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Introduction

Land subsidence refers to the gradual settling or sud-
den sinking of the ground surface (Hu et al. 2022). It can 
occur due to natural factors such as earthquakes, volca-
noes, and landslides, or as a result of human activities like 
fluid extraction (Motagh et al. 2017; Sorkhabi et al. 2022). 
One of the primary causes of land subsidence is excessive 
groundwater extraction, which has had significant impacts 
on both urban and agricultural areas worldwide (Shrestha 
et al., 2017; Ding et al. 2020; Sorkhabi et al. 2022; Haji-
Aghajany et al. 2023). Iran heavily relies on groundwater as 
a crucial source for drinking water, industrial processes, and 
agricultural needs, particularly in arid and semi-arid regions 
(Motagh et al. 2008). However, unsustainable agricultural 
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Abstract
Land subsidence is a hazardous phenomenon that requires accurate prediction to mitigate losses and prevent casualties. 
This study explores the utilization of the Long Short-Term Memory (LSTM) method for time series prediction of land 
subsidence, considering various contributing factors such as groundwater levels, soil type and slope, aquifer characteris-
tics, vegetation coverage, land use, depth to the water table, proximity to exploiting wells, distance from rivers, distance 
from faults, temperature, and wet tropospheric products. Due to the high spatial variability of wet tropospheric parameters, 
utilizing numerical weather models for extraction is impractical, especially in regions with a sparse network of synoptic 
stations. This hinders obtaining accurate prediction results because wet tropospheric products play a significant role in 
subsidence prediction and cannot be ignored in the subsidence prediction process. In this study, Global Navigation Satel-
lite Systems (GNSS) tropospheric products, including Integrated Water Vapor (IWV) and EvapoTranspiration (ET), are 
employed as alternatives. Two scenarios were considered: one incorporating GNSS products alongside other parameters, 
and the other relying solely on the remaining parameters in the absence of GNSS tropospheric products. Ground truth data 
from Interferometric Synthetic Aperture Radar (InSAR) displacement measurements were used for evaluation and testing. 
The results demonstrated that the inclusion of GNSS tropospheric products significantly enhanced prediction accuracy, 
with a Root Mean Square Error (RMSE) value of 3.07 cm/year in the first scenario. In the second scenario, the absence of 
wet tropospheric information led to subpar predictions, highlighting the crucial role of wet tropospheric data in spatial dis-
tribution. However, by utilizing tropospheric products obtained from GNSS observations, reasonably accurate predictions 
of displacement changes were achieved. This study underscores the importance of tropospheric indices and showcases the 
potential of the LSTM method in conjunction with GNSS observations for effective land subsidence prediction, enabling 
improved preventive measures and mitigation strategies in regions lacking synoptic data coverage.
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practices and the overexploitation of groundwater resources 
lead to increased stress on aquifers, resulting in a decline 
in the water table level, aquifer compaction, and ultimately 
land subsidence. Various regions in Iran, including Teh-
ran (Mahmoudpour et al. 2016), Hamedan (Khanlari et al. 
2012), Estahban (Sorkhabi et al. 2022), Zarand (Motagh 
et al. 2008), Mashhad (Akbari and Motagh 2012), Kurd-
istan (Haji-Aghajany and Amerian 2020), Yazd (Motagh 
et al. 2008), Tabriz (Haji-Aghajany et al. 2017), Mahyar 
(Davoodijam et al. 2015), Qazvin (Farshbaf et al. 2023), 
Rafsanjan (Motagh et al. 2017), Neyshabour (Dehghani et al. 
2009), Zanjan (Farshbaf et al. 2023) and Kashmar (Anders-
sohn et al. 2008) have reported instances of land subsidence. 
Land subsidence can cause severe damage to various types 
of infrastructure, including residential areas, transportation 
networks, industrial zones, and agricultural lands. Addition-
ally, it has indirect consequences such as increased flooding 
and alterations in soil-vegetation properties (Mohseni et al. 
2017; Andreas et al. 2018). Unfortunately, land subsidence 
is often irreversible, making it challenging to fully mitigate 
the damage it inflicts. Therefore, it is crucial to conduct 
thorough studies, predict potential changes, and implement 
preventive measures to effectively control and manage land 
subsidence in susceptible regions.

In previous studies, researchers have focused on land 
subsidence mechanisms and utilized established constitu-
tive models and numerical simulation models to predict 
displacements (Azarakhsh et al. 2022). However, accu-
rately representing hydrological and climate information, 
which can be limited in space and time, is crucial for precise 
prediction. This limitation hinders the application of these 
models to large areas. To address this challenge, alternative 
approaches such as the Grey Model (GM) based on grey 
theory have been explored for short-term land subsidence 
prediction (Li et al. 2007). However, the GM model does 
not effectively capture the non-linear characteristics of land 
subsidence. To overcome this limitation, some research-
ers have proposed modified GM models combined with 
Artificial Neural Networks (ANNs) or other algorithms to 
account for non-linear features (Li et al. 2007; Wang et al. 
2023). Although these methods show promise in short-term 
predictions and perform well with smaller datasets, they 
struggle to leverage deep information when dealing with 
large datasets or making long-term predictions. To tackle 
the challenges associated with land subsidence prediction, 
researchers have increasingly turned to machine learning 
techniques, which have demonstrated significant potential 
in various geospatial applications. Machine learning models 
excel at analyzing vast amounts of complex data and dis-
covering patterns that traditional statistical approaches may 
miss. Among these techniques, Recurrent Neural Networks 
(RNNs), specifically Long Short-Term Memory (LSTM) 

networks, have received considerable attention due to their 
ability to capture temporal dependencies in sequential data 
(Elman 1990; Hochreiter and Schmidhuber 1997; Lipton 
et al. 2015). LSTM networks are particularly well-suited 
for time series analysis, as they can effectively retain and 
exploit long-term dependencies. By constructing a multi-
layer neural network, the LSTM model can extract temporal 
dynamic features from historical data, considering both non-
linearity and temporal dependencies. The LSTM model has 
already shown successful applications in forecasting PM2.5 
concentration, which is a spatiotemporal phenomenon (Qi 
et al. 2019). The length of the prediction period depends on 
the time interval of the input data. In the context of land sub-
sidence prediction, time series data plays a crucial role in 
capturing the dynamic behavior of the subsidence process.

Hydrological, geological, and environmental infor-
mation reflects the behavior of subsidence. Additionally, 
Interferometric Synthetic Aperture Radar (InSAR) sub-
sidence measurements offer high-resolution deformation 
maps, enabling the detection and monitoring of surface 
movements with millimeter-level accuracy (Berardino et 
al. 2002; Ferretti et al. 2007). By integrating these diverse 
data sources, a more comprehensive understanding of the 
subsidence phenomenon can be achieved. Furthermore, cli-
mate parameters, including temperature, precipitation, and 
humidity, have been recognized as important factors influ-
encing land subsidence (Faunt et al. 2016; Haji-Aghajany et 
al. 2023). The necessary meteorological data can be divided 
into two different parts: the first part includes temperature, 
and the second part includes wet parameters such as pre-
cipitation and humidity. When it comes to temperature, if 
a dense network of synoptic stations is available, the inter-
polation method can be used to reconstruct a high-resolu-
tion temperature map with suitable accuracy. However, if a 
dense network is not available, a numerical weather model 
could be used instead. Generally, the spatial resolution of 
a numerical weather model grid is sufficient for interpolat-
ing temperature data due to its predictable behavior. Unlike 
temperature, wet parameters exhibit irregular behavior. 
Therefore, when a dense synoptic network is lacking, it is 
not advisable to rely on numerical weather models. This is 
because their resolution is not sufficient for accurately mod-
eling the spatial variation of wet parameters through inter-
polation (Haji-Aghajany 2021). Global Navigation Satellite 
Systems (GNSS) technology can provide additional tropo-
spheric products, which are highly accurate measures of 
atmospheric wet content (Dach et al. 2020; Haji-Aghajany 
2021; Agnihotri et al. 2021; Haji-Aghajany et al. 2022). 
Incorporating these tropospheric parameters derived from 
a dense GNSS station network into predictive models can 
enhance the accuracy of subsidence predictions, particularly 
in regions with limited meteorological observations.

1 3

3040



Earth Science Informatics (2023) 16:3039–3056

This study aims to check the effect of using GNSS wet 
tropospheric products on land subsidence prediction using 
machine learning, with a specific focus on LSTM networks. 
The proposed model will utilize GNSS tropospheric prod-
ucts, hydrological, geological and environmental informa-
tion and InSAR measurements. By training the model on 
historical data and relevant environmental variables, it will 
be possible to predict future subsidence patterns and assess 
the impact of GNSS products on subsidence prediction. The 
results of this research can provide valuable insights for 
land subsidence mitigation strategies and support decision-
making processes to safeguard vulnerable regions from the 
detrimental effects of subsidence. The rest of this paper is 
structured as follows: The next sections discuss the meth-
odology and the process of obtaining training data. Subse-
quent sections delve into validation approaches and provide 
insights into the study area. Finally, the paper concludes by 
presenting the results and engaging in a discussion.

Methodology

Machine learning for land subsidence prediction

Machine learning has brought about a revolutionary trans-
formation in the field of predictive modeling, enabling us 
to extract valuable insights and make accurate predictions 
based on complex data patterns. Among the many machine 
learning algorithms available, ANNs and RNNs have 
emerged as powerful tools for predictive analytics. ANNs 
consist of interconnected nodes, known as “neurons,“ orga-
nized into layers. Each neuron performs a weighted sum 
of its inputs, applies an activation function to the result, 
and passes the output to the next layer. Through a process 
called backpropagation, the network’s parameters, includ-
ing weights and biases, are learned. RNNs, on the other 
hand, are specialized neural networks designed to model 
sequential data, making them particularly well-suited for 
time-series forecasting and natural language processing 
tasks (Graves 2013). Unlike ANNs, RNNs incorporate a 
feedback loop that allows information to persist across 
time steps. This recurrent structure enables the network to 
capture dependencies and long-term patterns in sequen-
tial data. RNNs offer several advantages over ANNs in the 
context of predictive modeling. Firstly, RNNs excel at cap-
turing temporal dependencies in sequential data, making 
them suitable for applications such as speech recognition, 
machine translation, and sentiment analysis (Lipton et al. 
2015). Secondly, unlike ANNs, which require fixed-size 
inputs, RNNs can handle variable-length sequences, pro-
viding flexibility when dealing with data of varying lengths 
(Lipton et al. 2015). Thirdly, RNNs can maintain an internal 

memory or hidden state that summarizes the context of the 
input sequence (Graves 2013). This contextual information 
enables the network to understand and remember relevant 
information across time steps, thereby enhancing the quality 
of predictions. Finally, RNNs do not make strong assump-
tions about the relationship between input and output, 
instead, they learn patterns directly from the data, reduc-
ing the need for manual feature engineering and making 
them adaptable to different problem types (Goodfellow et 
al. 2016). The most common variation of RNN is the LSTM 
network, which addresses the vanishing gradient problem 
and improves the modeling of long-range dependencies 
(Hochreiter and Schmidhuber 1997).

The LSTM is a powerful type of RNN that excels at cap-
turing long-term dependencies in sequential data (Hochreiter 
and Schmidhuber 1997). In recent years, LSTM has gained 
significant attention in various fields due to its remarkable 
ability to perform accurate long-term predictions (Sak et al. 
2014). This paper explores the structure and capabilities of 
LSTM networks, specifically focusing on their effectiveness 
in handling different sets and types of data for long-term 
prediction tasks. LSTM networks are composed of memory 
cells, input gates, forget gates, and output gates, all working 
together to retain and selectively update information over 
time (Hochreiter and Schmidhuber 1997). The architecture 
of an LSTM cell allows it to overcome the vanishing gradi-
ent problem, which is a common challenge faced by tradi-
tional RNNs. At the core of an LSTM cell is the memory cell, 
which maintains and propagates information throughout the 
network. The input gate determines how much new infor-
mation should be stored in the memory cell, while the forget 
gate decides what information should be discarded. The out-
put gate controls the amount of information extracted from 
the memory cell for generating predictions. The LSTM’s 
ability to mitigate the vanishing gradient problem is attrib-
uted to its gating mechanisms (Hochreiter and Schmidhuber 
1997). By selectively updating and forgetting information, 
LSTM cells can retain crucial details over long sequences, 
enabling them to capture dependencies that traditional RNNs 
struggle with. LSTM networks have demonstrated impres-
sive performance in a wide range of long-term prediction 
tasks. Whether applied to natural language processing, time 
series analysis, or financial forecasting, LSTM consistently 
exhibits superior predictive capabilities (Greff et al. 2017). 
One reason for LSTM’s success is its ability to effectively 
model temporal dependencies over extended periods. The 
memory cells’ capacity to remember past information and 
selectively update it allows the network to capture complex 
patterns and trends in sequential data. This enables LSTM 
to make accurate predictions even when the input data spans 
a large time horizon. Moreover, LSTM networks can han-
dle diverse sets and types of data for long-term prediction 
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the cell state. The calculation formula for the forgetting 
gate, denoted as ft, is presented as follows:

ft = σ(Wf [ht−1, Xt] + bf )� (1)

Here, σ is the sigmoid activation function, ht−1 represents 
the output at time t − 1, and X𝑡 represents the input vector 
at time t. The weight vector and bias vector of the forget 
gate are represented by Wf and bf, respectively. If the output 
value of ft is close to 0, it implies that the previous data has 
been forgotten. However, a value close to 1 does not neces-
sarily indicate that the previous data has been retained. The 
subsequent stage of the LSTM neural network determines 
which new data is to be stored in the cell state. This involves 
two steps: first, the sigmoid layer determines the informa-
tion to be updated, while the tanh layer generates an alterna-
tive candidate value, which is subsequently added to the cell 
state. Second, by combining these two pieces of informa-
tion, the model creates new values to update the cell state. 
In the third stage of the LSTM neural network, the previous 
cell state ct−1 is updated using the forgetting gate, ft, and the 
input gate, 𝑖𝑡. The values ct−1 and 𝑖𝑡 are multiplied by ft to 
eliminate redundant information. The updated cell state, ct, 
is obtained by updating the previous state ct−1. The calcula-
tion is represented by:

ct = ft.ct−1 + it.c
′
t � (2)

Finally, the last stage of the LSTM neural network deter-
mines the output. Initially, a sigmoid layer is employed to 
determine which portion of the cell state will be output. 
Subsequently, the cell state is processed through the tanh 
function (producing a value between − 1 and 1) and multi-
plied by the output of the sigmoid gate. As a result, only the 
determined portion of the output is generated. The calcula-
tions for the new output value, ht, the output gate, Ot, and 

tasks (Gers et al. 2000). They can accommodate continuous 
or discrete-valued time series data, textual data, and even 
multimodal inputs (Greff et al. 2017). The flexibility of 
LSTM architecture makes it adaptable to various domains, 
ranging from weather forecasting and stock market pre-
diction to speech recognition and machine translation. 
Recent advancements in LSTM training methods, such as 
deep LSTM architectures and attention mechanisms, have 
further improved its performance in long-term prediction 
tasks. These techniques enable the network to focus on rel-
evant information, enhance feature extraction, and capture 
intricate relationships within the data (Greff et al. 2017). In 
conclusion, LSTM networks have emerged as a powerful 
tool for long-term prediction tasks, overcoming the limita-
tions of traditional RNNs. With their unique structure and 
mechanisms, LSTM models effectively address the van-
ishing gradient problem and excel at capturing long-term 
dependencies (Hochreiter and Schmidhuber 1997). Their 
flexibility in handling different sets and types of data, com-
bined with recent advancements in training methods, has 
made LSTM a preferred choice for various prediction appli-
cations. As the field continues to evolve, further research 
into LSTM networks promises even greater strides in long-
term prediction capabilities. The LSTM network structure 
differs from the single-loop body structure as it incorporates 
three gates: the forgetting gate, input gate, and output gate. 
LSTM networks have demonstrated significant success in 
numerous problem domains, particularly for tasks involving 
sequence modeling. The majority of current recurrent neu-
ral networks utilize the LSTM structure as the foundation. 
Fig.  1 depicts the basic architecture of the LSTM neural 
network. In the diagram, the symbol σ represents the sig-
moid function, producing outputs ranging from 0 to 1. The 
function tanh represents the hyperbolic tangent, generating 
outputs between − 1 and 1. The term ht−1 denotes the output 
of the previous cell, while X𝑡 represents the input of the 
current cell. The initial phase of the LSTM neural network 
determines whether to retain or forget information within 

Fig. 1  The basic structure of LSTM method
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are then utilized as validation and testing data to predict 
subsidence.

InSAR displacement fields

InSAR time series analysis is a remote sensing technique 
based on radar acquisition and has emerged as a powerful 
method for monitoring ground deformations, such as sub-
sidence, earthquakes, and volcanoes (Rosen et al. 2000; 
Haji-Aghajany et al. 2020). One commonly used method 
in InSAR time series analysis is the Small Baseline Subset 
(SBAS) technique. SBAS utilizes a set of interferograms 
acquired over a specific time period to estimate the ground 
deformation rates. The SBAS technique takes advantage of 
the temporal coherence of radar signals by selecting inter-
ferograms with small baselines, which minimizes the decor-
relation effects caused by changes in the scene between 
acquisitions. By analyzing a series of these interferograms, 
it becomes possible to generate deformation maps and track 
subtle ground motion patterns over time. However, when 
dealing with interferograms, it is crucial to account for and 
remove additional effects apart from the desired displace-
ment signal. InSAR interferograms are derived from the dif-
ferential phase between two master and slave acquisitions. 
These observations contain different phase components at 
each point, which can be considered as follows (Hanssen 
2001):

Φobs = ΦMaster − ΦSlave

= ∆Φdef + ∆Φtop + ∆Φatm + ∆Φorb

+ ∆Φflat + ∆Φnoise

� (5)

Where, ∆Φp
def is the phase change related to the ground dis-

placement along the Line Of Sight (LOS) direction,∆Φp
top , 

∆Φp
atm , ∆Φp

orb  and ∆Φp
noise  are related to the topographic, 

atmospheric, orbital, and noise phase, respectively. ∆Φp
flat

Corresponds to uncertainties in the Earth’s ellipsoidal refer-
ence surface. To correct for orbital errors, precise satellite 
orbits are required. The orbital information is obtained from 
the satellite’s navigation data or through the use of dedi-
cated orbit determination techniques. Topographic varia-
tions can introduce phase differences in interferograms, 
leading to false deformation signals. To mitigate this effect, 
Digital Elevation Models (DEMs) are employed to remove 
the topographic component from the interferograms (Zeb-
ker and Villasenor 1992; Hanssen 2001). Atmospheric dis-
turbances, mainly tropospheric and ionospheric delays, can 
significantly affect the interferometric phase. Generally, the 
effect of the ionospheric air refractivity on short wavelength 
InSAR is negligible (Gray et al. 2000). Tropospheric cor-
rections can be estimated using the correlation between 
the delay and the topographic elevation (Remy et al. 2003) 

the weight vector and bias vector of the output gate, Wo and 
bo, respectively, are given by:

Ot = σ(WO.[ht−1, Xt] + bO)� (3)

ht = Ot tanh(ct)� (4)

Different sources of data for machine learning

Like other machine learning approaches, training and vali-
dation play a crucial role in the effectiveness of LSTM 
networks. LSTM, a type of RNN, requires a robust train-
ing process with carefully curated training data to learn 
patterns and make accurate predictions. The training pro-
cess of LSTM involves iteratively updating the network’s 
parameters to minimize the discrepancy between its predic-
tions and the ground truth. It requires a dataset consisting 
of input sequences and corresponding target outputs. LSTM 
networks leverage the concept of backpropagation through 
time (BPTT) to compute gradients and adjust the weights 
of the network (Gers et al. 2000). During training, the input 
sequences are fed to the LSTM network, and the resulting 
predictions are compared against the target outputs using a 
suitable loss function. The gradients are then computed, and 
the network’s weights are updated using optimization algo-
rithms such as stochastic gradient descent (SGD) or Adap-
tive Moment Estimation (Adam) (Kingma and Ba 2014). 
This iterative process continues until the network achieves 
satisfactory performance on the training data. The validation 
process is crucial for assessing the generalization ability of 
the LSTM network. After each training iteration or epoch, a 
separate validation set is employed to evaluate the network’s 
performance on unseen data. The validation set helps in 
monitoring the network’s progress and detecting overfitting, 
which occurs when the network memorizes the training data 
without effectively capturing underlying patterns (Good-
fellow et al. 2016). During validation, the LSTM network 
takes the input sequences from the validation set and gener-
ates predictions. The predictions are compared against the 
corresponding target outputs, and performance metrics are 
computed. These metrics provide insights into how well the 
network generalizes to unseen data and helps determine if 
adjustments to the model architecture or training process are 
necessary. The choice of training data greatly influences the 
performance of an LSTM network. It is essential to curate 
a diverse and representative dataset that captures the pat-
terns and variations present in the target problem domain. In 
this paper, various datasets are used for training, including 
GNSS tropospheric products, hydrological, geological, and 
environmental information. The InSAR displacement fields 
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ZWD = ZTD − ZHD � (7)

The estimation of the ZTD with high accuracy using GNSS 
processing techniques has been extensively studied (Bevis 
et al. 1992; Zhang et al. 2016). GNSS receivers measure 
the total delay experienced by satellite signals as they pass 
through the Earth’s atmosphere. Through analyzing phase 
and code measurements from multiple satellites, along with 
precise orbit and clock information, ZTD can be computed 
accurately (Bevis et al. 1992). To compute the ZHD, empiri-
cal models such as the Saastamoinen model are widely used 
(Saastamoinen 1972). These models take into account the 
surface pressure, to estimate the hydrostatic component of 
the ZTD (Saastamoinen 1972). These models have been 
extensively calibrated and provide high accuracy in estimat-
ing ZHD (Boehm et al., 2006).

EvapoTranspiration (ET) is a crucial parameter used to 
estimate the water requirements of crops and plays a sig-
nificant role in irrigation planning, climate monitoring, and 
subsidence prediction. One widely used method for estimat-
ing ET is the Food and Agricultural Organization Penman-
Monteith (PM) equation, proposed by Allen et al. (1998):

ET(PM) =
0.408 (Rn − G) + γ 900

Ta+273U2 (es − ea)

∆ + γ (1 + 0.34U2)
� (8)

Where G is soil heat flux density, Rn is net radiation at the 
crop surface, Ta is the mean daily air temperature at 2 m 
height, es is saturation vapor pressure, U2 is the wind speed 
at 2 m height, ea is actual vapor pressure, ∆is slope vapor 
pressure curve and γ is psychrometric constant. However, 
obtaining all the required meteorological data for the PM 
equation can be challenging as these data may not be read-
ily available or may have different temporal and spatial 
resolutions.

Another method to estimate ET is the Thornthwaite 
(TH) method, introduced by Thornthwaite in 1948. The 
TH method estimates ET based solely on air temperature 
(Thornthwaite 1948):

ET(TH) =






0 T � 0

16K(
10T

l
)m T > 0

� (9)

where T is temperature, K is the calibrated coefficient of 
latitude and month and l and m are the heat factor and coef-
ficient, respectively. To improve the accuracy of ET estima-
tion, a new method based on GNSS observations has been 
developed (Haji-Aghajany et al. 2023). This method utilizes 
the PM method as an accurate model and aims to model the 
difference between the PM and TH methods over time using 
water vapor data obtained from GNSS and temperature. By 

stacking independent InSAR data (Peltzer et al. 2001), char-
acterizing the statistical properties of phase delay patterns 
(Emardson et al. 2003) ray tracing techniques (Haji-Agha-
jany and Amerian 2018, 2020a; Haji-Aghajany et al. 2019; 
Khalili et al. 2023) or external data (Jolivet et al., 2014). By 
applying these correction methods, the interferograms can 
be cleaned from unwanted effects, enhancing the accuracy 
of the displacement measurements and improving the reli-
ability of InSAR time series analysis.

GNSS tropospheric products

GNSS tropospheric products are data and models used to 
characterize and correct for the effects of the Earth’s atmo-
sphere on GNSS signals. The use of GNSS products in cli-
mate and subsidence monitoring and prediction provides 
accurate and continuous data, enabling scientists and deci-
sion-makers to make informed assessments and take proac-
tive measures.

Integrated Water vapor (IWV) is a tropospheric product 
that quantifies the total amount of water vapor in a verti-
cal column of the atmosphere above a location (Bevis et 
al. 1992). IWV data obtained from GNSS can contribute to 
climate research by providing information on atmospheric 
water vapor trends and variability. Monitoring IWV varia-
tions over time helps researchers understand long-term 
changes in atmospheric moisture content and its implica-
tions for climate change (Bevis et al. 1992; Bock et al. 2003). 
Furthermore, IWV data from GNSS can aid in the study of 
subsidence, which refers to the gradual sinking or settling 
of the Earth’s surface. Changes in IWV can be indicative 
of subsidence, as the presence or absence of water vapor 
affects the moisture content and stability of underlying soil 
layers. GNSS-based IWV measurements can help monitor 
subsidence by detecting changes in the water vapor content 
of the atmosphere, providing valuable information for sub-
sidence modeling and mitigation efforts (Davis et al. 2013; 
Tregoning and Ramillien 2014). The formula to calculate 
IWV from GNSS data using Zenith Tropospheric Delay 
(ZWD) is as follow:

IWV = 106ZWD

Rw
(k′

2 +
k3

TM
)−1� (6)

Where Rw is the specific gas constant for water vapor, k′
2 and 

k3 are refraction constants and TM is weighted mean water 
vapor temperature of the troposphere (Kleijer 2004). ZWD 
is the foundation for estimating of water vapor content in 
the troposphere. ZWD can be obtained by subtracting Zenith 
Hydrostatic Delay (ZHD) form Zenith Tropospheric Delay 
(ZTD):
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important role in subsidence prediction (Chen et al. 2019; 
Ye et al. 2020). In addition, some geological information 
such as slope, aquifer media, depth to the water table, land 
use, distance from exploiting wells, distance from faults, 
and distance from rivers have been considered for the train-
ing step of subsidence prediction. These parameters have 
been selected based on the previous studies (Azarakhsh et 
al. 2022).

K-Shape clustering algorithm

Clustering plays a pivotal role in LSTM prediction by facili-
tating the identification and grouping of similar patterns in 
time series data. This process is essential for enhancing the 
performance and accuracy of LSTM models, especially 
when dealing with complex and diverse datasets. By apply-
ing clustering to the data, we can uncover underlying struc-
tures and relationships, enabling targeted model training, 
improved interpretability, and enhanced predictive capa-
bilities. Clustering methods provide a means to segment 
the data into meaningful subsets, allowing LSTM models 
to capture the specific dynamics and patterns within each 
cluster. This approach not only enables a more focused and 
customized learning process but also enhances the mod-
el’s ability to generalize and make accurate predictions on 
unseen data points. When it comes to subsidence prediction 
using LSTM, the choice of clustering method can signifi-
cantly impact the performance and accuracy of predictive 
models. Clustering techniques offer a way to identify and 
group similar patterns within time series data, leading to 
improved model training and prediction. One notable clus-
tering method employed in subsidence prediction is k-shape 
clustering. K-shape clustering is a shape-based algorithm 
that takes into account the shape and temporal dynamics of 
time series data (Paparrizos and Gravano 2015). The dis-
tinct advantage of k-shape clustering lies in its ability to 
capture and group time series based on their shape similar-
ity, resulting in a more nuanced and accurate representation 
of the underlying patterns in the data. In comparison to tra-
ditional methods like k-means clustering, k-shape cluster-
ing offers several benefits for prediction using LSTM (Zhou 
et al. 2022). Firstly, k-shape clustering explicitly considers 
the temporal dynamics and shape characteristics of the time 
series, allowing for the identification of patterns that may 
be overlooked by other methods solely focused on mag-
nitude or amplitude. This aspect is particularly relevant in 
subsidence prediction, where the shape and evolution of 
subsidence patterns over time are crucial factors. Secondly, 
k-shape clustering accommodates local shifts and warp-
ing in the time axis, making it suitable for capturing defor-
mations and irregularities. This flexibility enables a more 
accurate alignment of similar shapes, resulting in improved 

applying a linear equation based on temperature and water 
vapor, the modeled difference is then added to the TH for-
mula to correct it (Haji-Aghajany et al. 2023):

DET = ETPM − ETTH � (10)

DET =

{
a0 × PWV1 + a1 × T + a2 T � 0
b0 × PWV2 + b1 × T + b2 T < 0

� (11)

where a0-a2 and b0-b2 are the model coefficients which can 
be determined based on the least squares method and PWV1 
and PWV2 are the PWV at the moment of T �0 °C and 
T < 0 °C, respectively. PWV can be computed using GNSS 
measurements based on the following formula (Bevis et al. 
1992):

PWV = 106ZWD

Rv ρw
(k′

2 +
k3

TM
)−1� (12)

where ρw
 is the density of water. Finally, the more accu-

rate value of ET index can be calculated using following 
equation:

ETAccurate = DET + ETTH � (13)

The accurate ET can be calculated at different times using 
the differential model without relying on multiple meteoro-
logical indices. Additionally, if there is a need to calculate 
this index as a two-dimensional map, the geographic loca-
tion can be incorporated into the fitted model. It’s important 
to note that the differential model is applied in the temporal 
dimension for calculating the index at the station location. 
For more details on using the differential model in both tem-
poral and spatial dimensions, refer to the work of Zhao et al. 
(2021) and Haji-Aghajany et al. (2023).

Hydrological, geological and environmental information

Groundwater level data are crucial for predicting and miti-
gating subsidence, where the land sinks due to factors like 
groundwater extraction. Monitoring these levels helps 
understand hydrological processes and predict subsidence 
risks. Groundwater provides support to the soil, so moni-
toring levels helps prevent excessive extraction and reduce 
the risk of subsidence. Fluctuations in groundwater levels 
indicate areas prone to subsidence, whether due to heavy 
rainfall or droughts. Groundwater data also calibrate sub-
sidence prediction models, aiding in land-use planning and 
infrastructure design (Ty et al. 2021). Access to accurate 
and up-to-date groundwater level data is essential for effec-
tive subsidence management. Moreover, temperature varia-
tions also contribute to subsidence phenomena and play an 
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region is mostly situated in the northern, northeastern, and 
eastern parts, while smaller and lower areas are located in 
the western part. Karaj’s climate is influenced by the Alborz 
Mountains, as well as the Chalus Valley and Karaj River. 
This results in a cooler and more humid climate compared 
to Tehran, and this distinction is observed throughout the 
year. According to long-term statistical analysis of the Karaj 
meteorological station, the city has a semi-arid climate with 
an annual rainfall of 247 millimeters, characterized by rela-
tively cold winters and moderate summers. The population 
of Karaj was approximately 2 million people according to 
the National Statistical Center of Iran in 2016. After Tehran, 
Karaj is the most immigrant-friendly city in Iran. Among 
the major cities in Iran, it has the highest annual popula-
tion growth rate of 14.3%. Therefore, studying the potential 
hazards facing this city is of great importance (Statistical 
Center of Iran). The geographical location of the study area 
can be seen in Fig. 2. Several Sentinel-1 A radar acquisi-
tions taken from the study area have been used to implement 
the InSAR technique in this research. The specifications of 
radar acquisitions can be seen in Table 1. The spatiotempo-
ral distribution of radar acquisitions is visible in Fig. 3. The 
measurements of GNSS stations have been used to com-
pute IWV and ET index. The ERA5 reanalysis data from 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) have been used to extract temperature and other 
necessary meteorological data for this study. ERA5 data 
presents values of meteorological information at 37 pres-
sure levels, with a spatial resolution of about 31 km from 
1950 to the present (Hersbach and Dee, 2016).

The study utilized groundwater level measurements 
obtained from piezometric wells monitored by Iran Water 
Resources Management and Regional Water Companies. 
Additionally, monthly differences in water table values were 
calculated at observation wells between 2015 and 2020, and 
these values were then used to create a continuous raster 
through kriging interpolation (Webster and Oliver 2007). 
The specifications of the other used data sets can be found 
in Table 2. The land use, slope, fault, geology, and vegeta-
tion coverage maps, and DEM of the study area can be seen 
in Fig. 4. The hydrological, geological and environmental 
parameters used for training were converted into raster for-
mat, and their values were extracted for the InSAR points 
identified through InSAR analysis.

Results and analysis

To predict the land subsidence using GNSS, geological, 
hydrological, environmental information and InSAR data 
the following flowchart in Fig. 5 has been used.

clustering performance. Furthermore, the incorporation of 
k-shape clustering in LSTM prediction enables the devel-
opment of cluster-specific predictive models. By training 
separate LSTM models on each cluster, the models can spe-
cialize in learning the unique dynamics and patterns within 
each cluster (Zhou et al. 2022). This targeted approach can 
lead to improved prediction accuracy and a better under-
standing of the intricacies of subsidence behavior.

Validation approaches

To assess and compare the efficacy of results, statistical 
indicators such as Root Mean Square Error (RMSE), Nash-
Sutcliffe Efficiency (NSE), determination coefficient (R2), 
and Mean Absolute Error (MAE) are commonly employed. 
RMSE is employed to evaluate the predictive capability of 
various models, while R2 quantifies the relationship between 
the modeled and observed data. Ranging from zero to one, 
an R2 value of one indicates a strong association between 
the two sets of data. These indices are computed, respec-
tively, as follows (Moriasi et al. 2007):

RMSE = [
1
n

n∑

i=1

(Si − Oi)
2]

1
2� (14)

NSE = 1 −

n∑
i=1

(Oi − Si)
2

n∑
i=1

(Oi − Ō)2
� (15)

R2 =





1
n

n∑
i=1

(Si − S̄)(Oi − Ō)

σs × σo





2

� (16)

MAE =

n∑
i=1

|Si − Oi|

n

� (17)

where Oi and Si are the observed and modeled data, Ō and 
S̄  are the average of the observed and modeled data, and 
σo

 and σs
 are the standard deviation of the modeled and 

observed data, respectively.

Study area and data sets

Karaj is one of the major cities in Iran and is also the capi-
tal of Alborz Province. It is located in the southern foot-
hills of the Central Alborz Mountains and the northwest of 
Tehran. Geomorphologically, it is divided into mountain-
ous, hilly, plain, and cone-shaped units. The mountainous 
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resolution of one hour for each of the radar acquisition days 
(Dach et al., 2015). After computing the total tropospheric 
delay, the Saastamoinen model was applied to subtract the 
hydrostatic part and obtain the ZWD. By utilizing ZWD, 
meteorological parameters, and the procedures mentioned 
in the previous sections, the IWV and ET time series were 
computed. The obtained time series for two sample points 
are visible in Fig. 6. The obtained IWV and ET were then 
interpolated on the InSAR points using the Kriging method.

Multiple radar acquisitions from Sentinel-1 A were uti-
lized in the analysis for carrying out InSAR processing. 
A value of 0.42 was chosen for the Amplitude Dispersion 
Index based on the radiometric calibration. Initially, inter-
ferograms were selected based on their spatial coherence, 
and a reference point was determined by considering the 
smallest phase variance and the maximum number of coher-
ent pixels. In order to calculate displacement velocity, any 
disruptive effects present in the interferograms were elimi-
nated. The displacement time series and velocity map were 
then computed using the SBAS method. Fig.  7 illustrates 
sample displacement maps extracted from the obtained time 

The flowchart outlines the steps involved in processing 
and analyzing the data to predict land subsidence. In order 
to assess the impact of using GNSS tropospheric products 
on land subsidence prediction, the procedure was conducted 
both with and without utilizing these data (Fig. 5). Finally, 
the predicted results will be compared to the actual subsid-
ence information obtained from InSAR.

Preparing data

In the first step, the IWV and ET time series were computed 
from GNSS measurements. The Bernese 5.2 software was 
used for GNSS processing, and the Precise Point Positioning 
(PPP) method was employed to obtain the ZTD with a time 

Table 1  Specifications of sentinel-1A radar acquisitions
Mission Product Track Flight Direction Beam 

Mode
Time 
period

Senti-
nel-1 A

S1A-IW-SLC 28 ASCENDING IW Jan 
2015 
to Dec 
21

Fig. 3  The spatiotemporal distribution of the radar 
acquisitions
 

Fig. 2  The location of the study area and the distribution of GNSS (triangle) and groundwater wells (square)
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at the location of InSAR points using kriging interpolation. 
A sample of the obtained temperature map can be seen in 
Fig. 10.

Training and validation

Prior to the training step, the displacement signals within 
the study area were clustered using the k-shape method. The 
objective was to separate the subsidence points from the 
rest of the signals, as the focus of this study is specifically 
on subsidence. The prediction process has been performed 
on 1877 points that were extracted from k-shape clustering. 
A new dataset was then generated by employing a sliding 
window approach, taking into account the length of the his-
torical sequence. This dataset was subsequently divided into 
three subsets: training, validation, and testing. It was deter-
mined that 70% of the data would be allocated for training, 
15% validation and 15% for testing purposes. Fig. 11 depicts 
the step-by-step procedure employed in predicting the out-
comes for the first case. In the second case, the prediction 
did not involve the use of GNSS products. In both cases, 
various training hyperparameters were established based on 
the genetic optimization algorithm. The used hyperparam-
eters can be found in Table 3.

The diagram representing the loss function during the 
training process for each case is visible in Fig.  12. Both 
diagrams exhibit a decreasing trend of the loss function, 
gradually approaching a value very close to zero. It should 
be noted that the prediction process has been done on 1877 
points that were extracted from k-shape clustering.

Prediction and testing

After the training phase for both cases, in this stage, the 
prediction of displacement was performed for year 2021 on 
1877 selected points. Fig. 13 displays the obtained displace-
ment velocity from the prediction for both cases alongside 
the actual displacement velocity obtained from InSAR. As 
observed, the second case has predicted greater subsidence 
for this time period. Additionally, it is noteworthy that the 
spatial variations in the map obtained from the second case 
are less than the map obtained from the first case and the 
map obtained from InSAR. This can be attributed to the 
inappropriate resolution of the input data during the training 
phase. The spatial variations in the displacement of the sec-
ond case can be clearly observed, which bears a significant 
resemblance to the spatial variations in the map obtained 
from InSAR. This issue is due to the use of GNSS tropo-
spheric products as auxiliary data with appropriate resolu-
tion. In order to better observe the spatial variations of the 
two profiles on the map obtained from InSAR, Fig. 14 repre-
sents the predicted and actual displacement variations along 

series. Fig.  8 displays the resulting displacement velocity 
in the study areas between 2014 and 2021. The analysis of 
the displacement velocity field reveals a concerning trend 
of subsidence occurring in the central part of the area at a 
rate of up to 30 cm/year. No significant displacement was 
observed in other parts of the area. This significant down-
ward movement of the land poses a potential danger to the 
inhabitants of the region. It is crucial for local authorities 
and relevant stakeholders to take immediate action, con-
ducting further investigations and implementing mitigation 
measures to safeguard the affected population and minimize 
the potential risks associated with this alarming subsidence 
issue.

In order to better visualize the variation in displacement 
in the area and observe the subsidence signal more clearly, 
two profiles have been considered on the displacement 
velocity field. The displacement variations along these two 
profiles can be seen in Fig. 9.

The temperature and other necessary meteorological data 
has been obtained from ERA5 model. Subsequently, the data 
mentioned in the previous section have been interpolated 

Table 2  Details of each data set
Data Description
DEM Obtained from Sentinel satellite data with a 

spatial resolution of 10 m
Slope map Derived from the high-resolution DEM
Aquifer-media The characteristics of Aquifer-media were 

determined based on data from well-driller’s 
logs within the study areas, representing the 
soil texture and structure at various depths 
up to 100 m

Soil type Categorized as clay and silt, silt and sand, 
and sand and gravel, considering the respec-
tive thicknesses of these soil types

Depths to water table 
values

Calculated by subtracting the water table 
levels from the bedrock depths, leading to 
the generation of interpolated maps

Land use map Prepared by the Tehran and Shahriar munici-
palities in Iran.

Bedrock thickness Map published by the Geological and Min-
eral Exploration Organization of Iran in 2007

Groundwater level 
and depth measure-
ments from piezo-
metric wells

Provided by Iran Water Resources Manage-
ment and regional water companies

Depth to the bedrock Determined by calculating the differences 
between the bedrock depth values and the 
surface levels in the piezometric wells

Euclidean distance 
from the exploitation 
wells

Computed using information provided by the 
Tehran Regional Water Company

Euclidean distance 
from faults

Derived from the Fault maps provided by the 
Geological Survey and Mineral Exploration 
of Iran

Euclidean distance 
from rivers

Calculated based on the river map within the 
study area
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Both of these indicators indicate a significant difference 
between the predictions obtained from the first and second 
cases. Moreover, the NSE and R2 indicators also demon-
strate a better alignment of the predictions from the first 
case with the actual data compared to the predictions from 
the second case. All the statistical results obtained indicate 
the role of using GNSS tropospheric products in the absence 
of meteorological observations, especially wet tropospheric 
indices. These products have been able to significantly 
increase the accuracy of predictions for subsidence in the 
region. It can be mentioned that their use, along with the 
utilization of groundwater levels, hydrological, geological, 
and environmental data, facilitates achieving accurate pre-
dictions of subsidence.

these two profiles. Based on this image, it can be said that 
the map obtained in the second case has a better alignment 
with the actual map. Furthermore, in some points, the map 
obtained from the second case shows different trends in dis-
placement compared to the first case and the map obtained 
from InSAR. Fig. 15 illustrates the difference between the 
predictions obtained from both cases and the displacement 
obtained from InSAR. In this figure, the proximity of the 
results obtained from the second case to the actual data 
compared to the predictions obtained from the first case is 
clearly evident. Additionally, in order to better understand 
the statistical conditions of the problem, Table 4 has been 
used, which represents the statistical indicators of this com-
parison. Table 4 shows that the RMSE obtained from the 
first case is equal to 3.07 cm/year, and the RMSE obtained 
from the second case is equal to 6.23 cm/year. Furthermore, 
the standard deviation for the first case is equal to 2.32 cm/
year, and for the second case, it is equal to 4.74 cm/year. 

Fig. 4  Study area specifications represented through maps
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Fig. 7  Three sample displacement maps extracted from the analysis of the InSAR time series. The time spans of these interferograms are 312, 228, 
and 156 days, from left to right, respectively

 

Fig. 6  The time series of IWV and ET at a specific sample point

 

Fig. 5  Flowchart related to the 
processes of this study
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by GNSS tropospheric data in enhancing predictive accu-
racy. Of particular note are the spatial distribution patterns 
of subsidence. The map generated in the first scenario 
closely mirrored the actual subsidence patterns observed 
through InSAR measurements. This high spatial correla-
tion accentuates the ability of GNSS tropospheric products 
to accurately capture intricate spatial variations in subsid-
ence. Conversely, the map produced in the second scenario, 
lacking GNSS tropospheric data, displayed less spatial 
variation and deviated significantly from actual subsidence 
patterns. This highlights the limitations of subsidence pre-
dictions in terms of spatial resolution when GNSS-derived 
information is absent. Furthermore, it’s essential to empha-
size the statistical parameters used for assessment. Beyond 
RMSE, metrics such as the MAE, NSE, and R2 consistently 
favored the first scenario. These metrics not only reiterate 
the significant improvement in predictive accuracy with 

Discussion

Land subsidence, influenced by numerous variables, neces-
sitates precise prediction for effective risk mitigation. In 
this study, the application of GNSS tropospheric products, 
specifically IWV and ET, in machine learning-based land 
subsidence prediction was explored. Valuable insights 
were obtained from the numerical results: In the first sce-
nario, where GNSS tropospheric products were integrated 
with other crucial parameters, an impressive RMSE of 
3.07  cm/year was achieved. This low RMSE value signi-
fies exceptional precision in capturing land subsidence 
patterns. In contrast, in the second scenario, where GNSS 
tropospheric products were omitted, a considerably higher 
RMSE of 6.23 cm/year was obtained. This substantial dif-
ference in RMSE values underscores the pivotal role played 

Fig. 10  Temperature map on the first day of the year 2020 

Fig. 9  Profiles considered on the displacement velocity map

 

Fig. 8  Displacement velocity 
map of the study area obtained 
from InSAR analysis showing the 
locations of GNSS (triangle) and 
groundwater wells (square) in the 
subsidence map
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GNSS tropospheric data but also provide a comprehensive 
view of the model’s performance. The results undeniably 
affirm that the integration of GNSS tropospheric products 
with other critical parameters leads to superior predictive 
performance. This integration empowers more precise sub-
sidence predictions and facilitates the creation of accurate 
spatial maps of subsidence areas. The implications of these 
findings are substantial. Accurate land subsidence predic-
tions enable proactive risk management and better-informed 
urban planning, which, in turn, safeguards public safety and 
infrastructure development. Looking ahead, future research 
should explore advanced modeling techniques and the 
incorporation of additional data sources to further enhance 
the accuracy and robustness of land subsidence predictions. 
The integration of GNSS observations and complementary 

Table 3  Optimal hyperparameters for LSTM
Hyperparameter Optimal value for 

case 1
Optimal 
value for 
case 2

Number of LSTM layers 3 3
Number of neurons 100 100
Dropout rate 0.3 0.3
Activation functions tanh tanh
Batch size 32 32
Learning rate 0.01 0.01
Training iteration 500 700
Optimizer Adam Adam
Loss function Mean Square Error 

(MSE)
MSE

Fig. 11  Procedure for training, validation, and testing of the first case
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Fig. 15  Absolute error of different cases for each point

 

Fig. 14  Profiles considered on the predicted and observed displacement maps

 

Fig. 13  predicted and observed displacement velocity fields

 

Fig. 12  Loss function variation for each iteration of two 
cases
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subsidence prediction, enhancing both predictive accuracy 
and spatial resolution, particularly in regions with limited 
synoptic data coverage.
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