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Abstract
Turkey’s Artvin province is prone to landslides due to its geological structure, rugged topography, and climatic characteristics 
with intense rainfall. In this study, landslide susceptibility maps (LSMs) of Murgul district in Artvin province were produced. 
The study employed tree-based ensemble learning algorithms, namely Random Forest (RF), Light Gradient Boosting Machine 
(LightGBM), Categorical Boosting (CatBoost), and eXtreme Gradient Boosting (XGBoost). LSM was performed using 
13 factors, including altitude, aspect, distance to drainage, distance to faults, distance to roads, land cover, lithology, plan 
curvature, profile curvature, slope, slope length, topographic position index (TPI), and topographic wetness index (TWI). 
The study utilized a landslide inventory consisting of 54 landslide polygons. Landslide inventory dataset contained 92,446 
pixels with a spatial resolution of 10 m. Consistent with the literature, the majority of landslide pixels (70% – 64,712 pix-
els) were used for model training, and the remaining portion (30% – 27,734 pixels) was used for model validation. Overall 
accuracy, precision, recall, F1-score, root mean square error (RMSE), and area under the receiver operating characteristic 
curve (AUC-ROC) were considered as validation metrics. LightGBM and XGBoost were found to have better performance 
in all validation metrics compared to other algorithms. Additionally, SHapley Additive exPlanations (SHAP) were utilized 
to explain and interpret the model outputs. As per the LightGBM algorithm, the most influential factors in the occurrence 
of landslide in the study area were determined to be altitude, lithology, distance to faults, and aspect, whereas TWI, plan 
and profile curvature were identified as the least influential factors. Finally, it was concluded that the produced LSMs would 
provide significant contributions to decision makers in reducing the damages caused by landslides in the study area.
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Introduction

Landslides are one of the most common natural disasters 
in areas with rugged topography. Landslides triggered by 
seismic activities, heavy rainfall, or human activities cause 

significant economic damage, environmental destruction, 
and loss of life, especially in areas with steep slopes. There-
fore, reducing and preventing landslide-related damages 
continue to be important research topics in disaster man-
agement (Zhang et al. 2022a). To reduce landslide-related 
damages and losses, landslide susceptibility (LS) assessment 
should be conducted in areas prone to landslides, and land-
slide susceptibility maps (LSMs) for these areas should be 
generated (Das et al. 2023). It is possible to identify areas 
with a high probability of future landslides through LS map-
ping (Ye et al. 2022).

Various statistical methods have been used to generate 
LSMs. Logistic regression (LR) (Yilmaz 2009; Kavzoglu 
et al. 2014; Dağ et al. 2020), frequency ratio (FR) method 
(Akgun et al. 2008; Demir 2019; Akinci and Yavuz Ozalp 
2021), and weights of evidence (Lee and Choi 2004; Sifa 
et al. 2020; Wang et al. 2020a) are the most commonly used 
statistical methods. However, Wei et al. (2022) mentioned 
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that while statistical methods are relatively easy to use, they 
fall short in explaining the complex, inconsistent, and non-
linear relationships between landslide events and the con-
ditioning factors that influence them. Therefore, in recent 
years, machine learning (ML) and deep learning-based mod-
els have gained significant attention in this field.

In the past decade, individual or stand-alone ML algo-
rithms such as artificial neural networks (Pradhan and Lee 
2010; Aditian et al. 2018; Akinci 2022), decision trees (Tien 
Bui et al. 2012; Pradhan 2013), naive bayes (Chen et al. 
2018; Pourghasemi et al. 2018), and support vector machines 
(SVM) (Goetz et al. 2015; Colkesen et al. 2016; Akinci and 
Zeybek 2021) have been widely used in LS mapping. On 
the other hand, several studies in the literature have reported 
that ensemble learning algorithms, such as adaptive boosting 
(AdaBoost), random forest (RF), gradient boosting machine 
(GBM), light gradient boosting machine (LightGBM), cat-
egorical boosting (CatBoost), and extreme gradient boosting 
(XGBoost), outperform individual ML algorithms in terms 
of prediction accuracy, stability, and robustness (Kavzoglu 
and Teke 2022; Liu et al. 2022; Wei et al. 2022). Ensemble 
learning algorithms generate multiple models using different 
samples of the same dataset to produce more accurate solu-
tions and improve prediction performance by combining the 
predictions from these models. Sahin (2022) and Ye et al. 
(2022) emphasized that CatBoost, LightGBM, and XGBoost 
are rarely used and not extensively evaluated in LS mapping 
studies, mainly due to being relatively new methods com-
pared to other ML models. Although tree-based ensemble 
learning algorithms demonstrate better performance than 
single models, it has not been determined yet which is the 
most suitable algorithm for LS mapping (Wei et al. 2022; 
Ye et al. 2022). Different studies highlight the prominence 
of different algorithms on the attributes of the research loca-
tion, the conditioning factors used, and the values of the 
algorithms’ hyperparameters. Therefore, more studies com-
paring the performance of different algorithms are needed 
for a comprehensive evaluation.

In Turkey, due to its geological, geomorphological, top-
ographic, and climatic characteristics, regions such as the 
Black Sea Region, Eastern Anatolia, and Central Anatolia 
are frequently affected by landslides. Approximately 20% of 
landslides in Turkey occur in the Eastern Black Sea Region. 
The provinces with the highest happening of landslides in 
this region are Trabzon, Rize, Giresun, and Artvin, respec-
tively. According to the statistical data from the Disaster 
and Emergency Management Presidency (AFAD) cover-
ing the years 1950–2019, Trabzon experienced 1517 land-
slides, Rize had 1319, Giresun had 913, and Artvin had 765 
landslide events (AFAD 2020). In the study by Dalkes and 
Korkmaz (2023), LSMs of Akçaabat and Düzköy districts 
of Trabzon province were produced using Analytic Hierar-
chy Process (AHP) and FR methods. Upon comparison of 

the LS maps produced by both methods, it was determined 
that the FR method yielded more accurate results than the 
AHP method in identifying the locations of the observed 
landslides in the study area. Yavuz Ozalp et al. (2023) pro-
duced LSMs of Ardeşen and Fındıklı districts of Rize prov-
ince using tree-based ensemble learning algorithms such as 
RF, GBM, CatBoost and XGBoost. Using the ROC curve 
and AUC metric, the researchers found that CatBoost per-
formed slightly better than other models. In the study by 
Kaya Topaçli et al. (2024), LR and RF models were used 
to produce LSMs of the Bolaman river basin of Ordu prov-
ince, located in the Eastern Black Sea Region in Turkey. The 
study area is one of the basins where landslides occur most 
frequently in Turkey, as in many places in the Eastern Black 
Sea Region. The validation results of the study showed that 
RF is superior to LR in terms of performance. Landslides 
that inflict harm upon structures and infrastructure, also 
economic losses and loss of life, can be observed in all dis-
tricts of Artvin. However, a review of the literature reveals 
that LS assessments have been conducted in the districts of 
Arhavi, Hopa, Kemalpaşa, Merkez, Ardanuç, and Şavşat in 
Artvin (Akinci et al. 2020, 2021; Akinci and Yavuz Ozalp 
2021; Akinci and Zeybek 2021), while no studies have been 
conducted in the districts of Borçka, Murgul, and Yusufeli.

The aim of this study was to produce susceptibility maps 
showing areas prone to landslides in Murgul district of Art-
vin province and to identify the main factors contributing to 
landslide susceptibility. Prediction models using RF, Light-
GBM, CatBoost and XGBoost ML algorithms were used 
for susceptibility mapping. The prediction capabilities or 
performances of the susceptibility models were evaluated 
using metrics such as overall accuracy, precision, recall, 
F1-score, root mean square error (RMSE), and AUC-ROC. 
Furthermore, the SHapley Additive exPlanations (SHAP) 
approach, which aims to explain the local behavior of black 
box ML models, was used to improve the interpretability of 
model predictions. When the current literature is reviewed, it 
is seen that there are limited number of studies using SHAP 
approach in LS modeling (Pradhan et al. 2023; Sun et al. 
2023a; Teke and Kavzoglu 2023; Vega et al. 2023; Youssef 
et al. 2023; Zhang et al. 2023). Therefore, the innovative 
aspect and contribution of this study to the literature is the 
use of SHAP in LS modeling.

Material and methods

The aim of this study is to produce LSMs of the study area 
using tree-based ensemble learning algorithms and to com-
pare the performance of the ML models used. The study 
can be broadly divided into 6 steps: (1) prepare spatial data 
for landslide conditioning factors; (2) test the independence 
of conditioning factors using multicollinearity analysis; (3) 
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collection of landslide inventory data, creation of training 
and validation data sets; (4) produce LSMs using RF, GBM, 
CatBoost, and XGBoost models; (5) evaluate the perfor-
mance of the models using validation metrics; (6) interpret 
the models using SHAP values and explain the formation 
mechanisms of landslides in the study area. This study was 
carried out using ArcGIS 10.5, SAGA GIS 7.9, Python and 
Scikit-learn library. A flowchart summarizing the method-
ology applied in this study, inspired by Yu et al. (2023), is 
shown in Fig. 1.

Study area and geological structure

The study area consists of a bounding box covering the Mur-
gul district. This area is located between 41° 7′ 1.39″—41° 
22′ 24.86″ north latitude and 41° 27′ 55.41″—41° 41′ 1.53″ 
east longitude, with a total area of 48,938.23 hectares. The 
average elevation in the study area is 1347 m, and the eleva-
tion ranges from 100 to 3370 m (Fig. 2). The study area has 
a highly rugged topography, and the slope values change 
from 0° to 76.33°. The mean slope value in the study area 
is 29.09°. In the study area, 4.09% of the area has a slope 
below 10°, 15.78% has a slope between 10° and 20°, and 
80.13% has a slope above 20°.

The study area includes 13 villages along with the town 
center of Murgul. Two of these villages, Civan and Akpınar, 

are administratively affiliated with the Borçka district 
(Fig. 2). Based on the data from the Turkish Statistical Insti-
tute (TURKSTAT), the total population of Murgul district 
in 2021 is 6522 (TURKSTAT 2023). Out of this population, 
5020 reside in the town center, while 1502 live in the vil-
lages. With the inclusion of the 2 villages affiliated with the 
Borçka district, the total population in the study area reaches 
6896 people.

The study area is characterized by a Black Sea climate. 
Based on the meteorological measurements collected 
from the General Directorate of Meteorology for the years 
2015–2022, the average temperature in Murgul district is 
12.76 °C. The yearly mean rainfall in Murgul is 980.63 mm. 
The highest temperature recorded in the district was 31 °C 
in August 2022, while the lowest temperature was -3 °C in 
December 2016.

In this study, a 1/100,000 scale geological map obtained 
from the General Directorate of Mineral Research and 
Exploration (GDMRE) was used (Keskin 2013a; 2013b). 
Based on this map, there are 18 different lithological units 
in the study area (Fig. 3). The study area comprises litho-
logical units ranging in age from Late Cretaceous (Turo-
nian-Coniacian) to Quaternary (Table 1). Four lithologi-
cal units account for 78.52% of the study area: Kızılkaya 
Formation (Kk) covers 24.28%, Kabaköy Formation (Tek) 
covers 23.66%, Çatak Formation (Kç) covers 20.6%, and 

Fig. 1  The flowchart representing the methodology followed in the study
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Çağlayan Formation (Kça) covers 9.98%. The Santonian-
aged Kızılkaya Formation (Kk) consists of rhyodacitic, 
dacitic lavas, and pyroclastics.

The Kabaköy Formation (Tek), which is of Mid-
dle Eocene age, starts with clastic and carbonates and 
includes andesitic, basaltic lavas, and pyroclastics, as 
well as conglomerates, sandy limestone, sandstone, marl, 
and tuff. The Late Cretaceous (Turonian-Coniacian) 

Çatak Formation (Kç) comprises basaltic andesitic lavas 
and pyroclastics, along with argillaceous limestone, marl, 
siltstone, and shale. The Campanian–Maastrichtian-
aged Çağlayan Formation (Kça) is composed of basaltic 
andesitic lavas and pyroclastics, as well as mudstone and 
sandstone (Keskin 2013a; 2013b). The rocks contained in 
the other lithological units in the study area are given in 
Table 1.

Fig. 2  Study area: (a) location 
of Artvin, (b) location of Mur-
gul, (c) landslides in Murgul

Fig. 3  Lithological map of the 
study area
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Landslide inventory

Landslide susceptibility (LS) mapping studies require land-
slide inventory data both for model training and validation 
stages. For models to generate reliable results, the inventory 
data needs to be up-to-date, accurate, and complete. The 
landslide inventory map (LIM) used in the study contains 
54 landslide polygons (Fig. 2).

Among the landslide polygons, 11 of them were obtained 
from the 1/25,000 scale LIM generated by the GDMRE. In 
this inventory, landslide polygons are classified as Type 1, 
Type 2, and Type 4. Type 1 represents inactive landslides, 
Type 2 represents active landslides, and Type 4 represents 
active flows (Erener et al. 2016; Duman and Çan 2023). The 
remaining 43 landslide polygons used in the study were 
obtained from the map indicating the inventory of landslides 
produced by the Artvin Provincial Disaster and Emergency 
Directorate. When examining landslides and related data 
in Turkey, it is known that predominantly translational and 
rotational landslides, as well as complex landslides com-
bining multiple types, occur (AFAD 2020). According to 
Varnes’ (1978) slope movement classification, out of the 43 
landslides, 1 is categorized as rotational slide, 8 categorized 
as translational slide, 24 as flow, 6 as debris flow, and 4 as 
complex landslide. The total area covered by the landslide 

polygons is 9,241,303.99  m2. The landslide polygons cover 
approximately 2% of the study area. The smallest and the 
largest landslide polygons in the study area have areas of 
38.32  m2 and 2,809,890  m2, respectively.

A total of 54 landslide polygons in the study area were 
transformed into raster format, utilizing a spatial resolution 
of 10 m. As a result of this conversion, the “1” value was 
assigned to 92,446 pixels, which are referred to as positive 
examples. To create negative examples, a matching quantity 
of pixels without landslides were randomly selected in the 
implementation of ML models in Python, and these pix-
els were assigned a value of “0”. Subsequently, the total of 
184,892 pixels, consisting of landslide and non-landslide 
examples, was divided into two datasets in a 70/30 ratio, fol-
lowing the literature (Sahin 2022; Youssef and Pourghasemi 
2021; Akinci 2022; Liu et al. 2022; Wei et al. 2022). These 
datasets were employed for the training and validation of 
the model.

Landslide conditioning factors

In this study, LSMs were generated using 13 factors, includ-
ing land cover, aspect, slope, lithology, elevation, plan cur-
vature, profile curvature, distance to drainage networks, dis-
tance to faults, distance to roads, slope length, topographic 

Table 1  Lithological units of the study area

Pixel value Symbol Age / Formation name The content of the formation

1 Qal Quaternary / - Alluvium
2 Qym Quaternary / - Slope debris
3 Tekçd Middle-Upper Eocene / - Diorite
4 Tekça Middle-Upper Eocene / - Dacite, rhyodacite
5 Tet Middle Eocene / Taşpınar formation Andesitic and dacitic volcanics, volcano-clastic turbiditic rocks
6 Tek Middle Eocene / Kabaköy formation Andesite, basaltic lava and pyroclastics, sandy limestone, sandstone, 

marl, tuff
7 Tee Middle Eocene /

Erenler formation
Mudstone, claystone, sandstone alternation

8 Tpeb Paleocene-Lower Eocene / Bakırköy formation Siltstone, claystone, sandstone, clayey limestone, marl
9 Kk1 Upper Cretaceous-Paleocene / Kaçkar granitoid-I Granite, granodiorite, quartz diorite, adamellite, gabbro, diabase
10 Kk1kd Upper Cretaceous-Paleocene / - Quartz diorite, diorite
11 KTc Maastrichtian-Danian / Cankurtaran formation Sandy limestone, mictiric limestone, tuff, marl, volcanics sandstone, 

agglomerate
12 KTct3 Maastrichtian-Danian / - Tuff, marl, limestone, sandstone
13 KTck Maastrichtian-Danian / - Limestone (gray-red colored)
14 KTa Maastrichtian-Danian / Ağıllar formation Reefal limestone, sandy limestone
15 Kçb Maastrichtian /

Çayırbağ formation
Dacite, rhyolite, rhyodacitic lava and pyroclastics

16 Kça Campanian–Maastrichtian / Çağlayan formation Basaltic, andesitic lava and pyroclastics, mudstone, sandstone
17 Kk Santonian /

Kızılkaya formation
Rhyodacitic, dacitic lava and pyroclastics

18 Kç Turonian-Coniacian / Çatak formation Basalt, andesitic lava and pyroclastics, clayey limestone, marl, 
siltstone, claystone
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position index (TPI), and topographic wetness index (TWI). 
These factors were determined based on the availability or 
producibility of spatial data, the geological and environmen-
tal characteristics of the study area, and relevant literature. 
Raster-based factor maps were produced at a spatial resolu-
tion of 10 m using ArcGIS 10.5 and SAGA GIS 7.9 software 
(Fig. 4 and Fig. 5). Digital topographic maps of the study 
area were obtained from the General Directorate of Map-
ping. The digital elevation model (DEM) of the study area 
with a resolution of 10 m was produced by using the con-
tour lines in these 1/25.000 scale topographic maps. Aspect, 
slope, elevation, plan and profile curvature were prepared in 
ArcGIS 10.5 software using this DEM. Additionally, slope 
length, TPI and TWI were produced using the same DEM in 
SAGA GIS software. As explained in Section "Study Area 
and Geological Structure", the lithological units and fault 
lines were obtained from the 1:100,000 geological map pro-
vided by GDRME. The map displaying the distance to faults 
in the study area was generated using the “Euclidean Dis-
tance” function in ArcGIS software. The study area’s drain-
age network was generated using SAGA GIS software based 
on the DEM. Additionally, the “Euclidean Distance” func-
tion of ArcGIS software was used to produce the distance 
map to the drainage networks. A comprehensive digital road 
network dataset including highways, village roads and forest 
roads in the study area was obtained from Artvin Regional 
Directorate of Forestry. The map representing the distance 
to the roads was produced using the “Euclidean Distance” 
function of ArcGIS software, as in other distance maps. On 
the other hand, the 10 m resolution land cover dataset of the 
study area was obtained from ESRI (https:// livin gatlas. arc-
gis. com/ landc over/). The relationship between conditioning 
factors and landslide occurrences has been well explained 
in numerous studies (Gomez and Kavzoglu 2005; Kavzo-
glu et al. 2014; Pourghasemi and Rahmati 2018; Zhao et al. 
2019; Dağ et al. 2020; Youssef and Pourghasemi 2021; Ye 
et al. 2022), hence detailed discussions on this topic are not 
provided in this article. Instead, basic statistical data related 
to conditioning factors are presented (Table 2).

Machine learning algorithms used in the study

Random forest (RF)

The Random Forest (RF) algorithm, originally proposed by 
Breiman (2001), is a type of ML algorithm designed for 
nonparametric multivariate classification. It has been widely 
adopted in LS mapping studies, and has been discussed in 
detail by Catani et al. (2013). The Random Forest (RF) 

algorithm is a well-known technique in the field of ensem-
ble learning. It is frequently utilized in classification and 
regression tasks. In contrast to a single decision tree, which 
is susceptible to overfitting and may exhibit high variance 
or bias (Taalab et al. 2018; Park and Kim 2019), RF gener-
ates multiple instances of decision trees and aggregates their 
predictions to arrive at a final classification (Youssef et al. 
2016). This approach allows the algorithm to mitigate the 
weaknesses of individual trees and improve predictive per-
formance, making it a widely-used tool in the field of ML. 
Decision trees are created using randomly selected subsets 
of the training data. The final prediction produced by RF is 
achieved by aggregating the predictions of all the decision 
trees (Akinci et al. 2020).

Two parameters need to be defined when creating an RF, 
the number of decision trees (ntree) and the number of vari-
ables or factors used at each node of the decision tree (mtry). 
Although there is no definitive rule for selecting the number 
of trees in RF, augmenting the number of trees does not 
guarantee an enhancement in the model’s accuracy (Taalab 
et al. 2018). Conversely, the variable numbers utilized at 
each node of the decision tree should be equal to the square 
root of the total number of variables (Chen et al. 2020). The 
out-of-bag (OOB) error, which is the percentage of misclas-
sifications over all out-of-bag factors, is used to estimate the 
generalization error and evaluate the importance of vari-
ables (Achour and Pourghasemi 2020; Cao et al. 2020). In 
this study, RF method implemented using scikit-learn Ran-
dom Forest regressor with the ntree and mtry parameters 
set to 100 and 13, respectively. A tenfold cross-validation 
approach was used to validate the consistency of the model’s 
results.

Extreme gradient boosting (XGBoost)

XGBoost, introduced by Chen and Guestrin (2016) is a com-
bination of the gradient boosting algorithm and the decision 
tree models (Wei et al. 2022; Cao et al. 2020). The XGBoost 
has gained popularity in LS mapping studies (Kavzoglu 
and Teke 2022). The main advantage of the XGBoost is its 
performance in the terms of runtime speed and accuracy 
(Wei et al. 2022). The XGBoost algorithm utilizes a gradi-
ent boosting technique, which constructs a tree by splitting 
features and recursively adding trees (Zhang et al. 2020a, 
b). For each time a new tree is added, a new function is 
yielded by fitting the residual value of the previous predic-
tions. The tree is constructed by training the model, hence, 
the leaf node of the tree stores a score, and the sample’s 
predicted value is the sum of the scores of all nodes (Ye et al. 
2022). The aim of the model is to minimize the difference 
between predicted value and true value by minimizing the 
loss function of the training data as shown in Eq. 1 (Wang 
et al. 2020b).

Fig. 4  Maps that represent conditioning factors: a) altitude, b) aspect, 
c) distance to drainage, d) distance to faults, e) distance to roads, f) 
land cover

◂

https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
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where i stands for the number of a given predicted value y ̂ 
(i = 1, 2, 3, ⋯, n); n stands for the total number of y values; 
t stands for the iteration number; l(yi, ŷi) stands for the loss 
function between actual value yi and the predicted value ŷi; 
Xi stands for the features of the i’th sample; ft(Xi) stands 
for the base learner added to the tth iteration; ( ft) stands 
for regularization and finally t stands for objective function.

ML algorithms have some parameters that need to be 
tuned during the training phase. These parameters, called 
hyperparameters, significantly affect the accuracy, perfor-
mance and processing speed of the model (Yavuz Ozalp 
et al. 2023). XGBoost includes several hyperparameters 
that can be tuned to improve the performance of the model. 
These include “n_estimators” (the maximum number of 
iterations or trees), “max_depth” (the maximum depth of 
the trees), “eta” (the learning rate), “gamma” (the regulari-
zation parameter), “colsample_bytree” (the number of fea-
tures or variables supplied to a tree), “min_child_weight” 
(the minimum sum of instance weight needed in a child), 
and “subsample” (the number of samples or observations 
supplied to a tree).

Light gradient boosting machine (LightGBM)

Light gradient boosting (LightGBM), firstly proposed by Ke 
et al. (2017), is a gradient boosting approach. LightGBM is 
designed to overcome performance issues encountered by 
gradient boosting decision trees in data intensive applica-
tions (Zhang et al. 2022b). Thanks to its support for efficient 
concurrent training, faster training speed, reduced memory 
usage and distributed computation capabilities, it can handle 
big data efficiently and can be considered an improvement 
to the XGBoost (Dai et al. 2021).

The efficiency of LightGBM comes from two novel opti-
mization techniques namely Gradient-based One-Side Sam-
pling (GOSS) that diminishes the number of data instances 
and Exclusive Feature Bundling (EFB) which decreases the 
number of features (Zhang et al. 2022b). GOSS down-sam-
ples the data instances by discarding a portion of instances 
with small gradients and retaining instances with large gra-
dients to evaluate information gain. More detailed infor-
mation can be found in Ke et al. (2017). EFB reduces the 
number of features by grouping related features together. To 
be able to bundle features without compromising accuracy, 
conflict rate is used to determine whether a feature should 
be bundled or not (Fang et al. 2021).

(1)�t =

n
∑

i=1

l
(

yi,
(

ŷ
(t−1)

i
+ ft

(

xi
)

))

+ Ω
(

ft
)

When creating the LightGBM model, some hyperpa-
rameters need to be tuned. These basic hyperparameters 
are “boosting_type”, “num_leaves”, “max_depth”, “num_
iterations”, and “learning_rate” (Zhou et al. 2022; Omote-
hinwa et al. 2023). The “boosting_type” parameter defines 
the gradient boosting method to be run. Valid values are 
“gbdt”, “rf”, “dart”, and “goss”, but the default is “gbdt”. 
The parameter “num_leaves” refers to the maximum number 
of leaves in a tree. The “max_depth” parameter controls the 
maximum depth of each tree. The parameter “num_itera-
tions” determines the number of boosting iterations, or trees 
to build. The “learning_rate” determines the speed at which 
the model’s weights are updated after processing each batch 
of training examples.

Categorical boosting (CatBoost)

Categorical boosting (CatBoost), firstly introduced by Prok-
horenkova et al. (2018), is another improved gradient boost-
ing technique. CatBoost can process categorical data along 
with numerical data and needs less training data compared 
to other ML methods (Sahin 2022). Instead of repeatedly 
utilizing the same data in constructing trees, which leads to 
overfitting in Gradient Boosting, CatBoost uses an ordered 
boosting technique to combat this problem. Hence, combin-
ing the ordered boosting with the process of categorical val-
ues prevents a prediction shift stems from the special type 
of target leakage (Pham et al. 2022). More details about 
the algorithm can be found at Prokhorenkova et al. (2018).

CatBoost has seven commonly used hyperparameters: 
iterations, depth, learning_rate, l2_leaf_reg, random_
strength, rsm, and border_count (Yavuz Ozalp et al. 2023). 
The “iterations” parameter specifies the maximum number 
of trees to be used during training. The “depth” parameter 
defines the depth of each decision tree. The “learning_rate” 
determines the step size at each iteration while moving 
toward a minimum of a loss function. The “l2_leaf_reg” 
is the coefficient for the L2 regularization term of the cost 
function. The parameter “random_strength”, which is used 
to prevent overfitting in the model, expresses the amount of 
randomness to be used to score splits when the tree structure 
is selected. The “rsm”, random subspace method, refers to 
the percentage of features to be used in each split selection 
when features are randomly re-selected. Lastly, the “border_
count” refers to the number of splits for numerical features 
(AWS 2024).

Multicollinearity analysis

To enhance the accuracy of a landslide susceptibility 
analysis using an ML model, it is crucial to test the inde-
pendence of the model’s input variables (Yu et al. 2023). 
Multicollinearity analysis is conducted to identify any 

Fig. 5  Maps that represent conditioning factors: a) plan curvature, b) 
profile curvature, c) slope, d) slope length, e) TPI, f) TWI

◂
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linear correlation between the conditioning factors. The 
strong linear relationship between the variables can cause 
prediction results to be inaccurate and decrease the mod-
el’s accuracy (Song et al. 2023). In LS mapping studies, 
the most commonly used indicators for multicollinearity 
are tolerance (TOL) and variance inflation factor (VIF), 
which can be calculated using Eqs. 2 and 3 (Kavzoglu 

et al. 2014; Bai et al. 2015; Arabameri et al. 2020; Wang 
et al. 2020a, b; Yi et al. 2020; Wei et al. 2022). The VIF 
is a measure of the increase in the variance of a regres-
sion coefficient due to multicollinearity. The TOL is the 
reciprocal of the VIF value and can also be used to test 
for multicollinearity between variables (Yu et al. 2023). 
In Eq. 2,  R2 represents the proportion of variance in the 

Table 2  Statistical description of the conditioning factors and their sub-classes

Factor Min Max Sub-classes Reference

Altitude (m) 100 3370 1: 100–427, 2: 427–754,
3: 754–1081, 4: 1081–1408, 5: 1408–1735,
6: 1735–2062, 7: 2062–2389, 8: 2389–2716,
9: 2716–3043, 10: 3043–3370

Chen et al. 2017
Kilicoglu 2021
Akinci 2022
Yavuz Ozalp et al. 2023

Aspect - - 1: Flat, 2: North,
3: Northeast, 4: East,
5: Southeast, 6: South,
7: Southwest, 8: West,
9: Northwest

Sun et al. 2022
He et al. 2023
Vega et al. 2023
Yavuz Ozalp et al. 2023

Distance to drainage (m) 0 928 1: 0–100, 2: 100–200,
3: 200–300, 4: 300–400, 5: 400–500, 6: 500–600, 7: 600–700, 8: 

700–800, 9: 800–928

Akinci 2022
Sun et al. 2022
Arabameri et al. 2020
Yavuz Ozalp et al. 2023

Distance to
Faults (m)

0 7723.34 1: 0–1000, 2: 1000–2000, 3: 2000–3000, 4: 3000–4000, 5: 4000–5000,
6: 5000–6000, 7: 6000–7000, 8: 7000–7723.34,

Feizizadeh et al. 2014
Akinci et al. 2020
Akinci 2022
Yavuz Ozalp et al. 2023

Distance to
Roads (m)

0 2197.84 1: 0–200, 2: 200–400,
3: 400–600, 4: 600–800, 5: 800–1000, 6: 1000–1200, 7: 1200–1400,
8: 1400–1600, 9: 1600–1800, 10: 1800–2197.84

Akinci 2022
Zhang et al. 2022a
He et al. 2023
Yavuz Ozalp et al. 2023

Lithology - - Explained in Table 1
Land cover - - 1: Water, 2: Trees,

3: Grass, 5: Crops,
6: Scrub/shrub, 7: Built Area, 8: Bare ground,
9: Snow/Ice, 10: Clouds

Lv et al. 2022
Roy et al. 2023
Yavuz Ozalp et al. 2023
Yu et al. 2023

Plan
curvature

-24.50 33.33 1: -24.50 – -0.001,
2: -0.001 – 0.001,
3: 0.001 – 33.33

Kilicoglu 2021
Akinci 2022
Yavuz Ozalp et al. 2023

Profile
curvature

-40.17 36.42 1: -40.17 – -0.001,
2: -0.001 – 0.001,
3: 0.001 – 36.42

Kilicoglu 2021
Akinci 2022
Yavuz Ozalp et al. 2023

Slope (o) 0 76.33 1: 0–5, 2: 5–10, 3: 10–15, 4: 15–20, 5: 20–25, 6: 25–30, 7: 30–35,
8: 35–40, 9: 40–45,
10: 45–76.33

Kilicoglu 2021
Akinci 2022
Sun et al. 2022
Yavuz Ozalp et al. 2023

Slope length 0 3577.64 1: 0–56.12, 2: 56.12–140.30, 3: 140.30–252.54, 4: 252.54–392.84, 5: 
392.84–561.20, 6: 561.20–785.68, 7: 785.68–1080.31, 8: 1080.31–
1487.18, 9: 1487.18–2090.47, 10: 2090.47–3577.64

Hong et al. 2015
Akinci 2022
Ghasemian et al. 2022
Yavuz Ozalp et al. 2023

TPI -70.88 79.58 1: -70.88 – -21.32, 2: -21.32 – -13.65, 3: -13.65 – -7.75, 4: -7.75 – -3.03, 
5: -3.03 – 1.10, 6: 1.10 – 5.23, 7: 5.23 – 9.95, 8: 9.9.5 – 15.85, 9: 15.85 
– 25.29, 10: 25.29 – 79.58

Arabameri et al. 2020
Sahin 2020
Akinci 2022
Yavuz Ozalp et al. 2023

TWI 2.26 26.18 1: 2.26–4.79, 2: 4.79–5.92, 3: 5.92–6.86,
4: 6.86–7.80, 5: 7.80–8.92, 6: 8.92–10.33,
7: 10.33–12.11, 8: 12.11–14.46, 9: 14.46–18.12, 10: 18.12–26.18

Sahin 2020
Kilicoglu 2021
Akinci 2022
Yavuz Ozalp et al. 2023
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target variable (Ye et al. 2022). If the VIF value is greater 
than 10 or the TOL value is less than 0.1, it indicates a 
multicollinearity problem, and the multicollinear vari-
ables should be removed from the susceptibility models.

Performance assessment metrics

Akinci and Akinci (2023) emphasized that validation is 
an essential procedure to evaluate the performance of the 
models. An LSM that has not been validated holds no sci-
entific value. Sahin (2022) stated that different accuracy 
metrics can be used to evaluate the performance of ML 
models. In this study, overall accuracy, precision, recall, 
F1-score, RMSE and area under the receiver operating 
characteristic curve (AUC-ROC) metrics have been used 
to validate the results and compare and evaluate the per-
formance of four different ML models. Except for RMSE, 
the performance assessment metrics given in Table 3 are 
calculated using the components of the confusion matrix.

In the equations in Table 3, TP (true positive) and TN 
(true negative) express the number of pixels correctly 
classified as landslide and non-landslide, respectively; FP 
(false positive) and FN (false negative) denote the num-
ber of pixels misclassified as landslide and non-landslide, 
respectively (Ye et al. 2022).

(2)TOL = 1 − R2

(3)VIF =
1

TOL
=

1

1 − R2

SHapley additive exPlanation (SHAP)

In applications such as LS mapping, it is crucial to under-
stand why and how a model makes a particular prediction, as 
well as prediction accuracy. However, the increasing arith-
metic power and complexity of machine learning models 
makes it difficult to understand their internal mechanisms, 
local behaviors and decision-making processes (Zhang et al. 
2023). The new generation of AI models, called explainable 
or interpretable AI (XAI), aims to explain the local behavior 
of black box models (Youssef et al. 2023). Lundberg and 
Lee (2017) proposed SHAP (SHapley Additive exPlanation) 
to provide explanations for the prediction reasons of vari-
ous machine learning models, particularly opaque black box 
models. The SHAP method quantifies the impact of each 
feature on the model’s prediction. It achieves this by calcu-
lating the sum of the Shapley values of each input feature. 
This improves comprehension of how a model generates 
predictions (Zhang et al. 2023; Teke and Kavzoglu 2023).

Results

Multicollinearity analysis

Multicollinearity, in its simplest definition, is the presence 
of high correlation or linear relationship between independ-
ent variables in a regression model. Multicollinearity causes 
the results obtained from the model to be inaccurate. There-
fore, multicollinearity analysis is applied in LS studies to 
test whether there is a high correlation between conditioning 
factors. This analysis has two natural results: i) there is no 

Table 3  Performance assessment metrics

Metric Equation Description

Overall accuracy (OA) OA =
TP+TN

TP+TN+FP+FN
The ratio of landslides and non-landslides that are correctly classified. This shows 

how well the landslide model works (Ghasemian et al. 2022)
Precision Precision =

TP

TP+FP
Precision, also called the positive predictive value, is the fraction of relevant 

instances (TP) amongst the retrieved instances (Azarafza et al. 2021)
Recall Recall =

TP

TP+FN
Recall (or sensitivity) is the measure at which pixels corresponding to landslides 

are correctly classified as a landslide having occurred. Its value is ideal as long 
as it is closer to 1 (Bravo-López et al. 2022)

F1-score F1 − score = 2x
Precision x Recall

Precision + Recall
F1-score, one of the metrics commonly used in the evaluation of ML models, is 

actually a harmonic mean of precision and recall (Yu et al. 2023). The value of 
F1-score ranges from 0 to 1. A model is reliable if the value of F1-score is close 
to 1 (Ye et al. 2022)

AUC-ROC True positive rate (TPR) =
TP

TP + FN

False positive rate (FPR) =
FP

FP + TN

The ROC curve plots the FPR on the X axis and the TPR on the Y axis. It shows 
the trade‐off between the two rates (Pourghasemi et al. 2012). The area under 
the ROC curve (AUC) is an indicator to check the prediction performance of the 
model (Yilmaz 2009)

RMSE
RMSE =

�

1

N

N
∑

i=1

(yobs − ypred)
2

RMSE is used to measure the prediction errors of models (Nguyen et al. 2019). 
An RMSE value close to 0 indicates that the ML model has a good performance 
(Ado et al. 2022)



1470 Earth Science Informatics (2024) 17:1459–1481

multicollinearity among the factors, ii) there is multicol-
linearity among some factors and the factors found to be 
correlated should be removed from the model. There are 
many studies with these two results in the literature. For 
example, in the studies conducted by He et al. (2023), Song 
et al. (2023), Vega et al. (2023) and Yu et al. (2023), it was 
found that there was no serious multicollinearity problem 
between conditioning factors.

Table 4 displays the outcomes of the multicollinearity 
analysis conducted on the conditioning factors employed in 
this study. The initial findings indicate a significant correla-
tion between slope and TRI. Consequently, TRI was elimi-
nated from the model, and a subsequent multicollinearity 
analysis was conducted on the remaining 13 factors. The 
highest VIF value 3.918890 and the lowest TOL value was 
0.255174 (Table 4). Since the highest VIF value was less 
than 10 and the lowest TOL value is higher than 0.1, there 
was no multicollinearity problem between the conditioning 
factors used in this study.

In the LS study conducted by Yavuz Ozalp et al. (2023) 
in Ardeşen and Fındıklı districts of Rize (Turkey), multi-
collinearity analysis was performed for fifteen conditioning 
factors. As in this study, the researchers found that there 
was a high linear correlation between slope and TRI, and 
TRI was excluded from the susceptibility models. Wang 
et al. (2022) found collinearity between the factors of slope, 
elevation variation coefficient, surface cutting depth, relief 
amplitude, and surface roughness. Since slope is very effec-
tive in the occurrence of landslides, the other four factors 
were eliminated.

Landslide susceptibility mapping

In this study, firstly, landslide susceptibility index (LSI) 
maps of the study area were produced using RF, CatBoost, 

XGBoost and LightGBM algorithms. The algorithms were 
implemented in python programming language using the 
scikit-learn library. The XGBoost algorithm was imple-
mented with default hyperparameter values (n_estima-
tors = 100, max_depth = 6, eta = 0.3, colsample_bytree = 1, 
min_child_weight = 1, subsample = 1, gamma = 0). In order 
not to favour one algorithm over the others and to make an 
objective comparison, the number of trees was set to 100, the 
maximum tree depth to 0.6 and the learning rate to 0.3 for 
the other algorithms. The LSI shows the degree of suscepti-
bility of each pixel in the study area to landslide formation. 
The higher the LSI value in a pixel, the higher the probabil-
ity of landslide occurrence in that pixel, the lower the LSI, 
the lower the probability of landslide occurrence (Wubalem 
2021). After the LSIs were created, they were transferred to 
ArcGIS software where they were reclassified and divided 
into five different susceptibility classes: very low, low, 
medium, high and very high. Thus, LSMs of the study area 
were obtained (Fig. 6). This classification was achieved by 
utilizing the natural breaks algorithm (Jenks 1967).

Table 5 presents the areal distribution ratios of suscep-
tibility classes for each ML model. According to the areal 
distribution of susceptibility classes in Table 5, most of the 
study area is not susceptible to the landslides. 85.89% of 
the study area in RF, 71.86% of the study area in CatBoost, 
70.16% of the study area in XGBoost and 77.31% of the 
study area in LightGBM is classified as very low and low 
susceptibility. Only 8.74% of the study area in RF, 12.85% 
of the study area in CatBoost, 11.37% of the study area in 
XGBoost and 10.43% of the study area in LightGBM is 
highly and very highly susceptible to the landslides.

Performance assessment and comparison

In this study, various metrics including overall accuracy 
(OA), precision, recall, F1-score, RMSE and area under 
the receiver operating characteristic (ROC) curve (AUC) 
were employed to compare and evaluate the performance of 
the LS models. Model assessment metrics were applied for 
both training and validation stages. In the evaluation made in 
terms of OA, it was determined that the model with the low-
est accuracy value for both training and validation stages was 
RF (Table 6). Although CatBoost, XGBoost and LightGBM 
have close accuracy values, LightGBM provided slightly 
better accuracy than other models in both training and vali-
dation stages. LightGBM also outperformed the other mod-
els in terms of precision, recall and F1-score. However, it 
is a known fact that ML models may perform differently 
depending on both the characteristics of the study area and 
the conditioning factors used.

One of the commonly used metrics to measure the accu-
racy of regression models is RMSE (Trinh et al. 2023). 
RMSE is used to measure the prediction error of the 

Table 4  Multicollinearity Analysis Results

Landslide Conditioning Factors VIF TOL

Slope 1.694949 0.589988
Aspect 1.080109 0.925832
TWI 3.918890 0.255174
TPI 1.483154 0.674239
Altitude 1.410740 0.708848
Plan Curvature 1.301666 0.768246
Profile Curvature 1.140360 0.876916
Distance to Drainage 1.139817 0.877334
Distance to Faults 1.076383 0.929037
Distance to Roads 1.229125 0.813587
Lithology 1.294081 0.772749
Land Cover 1.031502 0.969460
Slope Length 3.059941 0.326804



1471Earth Science Informatics (2024) 17:1459–1481 

model, and the closer it is to 0, the better the performance 
of the model (Nguyen et al. 2019; Ado et al. 2022; Trinh 
et al. 2023). Compared to precision, recall, and F1-score, 
XGBoost outperformed the other models with the lowest 
RMSE values.

In this study, the AUC metric, which is the most widely 
used performance assessment metric in LS mapping studies, 
was also used. Figure 7 shows the ROC curves and AUC 

values of the models. When Fig. 7 is examined, it is seen that 
the XGBoost model has the highest AUC value (0.9773), 
followed by the LightGBM (0.9751), CatBoost (0.9708) and 
RF (0.8976) models, respectively. As with other evaluation 
metrics, RF lagged behind other models in terms of AUC. 
In the study by Sahin (2022), RF also lagged behind other 
ensemble learning algorithms such as CatBoost, XGBoost 
and LightGBM in terms of AUC value.

Fig. 6  LSMs: a) RF, b) CatBoost, c) XGBoost, d) LightGBM
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Interpretation of models with SHAP

In LS mapping studies, it has been observed that some fac-
tors may have minimum importance in model predictions, 
while others may be more effective in this process. Yu et al. 
(2023) emphasized that determining the relative impor-
tance of conditioning factors can help to better understand 
the causes of landslides in a region. The importance values 
of conditioning factors for RF, CatBoost, XGBoost, and 

LightGBM are presented in Fig. 8. The importance values of 
the conditioning factors vary between the different models. 
However, lithology, altitude, distance to faults, and aspect 
consistently rank in the top 4, while slope length, TWI, plan 
curvature, and profile curvature rank in the bottom 4.

The effects of conditioning factors on model outputs are 
interpreted not only by interpreting Fig. 8 but also by using 
SHAP values. Kavzoglu and Teke (2022) emphasized that 

Table 5  Comparison of the 
results of the ML models

PoA: Percentage of area, NLP: number of landslide pixels, PLP: Percentage of landslide pixels, FR: Fre-
quency ratio

Model Susceptibility
class

Landslide
probability

PoA
(%)

NLP PLP
(%)

FR

RF Very low 0 – 0.08 76.50 753 0.815 0.0107
Low 0.08 – 0.267 9.39 2303 2.491 0.2653
Moderate 0.267 – 0.506 5.37 3566 3.857 0.7182
High 0.506 – 0.773 4.21 10,829 11.714 2.7824
Very high 0.773 – 1.000 4.53 74,995 81.123 17.9079

CatBoost Very low -0.816 – -0.057 15.95 6 0.007 0.0004
Low -0.057 – 0.101 55.91 29 0.031 0.0006
Moderate 0.101 – 0.335 15.29 320 0.346 0.0226
High 0.335 – 0.677 6.90 4309 4.661 0.6755
Very high 0.677 – 1.311 5.95 87,782 94.955 15.9588

XGBoost Very low -1.214 – -0.093 8.77 127 0.138 0.0157
Low -0.093 – 0.059 61.39 490 0.530 0.0086
Moderate 0.059 – 0.288 18.47 2165 2.342 0.1268
High 0.288 – 0.658 6.44 10,517 11.376 1.7665
Very high 0.658 – 1.561 4.93 79,147 85.614 17.3659

LightGBM Very low -0.811 – -0.063 13.64 158 0.171 0.0125
Low -0.063 – 0.099 63.67 968 1.047 0.0164
Moderate 0.099 – 0.361 12.26 2060 2.228 0.1817
High 0.361 – 0.721 5.18 7966 8.617 1.6635
Very high 0.721 – 1.488 5.25 81,294 87.937 16.7499

Table 6  Performance of the ML models in training and validation 
stage

Stage Metrics RF CatBoost XGBoost LightGBM

Training Accuracy 
(%)

82.556 91.948 92.885 92.992

Precision 0.82656 0.92143 0.92917 0.93124
Recall 0.82553 0.91942 0.92884 0.92996
F1-score 0.82541 0.91941 0.92883 0.92988
RMSE 0.3572 0.2598 0.2411 0.2437

Validation Accuracy 
(%)

82.338 91.831 92.641 92.765

Precision 0.82433 0.92024 0.92667 0.92913
Recall 0.82344 0.91845 0.92643 0.92755
F1-score 0.82326 0.91828 0.92640 0.92759
RMSE 0.3576 0.2628 0.2469 0.2481

Fig. 7  ROC curves and AUC values of the models
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unlike the feature importance function of ML algorithms, 
SHAP can determine whether the factors contribute positively 
or negatively to the model outputs. SHAP summary plot, one 
of the graphs offered by the SHAP library, is used to visual-
ize the effect of each factor of the model on the prediction. 
Figure 9 and Fig. 10 shows the SHAP values of the thirteen 
conditioning factors for RF, CatBoost, XGBoost and Light-
GBM. As can be seen in the SHAP summary plots, although 
the effects of the conditioning factors on the model outputs 
vary in different models, altitude, lithology, aspect, distance 
to faults and slope were found to be the most effective factors. 
On the other hand, SHAP values revealed that slope length, 
TWI, profile curvature and plan curvature were least effec-
tive compared to other landslide conditioning factors. The 
results appear to be partially consistent with previous studies. 
For example, in the LS mapping study carried out by Akinci 
(2022) in Arhavi, Hopa and Kemalpaşa districts of Artvin, it 
was determined that TWI, slope length and curvature were the 
least important factors in the occurrence of landslides. In the 
study conducted by Akinci and Zeybek (2021), landslide sus-
ceptibility maps of Ardanuç district of Artvin province were 
produced using LR, SVM and RF models. In this study, the 
researchers determined that lithology, altitude and distance to 
the road parameters were the most effective factors, while TWI 
and curvature parameters were the least effective factors. In the 
study by Can et al. (2021), the predictions of the XGBoost-
based landslide susceptibility model were interpreted using 
the SHAP summary plot. Similar to this study, the researchers 

determined that lithology and altitude have a greater impact 
on the prediction results, while profile curvature has the least 
impact on the prediction results.

On the other hand, we interpreted the local contribution 
of the conditioning factors to the model outputs using SHAP 
waterfall plots (refer to Fig. 11 and Fig. 12). In the waterfall 
plot, the red arrow indicates that the SHAP value of the fac-
tor is greater than zero, meaning that the factor provides a 
positive gain to the landslide, while the blue arrow indicates 
a negative gain (Chang et al. 2023). Figure 11 shows that the 
distance to faults in the RF model and aspect in the CatBoost 
model had the largest negative impact on the occurrence of 
landslides in the study area. Lithology was also found to be 
a significant factor in both models. According to Fig. 12, 
altitude, aspect, distance to faults, distance to drainage and 
lithology in the XGBoost model (Fig. 12a) and distance to 
faults, altitude, land cover, aspect and slope in the Light-
GBM model (Fig. 12b) were determined as the factors with 
the largest positive contribution to the occurrence of land-
slides in the study area.

Discussion

Comparison of factors

ML algorithms have different decision-making mecha-
nisms. Therefore, in ML models using the same factors, 

Fig. 8  Importance of the conditioning factors
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the contributions of the factors to the model predictions are 
also different. However, ML models can only indicate the 
relative importance of factors on prediction results through 
feature importance functions. This function is insufficient 
to interpret how the models work when making predictions, 
which is why ML models are often referred to as “black 
box” models. To overcome this problem and explain the 
decision-making mechanism of ML-based landslide sus-
ceptibility models, methods such as SHAP should be used 
(Lu et al. 2023; Pradhan et al. 2023). The interpretability of 
a model is directly proportional to the ease of understanding 
the reasoning behind a specific decision. For this reason, 
we see that the SHAP method is used in studies such as 
LS mapping (Pradhan et al. 2023; Vega et al. 2023; Zhang 
et al. 2023) and wildfire susceptibility mapping (Iban and 
Sekertekin 2022).

When SHAP summary plots for XGBoost and LightGBM 
models are analyzed, it is seen that elevation and lithology 
are the most effective factors in model outputs (Fig. 10). 
This means that areas with more anthropogenic activities 
and weak lithological units are prone to landslides. Agri-
cultural areas are often concentrated at specific altitudes 
and aspects within settlements, leading to increased human 
activity in these regions. Uncontrolled irrigation and excava-
tion works can trigger landslides in these areas.

Comparison of models

In this study, the prediction performance of ensemble learn-
ing algorithms were evaluated using accuracy metrics (OA, 
F1-score, precision, recall, RMSE and AUC) commonly 
used in LS mapping studies. There are many recent studies in 

Fig. 9  SHAP summary plots: a) 
RF, b) CatBoost
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Fig. 10  SHAP summary plots: 
a) XGBoost, b) LightGBM

Fig. 11  SHAP waterfall plots: a) RF, b) CatBoost
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the LS mapping literature that use these metrics to assess the 
accuracy of susceptibility models (Kavzoglu and Teke 2022; 
He et al. 2023; Sun et al. 2023a, b; Vega et al. 2023; Yu 
et al. 2023; Zhang et al. 2023). Kavzoglu and Teke (2022) 
suggest that OA is a reliable metric for measuring model 
robustness in LS mapping studies. Ye et al. (2022) explain 
that the F1-score ranges from 0 to 1, and a value close to 1 
indicates model reliability. As with OA, the model with the 
lowest F1-score was again the RF (Table 6). It was seen that 
the highest F1-score belonged to the LightGBM model and 
this model had a high classification capacity for both the 
training and validation dataset. In summary, LightGBM was 
found to be slightly superior to other models in all metrics 
except AUC. In the LS mapping study conducted by Sun 
et al. (2023b), OA, precision, recall and F1-score metrics 
were used to evaluate the accuracy of XGBoost and Light-
GBM models, and as in this study, LightGBM gave better 
results than XGBoost in all metrics. Tree-based ensemble 
learning algorithms are widely used in flood and forest fire 
susceptibility mapping apart from landslide susceptibility. 
For example, Saber et al. (2022) was used RF, LightGBM 
and CatBoost models for flash flood susceptibility prediction 
and determined that LightGBM outperformed other models 
in terms of evaluation metrics and processing time.

Another statistical criterion used in the study was AUC, 
which represents the area under the ROC curve. The AUC 
value of an ROC curve ranges from 0.5 to 1, and an AUC 
value close to 1 indicates that the model is excellent (Sahin 
2022). According to Chen et al. (2017), Jiao et al. (2019), 
and Wu et al. (2020), the AUC value is generally classified 
in 5 ways: poor (0.5–0.6), average (0.6–0.7), good (0.7–0.8), 
very good (0.8–0.9), and excellent (0.9–1). According to 
this classification, RF performed very good while CatBoost, 
LightGBM and XGBoost performed excellent. When evalu-
ated in terms of AUC, it is seen that this study is consistent 
with other studies in the literature. Because in many studies 
in the literature, it has been stated that ensemble learning 

algorithms are more successful than single ML algorithms 
(Kavzoglu and Teke 2022).

On the other hand, in order to assess the practical usabil-
ity of an LSM, it is important to consider the accuracy of 
the ML model as well as the rationality of the generated 
LSM. To ensure rationality, an LSM needs to be able to 
accurately classify existing landslides in the study area. In 
this study, the LSMs generated were compared with the 
LIM, and the distribution of landslide pixels across the sus-
ceptibility classes in the LSMs was determined (Table 5). 
Such an LSM is considered rational if the existing landslides 
in the LIM remain in areas of high susceptibility as much 
as possible, and the areas of very high susceptibility in the 
LSM are as small as possible (Guo et al. 2021). In the RF, 
CatBoost, XGBoost and LightGBM models, the percentages 
of very high susceptible areas were determined as 4.53%, 
5.95%, 4.93% and 5.25%, and percentages of landslide were 
determined as 81.123%, 94.955%, 85.614% and 87.937%, 
respectively. The frequency ratios were 17.9079, 15.9588, 
17.3659, and 16.7499 (Table 5). LSMs showed a similar 
trend in general. As the susceptibility levels increased, the 
frequency ratios also tended to increase. In all models, the 
highest number of landslides was observed in the very high 
susceptible class. This comparison showed that the landslide 
occurrence rate gradually increased from very low prone 
areas to very high prone areas and the LSMs produced were 
reasonable. However, the LSM produced by the CatBoost 
model seems to be more rational and reasonable than other 
models. Because in this model, approximately 99.6% of the 
existing landslides remain in high and very highly landslide 
susceptible areas. In the LS mapping study by Yavuz Ozalp 
et al. (2023), RF, GBM, XGBoost and CatBoost algorithms 
were used. The researchers also evaluated the rationality 
of the LSMs produced by these algorithms. The evaluation 
results showed that the LSMs produced by CatBoost and 
XGBoost models are reasonable and rational for the study 
area.

Fig. 12  SHAP waterfall plots: a) XGBoost, b) LightGBM
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Limitations and future suggestions

The ML models used in the study were able to predict the 
probability of landslide occurrence in the study area well. 
However, it is considered that the study has an important 
limitation. As it is known, ML models need accurate, up-
to-date and complete data during the training phase. If the 
data is not complete or up-to-date, the model may perform 
poorly because it is not trained correctly. In this context, 
landslide inventory data are of vital importance in ML-based 
landslide susceptibility mapping studies. The most important 
constraint in this study is related to the up-to-dateness of 
landslide inventory data. Because Artvin Provincial Disas-
ter and Emergency Directorate last updated the landslide 
inventory map of the study area in November 2016. Since 
landslides that occurred in recent years were not included 
in the inventory map, the models may have been trained 
with missing data. This situation was also mentioned in the 
Artvin Provincial Disaster Risk Reduction Plan and updating 
the landslide inventory maps was added to the action plan. 
Therefore, future studies in the study area should primar-
ily focus on updating landslide inventory maps using field 
surveys and high-resolution satellite images. In addition, 
deep learning algorithms such as CNN and RNN can be 
used in future studies to produce highly accurate landslide 
susceptibility maps and the performance of deep learning 
algorithms can be compared with tree-based ensemble learn-
ing algorithms.

Conclusion

Artvin is a province prone to landslides due to its highly 
rugged topography. Landslides constitute a large part of the 
natural disasters occurring throughout the province. In the 
provincial disaster risk reduction plan, it is stated that land-
slides are the priority disaster type in the region and various 
strategic actions are proposed for risk reduction. Landslides 
are observed in all districts of Artvin. Landslides in the 
region cause damage to transport networks, energy transmis-
sion and drinking water lines, degradation in agricultural and 
forest areas, damage to buildings and loss of life. Therefore, 
landslide susceptibility mapping is of crucial importance to 
reduce the damages caused by landslides in all districts of 
Artvin province. In this study, the landslide susceptibility 
of Murgul district of Artvin province was analyzed. Four 
different ML models, random forest, XGBoost, LightGBM 
and CatBoost were employed to generate LSMs. The models 
considered multiple factors, including land cover, aspect, 
slope, lithology, elevation, plan curvature, profile curvature, 
distance to drainage networks, distance to faults, distance to 
roads, slope length, topographic position index (TPI), and 
topographic wetness index (TWI). The LIM provided by the 

GDMRE and Artvin Provincial Directorate of Disaster and 
Emergency, which documented 54 landslide polygons, was 
utilized in the analysis. The resulting LSMs classified the 
study area into five classes: very low, low, medium, high, 
and very high, based on the natural breaks (jenks) classifica-
tion. The performance of these models was evaluated using 
metrics like overall accuracy, precision, recall, F1-score, 
RMSE and AUC-ROC. The models that performed the best 
were XGBoost in terms of RMSE and AUC values, and 
LightGBM in terms of accuracy and F1-score. The LSMs 
produced through XGBoost and LightGBM are highly valu-
able for landslide risk assessment and risk mitigation studies 
in the study area. The maps produced can guide engineers 
for disaster and emergency planning, decision makers and 
urban planners for sustainable land use planning and insur-
ance companies for natural disaster insurance.
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