity, 
subjectivity in the choosing of thresholds, and restrictions 
associated with parametric models. As climate change con-
tinues to intensify, it is becoming increasingly important to 
develop more robust and sophisticated methods for extreme 
climate patterns. Hybrid approaches, such as TECA (Rübel 
et al. 2012), introduced as a possible solution for overcom-
ing these constraints by merging the advantages of conven-
tional with more sophisticated approaches.

Deep learning (DL), which draws inspiration from the 
brain architectural, has catalyzed a revolution in artificial 
intelligence. Diverging from conventional approaches, 
DL leverages extensive datasets to learn intricate patterns, 
thereby facilitating breakthroughs in domains such as com-
puter vision and natural language processing (Kaur and 
Singh 2022; Zaidi et al. 2022). Numerous studies have laid 
the groundwork for exploring the profound influence of 
deep learning in various domains. For instance, the poten-
tial of deep learning in reservoir characterization (Zhang et 
al. 2020) was demonstrated to integrate seismic and elec-
tromagnetic data for improved mapping. Extending beyond 
the realm of image analysis, (Afzal et al. 2023) delves into 
the extensive landscape of visualization and visual analyt-
ics techniques empowered by deep learning. Additionally, 
deep learning was extended in environmental monitor-
ing (Hittawe et al. 2019) specifically focusing on anomaly 
detection in sea surface temperatures. The remarkable per-
formance of hash deep learning model in multi-label remote 
sensing image retrieval had been investigated (Moustafa 
et al. 2020). The convergence between DL and statisti-
cal methods in optimizing traffic management solutions 
was explored (Harrou et al. 2021). By drawing inspiration 
and insights from these prior works, the present research 
endeavors to contribute to the ever-evolving landscape of 
DL applications.

This paradigm shift has the potential to reshape the 
extreme weather analysis (Chen, Zhang et al. 2020). An 
ensemble of deep learning methods were utilized to detect 
cyclones (Kumler-Bonfanti et al. 2020) using a twenty-year 
dataset of simulated data. Another convolutional neural 
network (CNN) architecture (Kim et al. 2017) was devel-
oped to accurately pinpoint severe occurrences, achieving 
a remarkable accuracy rate of 99.98%. ClimateNet (Kashi-
nath et al. 2021) was created as a baseline dataset for anno-
tating the Community Atmospheric Model (CAM5.1). A 
deep convolutional neural network (CNN) was specifically 
designed to categorize the intensity of Tropical Cyclones 
(TCs) using infrared geostationary satellite data. The Single 

Shot MultiBox Detector (SSD) was used to pinpoint Extra-
tropical Cyclones (ETCs) in the northern hemisphere (Shi 
et al. 2022). A refined Deep Convolutional Neural Network 
(DCNN) (Tong et al. 2022) was introduced to accurately 
detect tropical cyclone fingerprints in the northern Pacific 
basin. These approaches showed similar levels of perfor-
mance in identifying cyclones. In (Pang et al. 2021), the 
GAN was combined by transfer learning to detect tropi-
cal cyclones from meteorological images. A novel transfer 
learning model (Wang and Li 2023) was proposed to detect 
center of TC by harnessing knowledge from a vast image 
dataset and fine-tuning it for TC-specific features, the model 
achieves a remarkable 14.1% boost compared to traditional 
methods. Another innovative CNN model was introduced 
to pinpoints the centers of low-intensity tropical cyclones 
(Wang et al. 2024) by incorporating physical and historical 
data alongside satellite imagery, the model captures crucial 
evolutionary trends in storm structure, achieving excep-
tional localization accuracy. The Thermal InfraRed (TIR) 
Atmospheric Sounding Interferometer (IASI) on the Metop 
satellite was used to detect TCs in the North Atlantic Basin 
using YOLOv3 (Lam et al. 2023). The model was evaluated 
at 0.1 and 0.5 intersection over union (IoU) using the Aver-
age Precision (AP) measure. Though promising with an AP 
of 78.31% at the lower level, precision dropped to 31.05% 
at the higher barrier.

Nevertheless, the limited resolution of climate data is 
inadequate for detecting variations in small climatic zones, 
such as India, which may experience cyclones of varying 
magnitudes (Dabhade et al. 2021). Single Image Super-Res-
olution (SISR) may be used to generate artificially enhanced 
High Resolution (HR) images, which can subsequently be 
employed to improve the accuracy of object detection sys-
tems (Park et al. 2003; Anwar et al. 2020; Liu et al. 2021). 
Dong et al. introduced the pioneer deep learning Convolu-
tional Neural Network-based Super-Resolution (SRCNN) 
method. More complex CNN architectures was introduced, 
including VDSR (Kim, Kwon Lee et al. 2016) and LapSRN 
(Lai et al. 2018) which resulted in the production of SR 
images with high Peak Signal-to-Noise Ratio (PNSR) val-
ues. On other hand, generative adversarial networks (GANs) 
has displayed enhancing the perceptual quality and mini-
mize smoothing of reconstructed HR images (Lei et al. 2019; 
Moustafa and Sayed 2021). Single Image Super-Resolution 
Generative Adversarial Networks (SRGANs) leverage the 
collaborative power of two subnetworks: a generator and 
a discriminator (Ledig et al. 2017). The generator network 
aimed to reconstruct HR images from their Low Resolution 
(LR) input counterparts. On other hand, the discriminator 
network anticipates whether the obtained image is ground 
truth HR or not. After enough training, the generator creates 
HR images that mimic ground truth.
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Recently, attention-based models or transformers (Lu 
et al. 2022) could be better feature extraction in local cli-
mate zones, these techniques have shown great potential in 
various computer vision tasks, including super-resolution. 
Attention mechanisms enable the model to focus on rele-
vant image regions and capture long-range dependencies, 
which can be beneficial in extracting meaningful features 
from local climate zones. By attending to relevant spatial 
or temporal regions, attention-based models can effectively 
model the complex relationships and patterns within local 
climate zones, leading to improved performance. Trans-
formers, in particular, have gained significant attention in 
recent years due to their success in natural language pro-
cessing and image recognition tasks (Moustafa and Sayed 
2021). Despite their booming performance there are some 
challenges to be considered when utilizing attentions or 
transformers in case of very large volumes of data: (1) 
Computational Cost: Transformers heavily rely on attention 
mechanisms, which involve comparing every element in the 
input sequence to each other. This leads to quadratic com-
plexity, meaning their computational cost grows with the 
square of the data size. While techniques like sparse atten-
tion and efficient implementations can alleviate this issue, it 
still remains a hurdle for extremely large datasets. (2) Mem-
ory Bottlenecks: Processing entire large datasets at once 
might not be possible due to memory limitations. Trans-
formers usually need the entire input sequence in memory 
for attention calculations, making handling massive datasets 
in a single batch challenging. (3) Training Stability: Train-
ing transformers effectively requires careful hyperparam-
eter tuning, especially with large datasets. Learning rate 
schedules, batch sizes, and optimization algorithms need 
to be adjusted to ensure convergence and avoid divergence 
(Khan et al. 2022).

Traditional weather models struggle to accurately identify 
cyclones due to two key hurdles: (1) their limited resolution, 
meaning they cannot capture the fine details of cyclones, 
and (2) the natural variation in cyclone size and structure. 
These limitations can lead to missed identifications, par-
ticularly for smaller or weaker cyclones, impacting weather 
forecasting and early warning systems. This study tackles 
these challenges to improve cyclone detection for better 
weather forecasting and early warning systems. To address 
this challenge, we propose a novel end-to-end approach that 
combines edge-enhanced super-resolution (EESRGAN) 
with a Faster RCNN detector. The proposed framework 
comprises three subnetworks: a generator, a discriminator, 
and a Faster RCNN detector. We utilize residual-in-residual 
dense blocks (RRDB) to extract discriminative features for 
accurate cyclone detection. We systematically evaluated 
the proposed approach on Community Atmospheric Model 
(CAM5.1) image data, considering seven distinct variables. 

Extensive experiments were conducted to assess the effec-
tiveness and efficiency of the framework using four metrics: 
precision, recall, intersection over union, and average preci-
sion. The key contributions of this work are:

 ● The proposed end-to-end framework comprised of a 
generator network equipped by residual-in-residual 
dense block (RRDB) and discriminator containing Fast-
er RCNN detector.

 ● The generator network employs residual-in-residual 
dense blocks (RRDB) which provides several advan-
tages compared to traditional convolutional blocks al-
lowing extraction of discriminative features. In addition, 
the skip connections of RRDB enhances gradient flow 
during training.

 ● The discriminator network contains Faster RCNN ob-
ject detection where the gradient of the detection loss 
function is propagated back to update the parameters of 
the generator network.

 ● The proposed EESRGAN with can efficiently detects 
the tropical cyclone (TC) event which has been verified 
for India.

 ● Seven critically important variables for cyclone 
event analysis from Community Atmospheric Model 
(CAM5.1) image data have been taken into account for 
systematically assessment of the proposed network.

The remainder of this paper is structured as follows: Sect. 2 
introduces the proposed architecture for the Indian cyclone 
detection. Experimental setting, and results discussion are 
presented in Sect. 3. Section 4 concluded the findings.

Methodology

Figure 1 depicts the overall structure of the proposed frame-
work. The proposed framework is composed of two main 
subnetworks: generator (G), extended discriminator net-
work with object detector network. During training, the 
gradient of the detection loss function is propagated back 
to update the parameters of the generator network (G). This 
backpropagation process guides the generator to refine its 
image reconstruction, enhancing realism and sharpness in 
the output images, ultimately improving the performance of 
the overall framework. On the other hand, the discrimina-
tor network (D) aimed to distinguish between ground truth 
images and estimated SR images whereas, the detector 
network Leverages the enhanced quality of the SR images 
created by the generator (G) to perform accurate object 
detection.
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RRDB skip connections improve gradient flow during train-
ing. The RRDB combats the vanishing gradient problem 
by shortening gradient propagation through the network, 
enabling faster and more stable convergence during train-
ing. To mitigate computational complexity, curtail unde-
sirable artifacts, and bolster generalization capabilities in 
scenarios where training and testing data exhibit substantial 
statistical disparities, batch normalization layers were judi-
ciously excluded from the architecture (Karras et al. 2019).

We stacked 16 RRDB block with dense connections to 
increase network capacity. To enhance parameter learning, a 
Parametric Rectified Linear Unit (PReLU) (El Jaafari et al. 
2021) was implemented in conjunction with residual scaling 
promoting training stability. The PReLU activation func-
tion is an extension of the traditional rectified unit, offer-
ing improved model fitting without significant additional 
computational cost or overfitting concerns. By dynamically 
learning the rectifier parameters, PReLU enhances accuracy 
without imposing a noticeable burden on computational 
resources (He et al. 2015). The initial super-resolution (SR) 

Generator

Building upon the EESRGAN architecture (Jiang et al. 
2019), we utilized the generator structure outlined in 
Fig. 2(a). The key innovation lies in replacing the standard 
convolution blocks with Residual in Residual Dense Blocks 
(RRDBs) (Song et al. 2018), as detailed in Fig. 2(b, c), to 
enhance the generator performance. The inclusion of RRDB 
in the network offers several advantages over traditional 
convolutional blocks; (1) Improved feature representation: 
RRDB architecture enables complicated and discriminative 
feature extraction and representation. The residual con-
nections in the RRDB let the network capture and convey 
low-level and high-level information, improving feature 
learning. (2) Deeper network capacity: RRDB allows for 
deeper network building without many additional param-
eters. Densely linking each layer to all subsequent layers 
in the block achieves this. Thus, the RRDB may take use of 
deep architectures improved representational capacity and 
ability to learn abstract features. (3) Efficient gradient flow: 

Fig. 1 The overall structure of the proposed end-to-end cyclone detection network
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LMSE =
1

r2WH

rW∑

w=1

rH∑

h=1

(IHR,(w,h) − G (ILR)w,h)
2 (2)

Where r  represents the upsampling factor, W and H 
denoted HR image width and height, respectively. IHR, 
G (ILR)stands for the ground truth HR image and SR image.

The LV GG loss, defined in Eq. (1), was originally intro-
duced by (Ledig et al. 2017) to create visually appealing 
and detailed images. However, their VGG-19 network 
(Simonyan and Zisserman 2014)was trained on the Ima-
geNet dataset, which differs significantly from the domain of 
satellite images used in this work. To address this mismatch, 
we fine-tuned the pre-trained VGG-19 network following 
the procedure in (Jiang et al. 2019), as shown in Eq. (3). 
This allows us to calculate the Euclidean distance between 
the feature maps extracted from the high-resolution (HR) 
image (IHR) and the super-resolution (SR) image (G (ILR)) 
using the fine-tuned network.

Lvgg =
1

Wi,jHi,j

Wi,j∑

w=1

Hi,j∑

h=1

(∅i,j(IHR)w,h −∅i,j(G (ILR))w,h)
2 (3)

where Wi,jandHi,jindicate the width and height of the cor-
responding feature map respectively.

The discriminator network loss function can be formu-
lated as in Eq. (4):

LAdversarial = −log (D(G (ILR))  (4)

Finally, the EESN network loss function is formulated as 
defined in Eq. (5):

image generated by the network exhibits undesirable arti-
facts manifested as noisy edges. The Edge Enhancement 
Sub-Network (EESN) mitigates these artifacts by replacing 
the noisy edges with “EESN-purified” edges, yielding the 
final refined SR image. During training, the generator (G) 
aims to map the input LR image onto the HR image space, 
replicating the characteristics of the ground truth HR image. 
While the intermediate generator output possesses sharp yet 
jagged edges, the final SR image retains crisply defined con-
tours devoid of spurious artifacts.

The EESN network aims to remove the noise from the 
initial obtained SR images and sharpen the edges. Laplacian 
operator is used to extract edges in the image then this edge 
information is transferred via convolutional, RRDB, and up 
sampling blocks. Following the architectures in (Jiang et 
al. 2019), the mask branch equipped by sigmoid activation 
aimed to eliminate edge noise. Finally, the refined edges 
are added to the input image. It worth noting that all dense 
block in EESN were replaced by RRD blocks to improve 
the performance. The generator network (G) consisted of 
16 RRDB while the EEN (Enhanced Encoder Network) 
employed five blocks. The overall generator (G) cost func-
tion (LG) is defined as in Eq. (1).

LG = λ1LMSE + λ2LVGG + λ3LAdversarial + λ4LEESN  (1)

where we prioritized content accuracy (λ1 = 1), downplayed 
perceptual details (λ2 = 0.001), used moderate adversarial 
loss (λ3 = 0.01), and emphasized edge preservation (λ4 = 5).

The mean square loss LMSE  defined in Eq. (2), is the 
popular in SISR as it is known to increase the PSNR value.

Fig. 2 (a) The generator network architecture with RRDBs and EESN network. (b) Residual in Residual Dense Block (RRDB) where ß is residual 
scaling parameter. (c) The architecture of the dense block
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LD_f = LD + LOD  (6)

The Adversarial decimator network (D) loss function is 
defined in Eq. (7)

LD = log(D (IHR)− log(1−D(G (ILR))).  (7)

where IHR  denotes the reference High resolution image, 
ILR  denotes the Low-resolution image

The object detection network Faster RCNN loss function 
is defined as in Eq. (8).

LOD ({pi} , {ti}) =
1

Ncls

∑

i

Lcls (pi, ṗi) + λ
1

Nreg

∑

i

ṗiLreg (ti, ) (8)

Where pi  is the predicted probability of anchor, ṗi  is the 
ground-truth label (1: anchor is positive, 0: anchor is nega-
tive), λ  is balancing parameter, ti  is the predicted box, ṫi  
is the ground-truth box.

Training strategy

To better suit climate data characteristics through model 
training, we depended on data normalization and scaling 
as an important preprocessing step to ensure that the input 
seven variable are on a similar scale, which can improve 
the training process and model performance. We applied 
Min-Max Scaling to physical climate parameter data which 
rescaled each variable to a fixed range, typically between 0 
and 1. This is achieved by subtracting the minimum value 
of the variable and dividing by the difference between the 
maximum and minimum values, as defined in Eq. (9):

xnorm = (x?xmin)/(xmax?xmin) (9)

To mitigate computational demands associated with train-
ing the proposed model on the entire dataset, we employed 
a random sampling technique. This resulted in the creation 
of a smaller, representative subset of data that maintained 
balanced representation across all four class types, thereby 
ensuring training efficiency and generalizability.

Instead of training the model from scratch, we benefited 
from Transfer Learning and adopted the weights from (Jiang 
et al. 2019) as the initial weights then completed training 
on climate dataset. This approach leverages the knowledge 
learned from the pre-training phase and reduces the amount 
of training required on the target dataset.

LEESN = EISR [P (IHR − ISR)] + EIedge_HR
[P (Iedge_HR − Iedge_SR)] (5)

where, the first term measures the pixel-wise difference 
between the generated SR image (ISR ) and the ground truth 
HR image (IHR ).P represents the Charbonnier penalty func-
tion. The second term focuses on the preservation of edges 
in the super-resolved image Iedge_HR  and Iedge_SR denotes 
the edge maps of the HR and SR images, respectively.

Discriminator

Building on the success of (Jiang et al. 2019), we designed 
a robust discriminator network crucial for achieving high-
quality super-resolution. This network consists of eight con-
volutional layers with 3 × 3 filters, progressively increasing 
in number from 64 to 512, inspired by VGGs architecture. 
To further enhance discrimination, we incorporate VGG-
19 features and leverage Faster R-CNN (Girshick 2015) 
for object detection within the discriminator, enabling it to 
effectively differentiate between super-resolved and high-
resolution images.

Faster R-CNN (Girshick 2015), developed by Micro-
soft as a two-stage object detector, has gained significant 
popularity for its effectiveness in analyzing satellite images. 
The model comprises of two interconnected subnetworks, 
namely the region proposal network (RPN) and the detec-
tor. The primary task of the RPN is to identify and extract 
region-specific characteristics associated with objects 
of interest. Subsequently, these identified regions, along 
with their corresponding feature maps, are utilized by the 
detector’s classifier and bounding box regressor. To obtain 
a fixed-size feature map encoding spatial relationships 
between features, a fully convolutional network known as 
the backbone is employed. The RPN can accommodate fea-
ture maps of any size, leading to the generation of numer-
ous rectangular object proposals. For each sliding position 
within the feature map, the RPN generates K predictions 
encompassing diverse sizes and aspect ratios. The regres-
sion and classification layers produce four location coordi-
nates and corresponding scores. Consequently, the resulting 
feature map of size n × n × k represents the regions of inter-
est (ROIs). Through the process of minimizing and refining 
regional proposals, the RPN contributes to improvements 
in both speed and accuracy. Several studies (Magdy et al. 
2022; Wang and Leelapatra 2022) have demonstrated the 
superiority of ResNet-50-FPN as the backbone network for 
this task. This choice stems from its demonstrably higher 
precision compared to VGG-19 and the baseline ResNet-50 
architecture without FPN.

The overall discriminative network (D) which minimizes 
the cost function is defined in Eq. (6)

1 3
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critically important variables. A sample of the climate data-
set is illustrated in Fig. 3. To narrow down the data to a 
specific region, the dataset was clipped to the extent of the 
Indian subcontinent. To avoid overfitting and ensure gener-
alizability, we split the data into three different sets: train-
ing (50%), validation (27%), and testing (23%) as shown 
in Table 2. Finally, the generalizability of the model was 
evaluated on a completely unseen test set (23% of the data), 
which was never exposed to the model during training or 
validation.

Experiments setting

The computational environment for all experiments con-
sisted of an Intel Core i7 processor equipped with an 
NVIDIA Quadro RTX 6000 graphics card (NVIDIA, 2023) 
and 192 GB of RAM. PyTorch (Paszke et al., 2019) served 
as the deep learning framework under Windows 10, with 
CUDA 11.0 and CUDNN 5.1 providing GPU acceleration. 
Stochastic gradient descent (SGD) with momentum (Ruder, 
2017) was employed as the optimizer, utilizing momentum 

Dataset

The detection task utilized a large-scale Extreme Climate 
Event dataset (Kashinath et al. 2021) specifically designed 
for climate analysis. This dataset contains ground truth 
information for four types of extreme climate events and 
was generated using the Parallel Toolkit for Extreme Cli-
mate Analysis (TECA), which leverages prior knowledge 
of climate analysis to create accurate labels. The dataset is 
extensive and stored in a yearly HDF5 file format with a 
size of 62GB. Each file consists of two variables: “images” 
and “boxes.” The “images” variable has a shape of (1460, 
16, 768, 1152), representing 1460 images with 16 channels, 
a length of 768, and a width of 1152. On the other hand, 
the “boxes” variable has a shape of (1460, 15, 5), signify-
ing 1460 images with 15 ground-truth boxes per image. The 
5 coordinates in each box correspond to x_min, x_max, 
y_min, y_max, and the associated class label. Table 1 pro-
vides a detailed mapping of the class labels for four cyclone 
classes. For Cyclone detection, the study focused on seven 

Table 1 Class labels for the type of Extreme climate (Cyclone) events
Label Type of Extreme Climate Event
1 Tropical depression
2 Tropical Cyclone
3 Extratropical Cyclone
4 Atmospheric River

Table 2 Dataset-Splitting for training, validation, and testing
Training set Validation set Testing set

Years 1979–2000 2000–2002 2002–2005
#samples 20,616 11,907 9999

Fig. 3 Worldwide climate parameters generated using CAM5 at 
1/6/2001; (a) Sea level pressure (PSL), (b) Temperature at 200 mbar 
pressure surface (T200), (c) Temperature at 500 mbar pressure sur-

face (T500), (d) Zonal wind at 850 mbar pressure surface (U850), (e) 
Meridional wind at 850 mbar pressure surface (V850), (f) Z100, and 
(g) Geopotential Z at 200 mbar pressure surface (Z200)
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Where, TP represents true positives, FP represents false 
positives, and FN represents false negatives. True positives 
(TP) occur when the predicted cyclone type matches the 
ground-truth, true negatives occur when the predicted and 
ground-truth are both negative, false positives occur when 
the predicted is positive, but the ground-truth is negative, 
and false negatives occur when the ground-truth is positive, 
but the predicted ground-truth is negative.

Results

First, we evaluated the SSD and Faster RCNN detectors on 
both LR and HR images. VGG16 backbone was employed 
for SSD network while ResNet-50-FPN was employed 
for Faster R-CNN (FRCNN) detector. For each detector, 
the training and the testing was conducted on LR and HR 
images. Table 3 summarizes the obtained detectors results 
training/testing. Faster R-CNN achieved 79.7% AP when 
adopting only LR images in training and testing. For both 
detectors, the obtained accuracy declined when trained on 
HR images and tested with their LR counterparts.

One can observe that the accuracy of both object detec-
tors excelled in scenario of utilizing HR images in train-
ing and testing. The accuracy achieved 74.1% and 81.9% in 
terms of AP for SSD and Faster RCNN, respectively. This 

values of 0.9 and 0.999. The learning rate was set to 1 × 10–4. 
A batch size of 16 was chosen for training efficiency. The 
training took 96 hours for 200 epochs. Faster R-CNN infers 
four images/second. Figure 4 shows the proposed network 
training and validation loss curves.

Low-resolution (LR) training images were obtained by 
downsampling ground-truth images using bicubic interpola-
tion to a size of 128 × 128 pixels. Notably, the experiments 
were conducted with a 4x scaling factor between the SR out-
puts and the ground-truth images. During training, both the 
high-resolution (HR) and low-resolution (LR) images were 
rescaled to the value ranges of [-1, 1] and [0, 1], respec-
tively. The VGG-19 network (Simonyan and Zisserman 
2014) was adapted to accept seven input channels instead 
of the original three by prepending additional zero channels.

To assess the performance of our proposed architecture, 
we utilized commonly used metrics for object detection 
tasks, namely precision, recall, and IoU (Intersection over 
Union). These metrics are defined as follows:

Precision = TP/ (TP + FP )  (10)

Recall = TP/ (TP + FN ) (11)

IoU = TP/ (TP + FN + FP ) (12)

Fig. 4 The loss curve per epoch 
for Weather dataset. (a) Genera-
tor network, (b) discriminator 
network
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backpropagated into the SR network in order to enhance 
the network learning during training. The LR-HR images 
pairs were utilized to train the proposed framework, and the 
obtained SR images were used to train Faster RCNN detec-
tor. In testing, only LR images were feed to the generator 
to create SR image to be feed to detector network. Table 5 
indicates that the proposed approach improved outcomes 
compared with training the detector network with SR from 
other SR approaches.

Figure 5 shows the precision-recall curves of the pro-
posed approach, with and without end-to-end training, in 
comparison to stand-alone Faster-RCNN using LR training/
testing images. Precision and recall were determined using 
IoU = 0.5. One can observe that the proposed framework 
has superior values in precision and recall than standalone 
R-CNN models. End-to-end training improved the proposed 
method performance.

For better comparison and visualization, we plot 
(1-recall) for X-axes and (1- precision) for Y-axes, as shown 
in Fig. 6. One can observe that, all detector techniques 
achieved superb performance for the four categories despite 
the size of the cyclone. Overall, the proposed method is very 
effective for detecting extreme climate event in the climate 
dataset.

The proposed approach yields an SR image with 
improved visual clarity and detail, thanks to adversarial 
learning’s ability to simultaneously sharpen images and 
increase detection precision as shown in Fig. 7. In brief, 
the effectiveness of joint training (detector network and 
discriminator), improves the obtained SR image images 
both visually and in detection measures. Also, the proposed 
approach achieved a considerable improvement compared 
with other approaches by about 1.5% in terms of average 
precision (AP).

Discussion

The proposed approach, when tested with SR images gen-
erated by itself, improved the detection outcomes com-
pared to training the detector network with SR images from 
other approaches. It was evaluated using SSD and Faster 
R-CNN as the detector networks. SSD utilized Vgg16 
backbone, while Faster R-CNN employed ResNet-50-FPN. 

illustrates how image resolution affects object identification 
quality.

Next, we compared the proposed EESRGAN architec-
ture, CNNSR, SRGAN, and 4× HR estimate from LR image 
using bicubic upsampling. We trained each network sepa-
rately. For the assessment, we compared detectors trained 
on SR images obtained from these approaches versus detec-
tors trained directly on HR images. Table 4 demonstrated 
that the proposed framework showed the highest results, 
approaching close to HR-only detection rates. After training, 
the proposed framework may be immediately used to LR 
images without HR data and get excellent results. CNNSR 
and SRGAN have better AP compared with traditional bicu-
bic in prepare LR images. Overall, the proposed framework 
outperformed the other approaches in climate dataset.

Next, we trained the proposed approach using end-to-end 
fashion. The discriminator network and Faster RCNN detec-
tor were served as the discriminator for the proposed archi-
tecture. As a result, the Faster RCNN detector loss being 

Table 3 The obtained detection results in terms of AP (average preci-
sion) on LR and HR images
Model Image Resolution (Train-

ing -Testing)
Cli-
mate 
data-
set

SSD LR-LR 61.8%
HR-LR 58%
HR-HR 74.1%

Faster-RCNN LR-LR 79.7%
HR-LR 72.5%
HR-HR 81.9%

Table 4 The detection results in terms of AP on the obtained SR 
images by the proposed approach, CNNSR, SRGAN networks and 
bicubic upsampling. Both Detectors are trained separately with both 
SR and HR images
Model Image Resolution

(Training -Testing)
Climate 
dataset

Bicubic + SSD SR-SR 58.9%
HR-SR 61.3%

Bicubic + FRCNN SR-SR 62.6%
HR-SR 66.8%

SRGAN + SSD SR-SR 80.95%
HR-SR 83.23%

SRGAN + Faster RCNN SR-SR 81.68%
HR-SR 77.92%

CNNSR + SSD SR-SR 72.83%
HR-SR 73.78%

CNNSR + Faster RCNN SR-SR 78.84%
HR-SR 84.57%

Proposed 
framework + SSD

SR-SR 84.2%
HR-SR 86.08%

Proposed frame-
work + Faster RCNN

SR-SR 86.1%
HR-SR 88.2%

Table 5 The detection results in terms of AP using end-to-end training 
for both detectors
Model Image Resolution 

(Training -Testing)
Cli-
mate 
data-
set

Proposed framework + Faster RCNN SR-SR 86.3%
Proposed framework + SSD SR-SR 84.2%
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ability to extract relevant features especially in local climate 
zone. The transformer and attention-based model could help 
in capturing the discriminative features of cyclone events 
efficiently. (3) Unlike data-driven deep learning-based, the 
traditional detection techniques employ physics parameters 
which deep learning-based algorithms disregard. Many 
studies strive to combine physics into the deep learning for 
climate forecasting to preserve the benefits of numerical and 
deep learning-based approaches to enhance deep learning-
based TC track detection.

Conclusion

Deep learning can unlock the power of climate data by ana-
lyzing its low-resolution obtained from numerical models 
instead of regional high-resolution counterparts. The pro-
posed approach tackles the challenges of the computational 
burden and information overload to obtained high-reso-
lution regional data from weather numerical models. The 
integration between deep learning and numerical data can 
offer faster analysis, targeted feature extraction, uncovering 

The accuracy of both detectors decreased when tested on 
LR images. However, the proposed approach utilizing 
Faster R-CNN and SSD achieved 81.9% and 74.1% AP. 
A comparison was conducted between the EESRGAN 
architecture, CNNSR, SRGAN, and bicubic upsampling 
for training detectors. The proposed approach showed the 
highest results, approaching the performance of HR-only 
detection. CNNSR and SRGAN outperformed traditional 
bicubic upsampling in preparing LR images. Overall, the 
proposed framework surpassed other approaches in the cli-
mate dataset.

Therefore, there are still an open door to integrate recent 
deep learning-based revelational models to boost the preci-
sion of detection in the future. Technically, three main issues 
had to be addressed in the future. (1) the deep learning-based 
detection methods mainly used pre-trained, but the nature of 
climate data is different. Although the large volume of used 
data in training limited computation affects the model abil-
ity to learn from data. (2) The obtained results in Table 5 
demonstrate the rather poor performance of the detection 
utilizing the super resolution images, especially using SSD 
detectors. The reason for this may be due to limited SSD 

Fig. 5 The precision-recall curves for the proposed technique, with and without end-to-end training, in comparison to stand-alone Faster-RCNN.
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generative adversarial network (EESRGAN) coupled with 
an end-to-end detector network. The proposed approach 
comprises a generator, discriminator, and Faster RCNN 
detector network augmented with residual-in-residual dense 
blocks (RRDB). This architecture effectively extracts pre-
cise cyclone patterns, facilitating accurate boundary detec-
tion. Extensive experiments were conducted on Community 
Atmospheric Model (CAM5.1) data using only seven vari-
ables and employed four evaluation metrics: precision, 
recall, intersection over union, and mean average precision 
to assess the proposed approach. The results demonstrated 
remarkable effectiveness, achieving an accuracy of 86.3% 
and an average precision (AP) of 88.63%. Furthermore, the 
proposed framework outperformed baseline object detector 
methods.

hidden patterns, broader applicability, and real-time insights. 
While acknowledging potential information loss and train-
ing data challenges, this approach empowers professionals 
with efficient, scalable, and insightful climate analysis for 
informed decision-making.

The intensifying impacts of climate change necessitate 
enhanced detection of extreme weather events (EWEs), par-
ticularly cyclones. In the Indian subcontinent, the demon-
strably heightened frequency and severity of cyclones 
necessitate reliable detection methods for mitigating casu-
alties and economic losses. However, traditional detection 
approaches face significant challenges due to the inherent 
limitations of low-resolution data. Deep learning models 
present a promising solution by enabling precise identifi-
cation of cyclone boundaries crucial for regional impact 
assessment using global climate model data. By leveraging 
the power of deep learning, we can significantly improve 
cyclone detection capabilities and contribute to refined risk 
mitigation strategies in the vulnerable Indian subcontinent. 
This paper introduces an edge-enhanced super-resolution 

Fig. 6 Precision vs. Recall curves on climate dataset for Tropical Depression (TD), Tropical Cyclone (TC), Extratropical Cyclone (EC), and 
Atmospheric River (AR), respectively
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Fig. 7 Examples of the obtained SR images generated from LR images in (a,b). Results of improved edge detection in (c, d)
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