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Abstract
Acquiring comprehensive insights into soil properties at various spatial scales is paramount for effective land management, espe-
cially within small catchment areas that often serve as vital pastured landscapes. These regions, characterized by the intricate 
interplay of agroforestry systems and livestock grazing, face a pressing challenge: mitigating soil degradation while optimizing 
land productivity. This study aimed to analyze the spatial distribution of eight topsoil (0–5 cm) properties (clay, silt, sand, pH, 
cation exchange capacity, available potassium, total nitrogen, and soil organic matter) in a small grazed catchment. Four machine 
learning algorithms—Random Forest (RF), Support Vector Machines (SVM), Cubist, and K-Nearest Neighbors (kNN)—were 
used. The Boruta algorithm was employed to reduce the dimensionality of environmental covariates. The model’s accuracy was 
assessed using the Concordance Correlation Coefficient (CCC) and Root Mean Square Error (RMSE). Additionally, uncertainty 
in predicted maps was quantified and assessed. The results revealed variations in predictive model performance for soil properties. 
Specifically, kNN excelled for clay, silt, and sand content, while RF performed well for soil pH, CEC, and TN. Cubist and SVM 
achieved accuracy in predicting AK and SOM, respectively. Clay, silt, CEC, and TN yielded favourable predictions, closely align-
ing with observations. Conversely, sand content, soil pH, AK, and SOM predictions were slightly less accurate, highlighting areas 
for improvement. Boruta algorithm streamlined covariate selection, reducing 23 covariates to 10 for clay and 4 for soil pH and AK 
prediction, enhancing model efficiency. Our study revealed spatial uncertainty patterns mirroring property distributions, with higher 
uncertainty in areas with elevated content. Model accuracy varied by confidence levels, performing best at intermediate levels 
and showing increased uncertainty at extremes. These findings offer insights into model capabilities and guide future research in 
soil property prediction. In conclusion, these results urge more research in small watersheds for soil and territorial management.
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Introduction

Catchments play a vital role in assessing various physical 
and biological ecosystem processes and variables. These 
hydrological catchments provide a comprehensive context 

within which numerous distinct ecological and hydrological 
processes operate at local scales (Feng et al. 2013). Among 
the many process-influencing as well as context-related envi-
ronmental factors, the soil properties can exhibit consider-
able variation within catchments, influenced by factors such 
as land use, topography, and geology (Terefe et al. 2020). 
Understanding the distribution of soil properties over these 
areas is crucial for effective land management and decision-
making. Accurately mapping soil properties in small catch-
ments is, hence, vital for addressing localized environmental 
challenges, designing appropriate land management strate-
gies, and promoting sustainable land use practices (Tang 
et al. 2015). Soil mapping at small catchment scales can 
provide valuable information when assessing soil health, 
erosion-prone areas, nutrient leaching or runoff potential, 
as some of the many issues of interest at these spatial scales 

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-023-01125-1&domain=pdf


3812 Earth Science Informatics (2023) 16:3811–3838

1 3

(Altaf et al. 2014; Khosravi Aqdam et al. 2022; Pulleman 
et al. 2000).

Nowadays, harnessing the power of machine learning 
is pivotal for precise soil property mapping across vari-
ous scales. These innovative techniques, as exemplified by 
Adeniyi et al. (2023), have become indispensable tools. By 
maximizing the use of collected data, these techniques enable 
the analysis of complex and non-linear patterns, as those of the 
soil properties and many other environmental-related aspects, 
that would otherwise be challenging to assess (Forkuor et al. 
2017; Hastie et al. 2009). Machine learning allows for the 
efficient processing of large volumes of geospatial data, such 
as satellite imagery and topographic data, by integrating them 
with existing field data (Poggio et al. 2021). This integration 
facilitates accurate and detailed analysis of the influences of 
multiple factors on soil properties and identify complex corre-
lations and relationships between variables, thereby enhancing 
the modeling capabilities and improving the accuracy of the 
resulting maps (Beguin et al. 2017; Khaledian & Miller 2020). 
Some of the most used algorithms for mapping soil proper-
ties, such as soil organic carbon stocks (Mishra et al. 2020), 
hydraulic conductivity (Araya & Ghezzehei 2019), pH (Xiao 
et al. 2023), or soil aggregate stability (Bouslihim et al. 2021), 
include regression trees, cubist, random forest (RF), gradient 
boosting machines (GBM), multivariate adaptive regression 
splines (MARS), and support vector machines (SVM). These 
machine learning algorithms have proven to be useful in pre-
dictive soil mapping and have been applied in various studies 
(Padarian et al. 2019).

However, it's imperative to quantify the uncertainty inher-
ent in soil maps, as highlighted by Ramcharan et al. (2018) 
and Wadoux et al. (2020). When it comes to this topic, it's 
worth noting that not all machine learning algorithms pro-
vide built-in mechanisms for uncertainty quantification. 
Only select algorithms, such as the quantile regression for-
est (QRF) method (Poggio et al. 2021), offer uncertainty 
quantification. In such cases, complementary techniques 
like bootstrapping become indispensable. Bootstrapping, a 
statistical resampling method, offers a robust approach to 
estimate uncertainty in the context of machine learning algo-
rithms. Bootstrapping offers accurate results without making 
assumptions about data distribution and allows flexibility 
for different data types and models, providing estimation in 
confidence intervals despite its computational cost for large 
datasets (Malone et al. 2017; Szatmári & Pásztor 2019).

Despite the abundance of published literature and the 
growing use of machine learning algorithms for soil prop-
erty mapping at different scales (Behrens et al. 2018), there 
is still a lack of knowledge on the spatial distribution of soil 
properties for certain areas at near-detail scales, such as the 
small catchments. This is particularly noteworthy for environ-
mental contexts, as those of the Mediterranean catchments, 
where different pressures, including climate change, are 

leading changes in land use and management, fostering soil 
degradation and, therefore, compromising the sustainability 
and resilience of the whole soil system (Montanarella et al. 
2016). Therefore, even when studies exist that focuses on soil 
property mapping, as soil thickness assessed in agricultural 
catchments (Li et al. 2017),  CO2 emissions over large catch-
ments (Bailey et al. 2009), or soil erosion quantification (Fitria 
& Kurniawan 2021; Wang et al. 2022); the cartography of soil 
properties at the scale of small catchments in the Mediterra-
nean region has received limited attention, despite its signifi-
cant importance. So far, several studies have been carried out 
in the catchments located within agroforestry areas of Extrem-
adura. These studies have focused on examining the spatial 
distribution of soil moisture and, more importantly, investigat-
ing the soil degradation issues that these environments suffer 
from due to inadequate soil management practices (Alfonso-
Torreño et al. 2021; Gómez Gutiérrez et al. 2009; Lavado 
Contador et al. 2006). This situation underscores the urgent 
need to acquire a more profound insight into the spatial dis-
tribution of soil properties in these degraded environments 
and to better comprehend the environmental determinants 
influencing their distribution. However, it is worth noting that 
previous research addressing the spatial distribution of other 
soil properties, such as total nitrogen (TN), P (phosphorus), 
available potassium (AK), or SOM (%) (SOM), is currently 
limited to a regional level.

The scarcity of research in this area has resulted in a sig-
nificant gap in our understanding of the spatial distribution 
and variability of soils within this specific context. Consid-
ering the critical role of soils in Mediterranean ecosystems 
and their profound influence on the sustainability of agro-
silvopastoral systems, which are particularly abundant in the 
southern Mediterranean region, there is a pressing need for 
obtaining accurate and detailed soil property maps in these 
areas. In regions such as Extremadura, a substantial part of 
the regional surface is occupied by small agroforestry catch-
ments with livestock farming, which is also a common feature 
in various other Mediterranean countries. Understanding the 
spatial behavior of soil properties in these intricate and eco-
logically significant environments is paramount for address-
ing soil conservation, enhancing productivity, and developing 
tailored management strategies that promote sustainability.

Given the limited research conducted in the mentioned 
agroforestry systems, especially regarding detailed soil prop-
erty mapping at the scale of small catchments, this study 
represents a valuable effort to bridge this significant knowl-
edge gap. It aims to provide comprehensive maps of eight 
essential soil properties within the topsoil layer (0–5 cm) in 
a specific study area encompassing a small catchment within 
an agroforestry system situated in Extremadura, Spain. 
To achieve this, four distinct and state-of-the-art machine 
learning algorithms, namely k-Nearest Neighbors (KNN), 
Random Forest (RF), Cubist, and Support Vector Machines 



3813Earth Science Informatics (2023) 16:3811–3838 

1 3

(SVM), were deployed. The specific objectives of the study 
were: a) to evaluate the accuracy of each of the proposed 
machine learning algorithms in predicting soil properties, 
b) to quantify the uncertainty associated with the predictive 
maps, and c) to identify the key environmental covariates 
influencing the predicted models.

Materials and methods

Study area, soil survey and environmental covariate 
analysis

This study was conducted in a small catchment located in 
the southwestern region of Spain known as Extremadura 
(Fig. 1a). The catchment belongs to the agroforestry system 
called "dehesa" (Fig. 1b-1c). Both the catchment and the entire 
farm follow a livestock approach under a conventional manage-
ment system, without designed rotation plans and with high 
livestock stocking rates (1.59 Animal Units  ha−1) (Pulido et al. 
2018). The catchment covers a total area of 99.5 hectares and 

exhibits typical topographic characteristics of the Trujillano-
Cacereña Peneplain where it is located. The average slope is 
8%, although the valley bottoms can be completely flat, while 
the steeper slopes can reach a 12% slope. The predominant soils 
are classified as Cambisols and Leptosols, with some Regosols 
found in the valley bottoms (IUSS Working Group WRB 2015). 
These soils are generally shallow and have low nutrient and 
organic matter concentrations. The prevailing climate in this 
area is Mediterranean continentalized (Csa) (Peel et al. 2007), 
characterized by mild winters with average temperatures above 
0 °C and hot summers with average temperatures above 22 °C. 
The average annual temperature is 16 °C. Rainfall is scarce 
and mainly concentrated in autumn and spring, with an average 
annual rainfall in this catchment of 513 mm.

The soil properties considered for mapping were clay, silt, 
sand percentage (%) pH, CEC (cmol  kg−1), AK (cmol  kg−1), 
TN (%), and soil organic matter (SOM). A comprehensive 
representation of the catchment heterogeneity was ensured 
through simple field random sampling by a man. These sam-
ples were subsequently transported to the laboratory, where 
they underwent meticulous analysis following the processes 

Fig. 1  Location of the Extremadura region within the Iberian Peninsula (a). Study area and sampling points (b) and photography of the catch-
ment (c)
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of drying and sieving. In line with prior research, sampling 
was specifically carried out within the 0–5 cm depth interval. 
Other studies in the shallow soils of Extremadura's range-
lands have consistently revealed that this top layer (0–5 cm) 
holds the highest concentration of essential nutrients (Pulido 
et al. 2018). Therefore, focusing on this interval is para-
mount for capturing changes influenced by factors such as 
tillage, fertilizer application, or crop rotation. The total num-
ber of soil samples for topsoil layer was 80.

In this study, 23 environmental covariates were calcu-
lated for the digital mapping of different soil properties 
(Table 1). Using the digital elevation model (DEM) and 
satellite images, 19 geomorphological indices and 3 veg-
etation indices were computed. The DEM was downloaded 
from the National Center of Geographic Information (https:// 
centr odede scarg as. cnig. es/) with a spatial resolution of 5 m 
x 5 m. The SAGA (System for Automated Geoscientific 
Analyses) software (Gerstoft 2001) was then used to calcu-
late various topographic and geomorphological parameters. 
Sentinel satellite images (Level-2A product) were utilized 
for the calculation of vegetation indices, and the Google 
Earth Engine platform was employed for data processing. 
The mean values of the Normalized Difference Vegetation 
Index (NDVI), Soil-adjusted Vegetation Index (SAVI), and 
Enhanced vegetation index (EVI) for the past 5 years were 
calculated for the study area. Additionally, to harmonize the 

spatial resolution with other variables for seamless integra-
tion into the digital mapping of soil properties, the satel-
lite image underwent resampling using the ArcGIS Pro's 
resample tool. It's essential to note that while this resam-
pling operation did not introduce additional information, it 
ensured that all variables shared the same spatial resolution, 
a critical requirement for the mapping process.

Covariates selection process

Before executing the predictive models, a preliminary envi-
ronmental covariates selection process was conducted using 
the Boruta algorithm implemented with the Boruta package 
in R (Kursa & Rudnicki 2010). This algorithm is particu-
larly well-suited for feature selection in predictive modeling 
tasks. Boruta operates by comparing the importance of each 
predictor variable to that of a shadow variable, essentially a 
randomized version of the original variable. Variables that 
significantly outperform their shadow counterparts in terms 
of predictive power are retained, while those that do not 
meet this criterion are discarded. This approach not only 
ensures that only the most informative covariates, those 
that genuinely contribute to predicting the target property, 
are included in the subsequent modeling process but also 
indirectly helps mitigate multicollinearity by eliminating 
redundant or highly correlated variables.

Table 1  List of environmental 
covariates used in the predictive 
models

Environmental Covariates Abbreviation Data source

Altitude Altitude DEM
Aspect Aspect DEM
Slope Slope DEM
Profile Curvature Profile Curvature DEM
Plan Curvature Plan Curvature DEM
Maximum Curvature Maximum Curvature DEM
Minimum Curvature Minimum Curvature DEM
Multiresolution Index of Valley Bottom Flatness MRVBF DEM
Multiresolution Index of Ridge Top Flatness MRRTF DEM
LS Factor LS Factor DEM
Terrain Ruggedness Index TRI DEM
Valley Depth Valley Depth DEM
Topographic Wetness Index TWI DEM
Topographic Position Index TPI DEM
Total Catchment Area TCA DEM
Relative Slope Position RSP DEM
Convexity Convexity DEM
Convergence Index Convergence Index DEM
Channel Network Distance CND DEM
Analytical Hillshading AH DEM
Normalized Difference Vegetation Index NDVI Sentinel-2A
Soil-adjusted Vegetation Index SAVI Sentinel-2A
Enhanced Vegetation Index EVI Sentinel-2A

https://centrodedescargas.cnig.es/
https://centrodedescargas.cnig.es/
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Statistical analysis

Statistical parameters like minimum, maximum, mean, 
and standard deviation were employed to characterize the 
available dataset for spatial analysis of the study properties. 
The computations were conducted using RStudio software. 
Likewise, ArcGIS Pro software was used to calculate the 
statistical parameters for the various final maps generated 
for each property.

Machine learning models

Four widely known machine learning algorithms, namely 
Random Forest (RF), Support Vector Machines (SVM), 
Cubist, and k-Nearest Neighbors (kNN), were utilized in this 
study to spatially predict eight soil properties. The selection 
of these algorithms was based on their effectiveness with 
small datasets. RF mitigates overfitting in small datasets by 
employing an ensemble of decision trees. These trees are 
constructed based on different subsets of the data, reduc-
ing the risk of overfitting (Aqdam et al. 2022). RF further 
enhances its performance by randomly selecting features 
at each node, effectively addressing dimensionality issues 
in small datasets while prioritizing informative features. 
This adaptability enables RF to capture intricate relation-
ships even when working with limited data. SVM leverage 
wide margins to identify the hyperplane that optimally sepa-
rates classes while maximizing the margin (Li et al. 2009). 
In small datasets, SVM is adept at finding well-separating 
hyperplanes without overfitting, making it an excellent choice 
for delineating clear class boundaries. Moreover, SVM excels 
in low-dimensional spaces, making it effective for datasets 
with fewer features. Cubist introduces an advanced modeling 
approach well-suited for small datasets. It provides interpret-
able coefficient estimates, facilitating a deeper understanding 
of the relationships between predictors and soil properties 
(Quinlan 1992). This interpretability is particularly valuable 
in scenarios with limited data. kNN, a non-parametric algo-
rithm, does not assume a specific data distribution, making 
it flexible and suitable for small datasets that do not meet 
the assumptions of other models. Additionally, kNN makes 
decisions based on the nearest instances, which can be advan-
tageous in small datasets by leveraging all available informa-
tion and capturing local patterns effectively. All models were 
implemented using the caret package in RStudio.

Model deployment and uncertainty quantification

In all the models developed to predict the soil properties 
of interest in this study, the dataset underwent a random 
division into calibration and validation subsets. The training 
subset, constituting 90% of the data, was utilized to con-
struct multiple models through resampling (bootstrap) with 

25 iterations (Malone et al. 2017; Sharififar 2022) following 
a preliminary covariate selection using the Boruta algorithm. 
In this case, 70 samples were assigned to the training set, 
while 10 were designated for validation. In each iteration, a 
random subset of the training set was sampled with replace-
ment, generating a diverse set of models trained on different 
data subsets. This approach effectively addresses the chal-
lenge of limited data availability in small datasets and miti-
gates the risk of overfitting.

Furthermore, a randomized search for optimal hyper-
parameters was performed in each model (Table 2). Each 
model was fitted to the prediction formula using a selection 
of predictor variables, including vegetation indices, and a 
series of topographic and geomorphological parameters. 
Additionally, variable importance metrics were employed 
to evaluate the relative contribution of each predictor in pre-
dicting each soil property. The importance analysis allowed 
for the identification of the most relevant features in the 
prediction process and highlighted which topographic, geo-
morphological parameters or vegetation indices significantly 
influenced the studied soil properties.

After training the models, their performance was assessed 
using key goodness-of-fit metrics, namely the coefficient of 
determination  (R2), Lin’s concordance correlation coeffi-
cient (CCC), and root mean squared error (RMSE). These 
metrics provided a comprehensive evaluation of the models' 
fit to both the training and validation datasets, enabling a 
robust measurement of accuracy and generalization capabil-
ity. In determining the superior model, the focus was solely 
on achieving the highest CCC value and the lowest RMSE 
value, thus prioritizing models with the strongest explana-
tory power and the smallest prediction errors.

To quantify the uncertainty in spatial predictions of soil 
properties, a multi-step process was employed. Firstly, 
predictions of soil properties for the testing dataset were 
retained across 25 replications. Subsequently, the standard 
deviation of these predictions was calculated, incorporating 
the average Generalized Mean Squared Error (GMSE) across 
the bootstrapped models. The GMSE represents the overall 
variance between the predicted values and the observed val-
ues. The standard deviation was then multiplied by quantiles 
of the normal distribution to determine the upper and lower 

Table 2  List of environmental covariates used in the predictive mod-
els

Model Abbreviation Hyperparameters

Random Forest RF mtry, splitrule, min.node.
size

Cubist none committees, neighbors
Support Vector Machine SVM sigma, C
k-nearest neighbor kNN k
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prediction limits for various confidence levels. Specifically, 
these limits were calculated as the predicted mean value ± z 
* standard deviation, where z corresponds to the quantiles. 
This approach provided prediction intervals for each confi-
dence level (e.g., 90% confidence level).

To assess the quality of the uncertainty estimates, the pro-
portion of measured soil values falling within these prediction 
intervals (referred to as Prediction Interval Coverage Prob-
ability or PICP) was calculated for each confidence level. A 
higher PICP indicates better-quality uncertainty estimates.

Results and discussions

Descriptive statistics

The data reveal a relative variability in the soil properties as 
present in the descriptive statistics (Table 3) analyzed in this 
study. For example, clay content exhibits remarkable vari-
ability, ranging from a minimum of 1.7% to a maximum of 
22.96%. This variability underscores the significance of con-
sidering the spatial distribution of clay in the management of 
Extremadura's dehesas. Higher clay values can enhance water 
and nutrient retention in the soil. This finding aligns with 
previous research emphasizing the spatial variability of clay 
in various watersheds (Tesfahunegn et al. 2011; Wei et al. 
2008). Similarly, the content of silt and sand, though with 
different variabilities, plays a crucial role in soil structure 
and water infiltration. Silt varies from a minimum of 19.37% 
to a maximum of 62.7%, while sand ranges from a mini-
mum of 25.3% to a maximum of 71.35%. Wang et al. (2010) 
demonstrated that the granular and less cohesive nature of 
sand could lead to a more even distribution in the soil. In 
this study, the soil texture (loam) with a higher clay content 
slightly differs from the texture found in previous studies 
in similar environments where soils were characterized by 
higher sand and silt content, resulting in a loamy sand texture 
(Pulido-Fernández et al. 2013; Reyna-Bowen et al. 2020).

The soil pH exhibits a mean value of 5.48 with a CV of 
19.12%, indicating relative stability and falling within the 
acidity range of soils in this environment due to their par-
ent material primarily composed of sandstones and granites 
(Gazol et al. 2021; Schnabel et al. 2013). On the other hand, 
CEC content displays a wide range, ranging from 0.81 to 24.1 
cmol  kg−1, showing significant variability in the soil's ability to 
retain and release cations, which may be linked to its relation-
ship with clay content (Saidi et al. 2022; Seybold et al. 2005).

The AK spans a substantial range (0.03 – 3.51 cmol kg-1), 
as reflected by the CV (119%), indicating the high variability 
of this property in such environments (Pulido et al. 2017). 
This behavior may be influenced by historical management 
practices, as well as the spatial characteristics of vegetation 
and topography. The TN (%) content shows relatively low 

mean values (0.20%), which is a characteristic situation of 
the dehesas soils (Plieninger et al. 2003). Also, the TN (%) 
content shows a notable range, with values ranging from 
0.02% to 0.65%. The CV for N is 55.9%, suggesting rela-
tively high variability in the distribution of this nutrient. This 
could be due to areas of TN (%) accumulation resulting from 
animal resting areas or N scarcity on slopes due to leach-
ing processes (Hassan-Vásquez et al. 2022; Lassaletta et al. 
2021; Pulido-Fernández et al. 2013). Regarding SOM (%), it 
exhibits moderate mean values (3.34%) for this type of envi-
ronment, suggesting that the soils in this study area have a 
certain amount of SOM compared to others in similar systems 
(Pulido-Fernández et al. 2013; Reyna-Bowen et al. 2020). 
However, the high CV (51.56%) indicates significant vari-
ability in organic matter concentration, which could influence 
soil fertility and water retention capacity (Simón et al. 2013).

Model performances

The evaluation of model performance provides valuable 
insights into the predictive capabilities of different machine 
learning algorithms for soil properties. In this study, we 
assessed four distinct models—kNN, Cubist, RF, and SVM—
across eight soil properties (Table 4). Among these prop-
erties, clay content emerged as particularly challenging to 
predict accurately. However, the kNN model demonstrated 
notable success with a CCC value of 0.61, emphasizing its 
ability to capture fine-scale variations, especially in clay-rich 
regions. Silt content also saw commendable performance 
with a CCC of 0.63 by the kNN model, highlighting its 
capacity to capture variations in silt distribution. Conversely, 
sand content presented more difficulty for all models, with 
the kNN model achieving a CCC of 0.30. These findings 
underscore the challenge of predicting sand content, which 
may be influenced by more complex factors beyond spatial 
patterns. The superior performance of the k-NN model can 
be attributed to its effective capture of local spatial patterns, 
which is particularly advantageous in the presence of a strong 

Table 3  Descriptive statistics of soil properties included in the study

Min Minimum value, Max Maximum value, CV Coefficient of Vari-
ation.

Property Unit Min Max Mean CV (%)

Clay % 1.70 22.96 15.02 39.60
Silt % 19.37 62.70 38.62 30.54
Sand % 25.30 71.35 46.37 21.12
Soil pH 4.68 7.00 5.48 19.12
CEC cmol  kg−1 0.81 24.10 10.64 41.61
AK cmol  kg−1 0.03 3.51 0.37 119.60
TN % 0.02 0.65 0.20 55.90
SOM % 0.28 9.08 3.34 51.56
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spatial autocorrelation, and its non-parametric nature, mak-
ing it well-suited for soil texture predictions. Nevertheless, 
like clay, our results differ from those reported by Kasraei 
et al. (2021) in terms of the effectiveness of the kNN model 
for soil particle size predictions.

Regarding pH and CEC predictions, it's noteworthy that 
these properties showed different model performance charac-
teristics. RF model exhibited the highest  R2 and CCC values for 
pH, with a  R2 of 0.06 and CCC of 0.19. These values indicate 
a relatively low accuracy in predicting pH, which is consistent 
with the intrinsic variability of pH in soil. The  R2 and CCC of 
the SVM model for pH were 0.15 and 0.15, respectively, show-
casing a slightly better variability explanation than RF. Addi-
tionally, the  R2 values for all models are relatively low, indicat-
ing that none of the models can explain more than 20% of the 
spatial variability in soil pH. Similar results were obtained by 

Kasraei et al. (2021) for predicting soil pH. On the other hand, 
for CEC, RF emerged as the top-performing model, achieving a 
 R2 of 0.73 and a CCC of 0.61. This strong performance can be 
attributed to the ability of RF to capture complex relationships 
in the data, which may be more prominent in CEC variations. 
Similar results were found by Zeraatpisheh et al. (2019), where 
they identified RF as the top-performing model for predicting 
CEC in Iranian soils. Cubist also performed well, with a  R2 
of 0.56 and CCC of 0.60 for CEC, showcasing its capacity to 
model the non-linear nature of this property.

In the prediction of AK (cmol  kg−1) levels, the Cubist 
model demonstrated the highest performance among the 
models, achieving a CCC of 0.21. This implies a moderate 
level of accuracy in forecasting K content. RF and SVM 
closely trails behind with a CCC of 0.21 and 0.20, indicat-
ing a comparable degree of precision. Sharififar (2022) also 

Table 4  Validation criteria 
for predicting soil properties 
in calibration and validation 
datasets from best to worst 
performance. The most accurate 
method highlighted in bold

Calibration Validation

Property Unit Model R2 CCC RMSE R2 CCC RMSE

Clay % kNN 0.44 0.56 4.50 0.74 0.61 2.82
Cubist 0.87 0.88 2.09 0.61 0.55 3.08
RF 0.85 0.86 2.55 0.63 0.48 3.85
SVM 0.77 0.81 2.63 0.35 0.39 3.81

Silt kNN 0.53 0.65 8.17 0.75 0.63 5.65
RF 0.88 0.87 4.81 0.78 0.57 5.61
Cubist 0.82 0.88 5.15 0.45 0.41 7.23
SVM 0.58 0.64 7.51 0.47 0.40 6.92

Sand kNN 0.41 0.54 7.85 0.23 0.30 5.33
SVM 0.53 0.56 6.81 0.31 0.27 4.39
Cubist 0.64 0.75 6.11 0.20 0.26 5.24
RF 0.79 0.79 5.25 0.22 0.20 4.77

Soil pH RF 0.68 0.51 0.79 0.06 0.19 0.55
SVM 0.21 0.13 1.03 0.15 0.15 0.47
kNN 0.10 0.16 1.04 0.06 0.13 0.51
Cubist 0.60 0.64 0.64 0.05 0.08 0.52

CEC cmol  kg−1 RF 0.78 0.79 2.33 0.73 0.61 2.32
Cubist 0.61 0.72 2.83 0.56 0.60 2.79
SVM 0.46 0.52 3.26 0.58 0.53 2.35
kNN 0.24 0.39 3.93 0.03 0.11 4.65

AK Cubist 0.43 0.51 0.32 0.16 0.21 0.21
RF 0.55 0.54 0.33 0.10 0.21 0.22
kNN 0.12 0.22 0.43 0.07 0.20 0.22
SVM 0.32 0.37 0.40 0.06 0.16 0.23

TN % RF 0.66 0.70 0.06 0.64 0.49 0.12
Cubist 0.51 0.63 0.07 0.56 0.44 0.14
kNN 0.29 0.45 0.08 0.44 0.32 0.15
SVM 0.54 0.61 0.07 0.33 0.26 0.16

SOM SVM 0.44 0.45 1.38 0.16 0.26 0.87
kNN 0.20 0.32 1.60 0.10 0.23 0.99
RF 0.76 0.75 0.97 0.08 0.19 1.23
Cubist 0.71 0.81 0.95 0.01 0.06 1.94
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found that Cubist, RF, and SVM exhibited similar accuracy 
in predicting K content in Australian soils. On the other 
hand, RF exhibited the best performance in predicting TN 
(%)with a CCC value of 0.49, indicating a relatively strong 
ability to predict N levels. Cubist also delivered commend-
able performance with a CCC of 0.44, suggesting solid accu-
racy. Furthermore, both models explain more than 50% of 
the spatial variability with R2 values of 0.64 and 0.56. These 
results align with those obtained by Parsaie et al. (2021), 
where RF and Cubist outperformed other models in predict-
ing nitrogen content in the topsoil.

The prediction of SOM (%) content posed a particular 
challenge due to its intricate nature. Among the models, SVM 
model exhibited the most robust performance, with an  R2 of 
0.16 and a CCC of 0.26. These results suggest that the SVM 
model could capture a portion of the spatial variability in SOM 
content, which often reflects complex organic matter distribu-
tion patterns influenced by vegetation cover, land management 
practices, and soil formation processes (Forkuor et al. 2017; 
Khlosi et al. 2016). Similarly, Morellos et al. (2016) also found 
that SVM provided the best performance in predicting soil 

organic carbon. However, it's important to note that the rela-
tively low performance metrics indicate the inherent difficulty 
in predicting SOM content accurately. The substantial vari-
ability in SOM levels, as indicated by a CV of 51.56%, under-
scores the heterogeneity of organic matter distribution within 
the study area and in other studies carried out in similar envi-
ronments (Andivia et al. 2015). This heterogeneity arises from 
factors like land use history and localized inputs of organic 
material, making SOM a complex property to predict spatially.

Prediction maps of soil properties 
and environmental covariates importance

The maps generated by the models with the highest perfor-
mance for each of the study soil properties are presented in 
Fig. 2. However, predictive maps for each soil property using 
the models employed are provided in the Appendix section, 
specifically in Figs. 6-13.

The kNN model, excelling in predicting clay, silt, and sand 
content, uncovers distinct spatial patterns. Clay accumulates 
in lower valleys, silt in mid-slope areas, and sand dominates 

Fig. 2  Maps produced by the models with the best performance for each study property
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higher regions, influenced by topography. This spatial pattern 
could be attributed to the dynamics of soil particle size trans-
port and sedimentation influenced by topographic factors, as 
demonstrated in previous studies (Gallant & Dowling 2003). 
Topographic indices like the topographic roughness index 
(TRI) and valley depth play crucial roles, as shown in Fig. 3. 
Previous studies also stress their significance (Mishra et al. 
2009; Zeraatpisheh et al. 2019). On the other hand, covari-
ate importance for each soil property and predictive model is 
presented in the Appendix section, in Figs. 14 and 15.

In terms of predicted values, all models, except Cubist, 
tend to overestimate minimum values and underestimate 
maximum values when compared to descriptive statistics 
(Table 3). This suggests that models perform well in capturing 
mid-range spatial variability but struggle with extreme values. 
This trend should be considered when interpreting predictive 
maps, especially in areas with wide soil property value ranges.

The soil pH predictive map, generated using the RF 
model, reveals higher pH values around channels and in the 
upper catchment areas. The mean predicted pH value (5.51) 
shows minimal variation compared to other models (Table 5), 
confirming the prevalent acidic nature of Extremadura's 
rangeland soils, as reported previously (Ceballos & Schnabel 
1998). Topographic attributes, such as altitude and maximum 
curvature, are significant drivers of soil pH variation, align-
ing with earlier research (Mosleh et al. 2016). This under-
scores the role of land surface features in shaping soil pH 
levels. Similarly, the CEC predictive map generated by the 

RF model exhibits patterns resembling soil pH, with higher 
values in depressed catchment areas. However, it tends to 
overestimate minimum values (5.17 cmol kg-1) while under-
estimating maximum and mean values (17.26 and 9.92 cmol 
kg-1, respectively) compared to dataset values (Table 3). 
The importance of covariates in predicting CEC highlights 
topographic attributes like altitude, TPI (Topographic Posi-
tion Index), and valley depth as influential factors. Previous 
research consistently shows the strong correlation between 
these topographic attributes and soil CEC, explaining a sub-
stantial portion of its spatial variability (Khaledian et al. 
2017). The models' tendency to overestimate minimum and 
underestimate maximum values for both pH and CEC sug-
gests their effectiveness in capturing mid-range variability 
while encountering challenges with extreme values.

For soil available potassium (AK) prediction, the Cub-
ist model outperformed others with a range of 0.04 to 1.61 
(Table 5). While the mean values closely match the dataset, 
Cubist exhibits a wider variability range in soil AK, suggest-
ing its ability to capture diverse patterns in the study area. 
Terrain convexity emerges as the primary factor influencing 
K distribution (Figs. 2 and 3), impacting water flow and AK, 
as shown by Bui et al. (2019) and Arabameri et al. (2019).

Regarding total nitrogen (TN) prediction, the RF model 
produced values ranging from 0.10 to 0.33, deviating from 
dataset values of 0.02 to 0.65 (Table 5). Despite slight dif-
ferences in minimum and maximum values across mod-
els, mean values remain consistent. Higher TN values 

Fig. 3  Importance of environmental covariates in predicting the different soil properties using the model with the best performance
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concentrate in valleys' bottoms, while lower values occur in 
flow areas and steep slopes. Topographic indices like TRI, 
aspect, slope, and altitude (Fig. 3) play crucial roles in pre-
dicting soil TN, reflecting landscape features that influence 
nutrient dynamics. Luizão et al. (2004) and Hawthorne and 
Miniat (2018) have previously illustrated how these attrib-
utes affect water retention, drainage patterns, and microbial 
activity, ultimately influencing TN availability.

For soil organic matter (SOM) content, the SVM model 
predicted values ranging from 1.39% (minimum) to 5.19% 
(maximum), with an average of approximately 2.92% 
(Table 5). These predictions differ from the initial dataset 
values, which ranged from 0.28% to 9.08%, averaging 3.34% 
(Table 3). SVM tends to provide higher predictions for SOM. 

The predicted maps highlight higher SOM values in valley 
bottoms and flatter areas, with key variables being analyti-
cal hillshading, valley depth, altitude, and convexity. These 
terrain attributes capture topographic and geomorphological 
characteristics influencing SOM distribution and accumu-
lation (Adhikari et al. 2018; Guo et al. 2019; Taghizadeh-
Mehrjardi et al. 2016). For example, analytical hillshading 
reflects local slope and orientation, impacting microclimates, 
soil moisture, and organic matter decomposition rates (Guo 
et al. 2019). Valley depth indicates landscape morphology, 
affecting water and organic matter retention in lower-altitude 
areas, influencing SOM content. High convexity or concavity 
areas alter water flow dynamics, nutrient distribution, and 
subsequently, SOM content (Mahmoudzadeh et al. 2020).

Table 5  Descriptive statistics 
for soil properties prediction 
and 90% prediction interval by 
predictive model

In bold, the best-performing model
Min Minimum value, Max Maximum value, SD Standard Deviation.

Soil property Unit Model Soil Prediction Maps 90% Prediction Interval Maps

Min Max Mean SD Min Max Mean SD

Clay % kNN 8.96 21.31 12.47 2.34 9.58 9.85 9.65 0.05
Cubist 2.15 23.54 12.47 3.82 10.23 12.14 10.61 0.24
RF 6.90 21.27 12.22 2.03 12.81 13.06 12.91 0.04
SVM 5.04 21.93 12.32 2.43 12.80 17.06 12.91 0.11

Silt % kNN 26.25 51.50 43.50 4.98 19.49 20.45 19.73 0.08
RF 25.95 56.04 42.95 3.69 18.80 19.11 18.99 0.04
Cubist 20.97 75.44 44.02 6.36 24.16 25.76 24.41 0.13
SVM 25.92 57.43 41.72 3.72 23.49 27.77 23.77 0.22

Sand % kNN 32.32 55.89 44.76 5.22 18.08 18.88 18.22 0.13
SVM 34.76 61.56 46.23 3.15 15.31 19.07 15.58 0.23
Cubist 17.45 74.22 43.63 7.04 17.49 18.22 17.81 0.09
RF 30.82 59.72 44.42 3.97 16.14 16.72 16.33 0.07

pH RF 4.95 7.80 5.51 0.18 2.36 2.68 2.41 0.02
SVM 5.07 5.89 5.37 0.06 2.19 2.58 2.19 0.01
kNN 5.02 6.16 5.58 0.21 2.25 2.37 2.30 0.02
Cubist 5.11 6.56 5.41 0.26 2.31 2.46 2.33 0.03

CEC cmol  kg−1 RF 5.17 17.26 9.92 1.11 7.51 7.94 7.68 0.03
Cubist 2.07 18.71 9.81 1.81 9.31 10.17 9.52 0.06
SVM 6.32 14.22 9.31 1.04 8.02 8.56 8.13 0.04
kNN 7.49 14.33 10.34 2.01 15.42 15.54 15.47 0.03

AK cmol  kg−1 Cubist 0.04 1.61 0.32 0.19 0.71 1.70 0.80 0.07
RF 0.16 1.19 0.33 0.14 0.76 1.01 0.82 0.04
kNN 0.17 0.65 0.40 0.17 0.79 0.92 0.85 0.05
SVM -0.35 1.34 0.28 0.14 0.77 0.96 0.82 0.03

TN % RF 0.10 0.34 0.16 0.03 0.47 0.56 0.50 0.01
Cubist 0.01 0.44 0.16 0.05 0.45 0.64 0.53 0.02
kNN 0.13 0.29 0.16 0.03 0.55 0.60 0.56 0.01
SVM 0.04 0.31 0.16 0.03 0.58 0.62 0.59 0.01

SOM % SVM 1.39 5.19 2.92 0.44 2.86 5.76 3.29 0.11
kNN 2.19 4.95 3.05 0.30 3.39 3.70 3.49 0.03
RF 1.53 6.54 3.12 0.53 4.26 4.69 4.36 0.04
Cubist 0.66 9.17 3.24 0.93 6.43 6.77 6.53 0.04
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The analysis of variable importance (Fig. 3) underscores 
the dominance of topographic and geomorphological attrib-
utes over remote sensing data in model generation, following 
variable selection with the Boruta algorithm. These attributes 
exhibit greater influence, particularly at smaller scales, in 
capturing subtle landscape variations. While remote sensing 
data, such as satellite imagery, offer valuable insights at larger 
scales, they may struggle to detect microtopographic features, 
especially in regions with intricate surface heterogeneities 
(Cresto Aleina et al. 2015). To address the spatial variability of 
small-scale soil processes effectively, consideration of higher-
resolution spatial information, including vegetation indices, 
becomes crucial. This finer-grained data allows for a more 
comprehensive characterization of the landscape's influence on 
soil properties, with previous studies highlighting the intricate 
connection between small-scale soil parameter variability and 
geological, climatic, and biological processes, with vegetation 
playing a significant role (Agam et al. 2007; Isermann 2005).

Additionally, the implementation of the Boruta algorithm 
significantly reduces the number of variables in the models, 
streamlining model complexity while preserving predictive 
accuracy. For example, the variable count for clay content 

decreased from 23 to 10, and for pH and AK, it reduced to 
4. This highlights the importance of the selected attributes 
in achieving accurate predictions.

Uncertainty estimation and assessment

Uncertainty maps for each soil property were generated with a 
90% prediction interval (Fig. 4), and the quality of uncertainty 
was assessed using PCIP plots (Fig. 5). Detailed uncertainty 
maps and plots for each property and model are available in 
the Appendix (Figs. 16-25). Generally, uncertainty values cor-
respond to the spatial patterns in the predicted maps, with higher 
uncertainty in areas with elevated property values and lower 
uncertainty in regions with lower values. Areas with higher 
property content often involve more complex interactions and 
factors, posing challenges for prediction models. These high-
uncertainty zones require additional attention, data collection, 
and model refinement to enhance the reliability of predicted 
maps. Variations in uncertainty maps exist among different 
models, with relatively consistent prediction intervals across soil 
properties. However, differences in interval widths are observed 
(Table 5). Notably, Cubist exhibits a broader range between the 

Fig. 4  Uncertainty maps displaying the 90% prediction interval using the best-performing model for each studied soil property
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minimum and maximum values for potassium uncertainty (0.71 
to 1.70 cmol  kg−1). SVM stands out with a substantial range of 
2.90% for SOM uncertainty, reflected in a high standard devia-
tion (SD) value of 0.11, the highest among the models. These 
differences in uncertainty estimation highlight the variability in 
model performance and emphasize the importance of selecting 
an appropriate model for specific soil properties.

The assessment of uncertainty quality, evaluated through 
Percent Interval Prediction (PCIP) plots (Fig. 5), demonstrates 
a generally consistent trend across all models. As model accu-
racy improves, there is a noticeable enhancement in fitting. 
However, it's noteworthy that for percentiles above 80%, the 
models tend to adopt a moderately conservative approach. 
Around 87.5% of actual observations fall within the prediction 
intervals at these confidence levels, reflecting a reliable abil-
ity to quantify uncertainty while erring on the side of caution. 
An intriguing shift occurs at the 60% percentile, where mod-
els exhibit a slightly lower rate of real observations within the 
intervals, approximately 75%. This indicates that models are 
more accurate and less conservative in this confidence range, 
suggesting increased reliability in their predictions. However, 
as percentiles decrease towards 60% and below, the models 
indicate growing uncertainty and imprecision in their estimates.

Conclusions

In conclusion, this study represents a valuable effort in 
unraveling the intricate spatial dynamics of eight pivotal soil 
properties within a grazed small catchment nestled within 

the agroforestry system known as 'dehesas' in the region of 
Extremadura, Spain. The analysis has unveiled a rich tapestry 
of spatial variability in these properties, shedding light on 
the complex interplay of factors shaping soil characteristics 
in this environment. This innovative approach underscores 
the paramount importance of comprehending these spatial 
intricacies for the purpose of reasonable and sustainable land 
management practices.

The machine learning algorithms employed exhibited 
varying levels of performance. k-Nearest Neighbors (kNN) 
performed exceptionally well in predicting soil particle size 
(clay, silt, and sand) due to its capacity to capture local spatial 
patterns effectively, which is advantageous in the presence 
of strong spatial autocorrelation in these properties. On the 
other hand, Random Forest (RF) models outperformed others 
in predicting soil pH, Cation Exchange Capacity (CEC), and 
nitrogen content, thanks to their ability to capture complex 
relationships in the data. For these properties, RF's capacity 
to handle intricate patterns proved beneficial.

Cubist emerged as the top performer for predicting available 
potassium (AK), and Support Vector Machine (SVM) dem-
onstrated superior accuracy in predicting Soil Organic Matter 
(SOM) content. Challenges were observed in predicting certain 
properties, such as sand content, soil pH, potassium, and SOM, 
particularly in capturing extreme values. These challenges 
highlight the complexity of these properties and the need for 
further research and data collection in these areas.

The low variability observed in soil properties such as 
pH and texture composition in this study can be attributed 
to the specific characteristics of the study area, which is 

Fig. 5  Prediction interval coverage probability (PICP) plots for uncertainty estimates of soil properties analyzed using the best-performing model
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characterized by 'dehesas' in Extremadura, Spain. These 
agroforestry systems often have relatively homogeneous 
environmental conditions, including similar land use prac-
tices, common parent material (sandstones and granites), 
and similar regional climate patterns. This may explain the 
limited range of values for certain soil properties.

Regarding the suitability of a lower or higher CV% for 
predictive models, it depends on the specific objectives and 
context of the study. A lower CV% indicates less variability 
in the data, which can be advantageous in predictive mod-
eling when the goal is to achieve more precise and accurate 
predictions. In such cases, models can perform well because 
there is less variation to account for, leading to more stable 
predictions. This is especially true for properties like pH, 
where relatively consistent values can be expected in specific 
environments. On the other hand, a higher CV% suggests 
greater variability in the data, which can be challenging for 
predictive models. However, higher variability could also be 

a characteristic of certain properties in diverse landscapes, 
reflecting the complexity of soil processes. In such cases, 
models need to be robust and capable of accurately capturing 
a wide range of values.

Environmental covariates, particularly topographic and 
geomorphological attributes, played a significant role in 
model generation. The Boruta algorithm's variable selec-
tion helped streamline model complexity by reducing the 
number of variables, emphasizing the importance of these 
selected attributes. Uncertainty assessment revealed that 
models effectively quantify uncertainty, with their degree 
of conservatism varying with confidence levels. Models 
exhibited greater accuracy at intermediate confidence lev-
els and a more cautious approach at higher percentiles. 
This comprehensive analysis advances our understanding 
of soil property prediction, highlighting the importance of 
selecting appropriate models based on the specific proper-
ties of interest and the underlying spatial patterns.

Appendix Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25.

Fig. 6  Predictive maps of clay content (%) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 7  Predictive maps of silt content (%) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)

Fig. 8  Predictive maps of sand content (%) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 9  Predictive maps of soil pH using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)

Fig. 10  Predictive maps of Cation Exchange Capacity (CEC) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector 
Machines (SVM)
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Fig. 11  Predictive maps of AK (cmol  kg−1) content using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)

Fig. 12  Predictive maps of TN (%) content using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 13  Predictive maps of SOM (%) content using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines 
(SVM)
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Fig. 14  Importance of environmental covariates used to predict clay, silt, sand, and soil pH (pH) content with k-Nearest Neighbor (kNN), Cubist, 
Random Forest (RF), and Support Vector Machine (SVM)
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Fig. 15  Importance of environmental covariates used to predict Cation Exchange Capacity (CEC), AK (cmol  kg−1), TN (%), and SOM (%) con-
tent with k-Nearest Neighbor (kNN), Cubist, Random Forest (RF), and Support Vector Machine (SVM)
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Fig. 16  Uncertainty maps of clay content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random For-
est (RF), and Support Vector Machines (SVM)

Fig. 17  Uncertainty maps of silt content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random Forest 
(RF), and Support Vector Machines (SVM)
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Fig. 18  Uncertainty maps of sand content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random For-
est (RF), and Support Vector Machines (SVM)

Fig. 19  Uncertainty maps of soil pH showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random Forest 
(RF), and Support Vector Machines (SVM)
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Fig. 20  Uncertainty maps of Cation Exchange Capacity (CEC) showing the 90% prediction interval generated using kNN (k-nearest Neighbor), 
Cubist, Random Forest (RF), and Support Vector Machines (SVM)

Fig. 21  Uncertainty maps of soil AK (cmol  kg−1) content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cub-
ist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 22  Uncertainty maps of soil TN (%) content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Ran-
dom Forest (RF), and Support Vector Machines (SVM)

Fig. 23  Uncertainty maps of SOM (%) content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random 
Forest (RF), and Support Vector Machines (SVM)
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Fig. 24  Prediction interval coverage probability (PICP) plots of clay, silt, sand, and soil pH using kNN (k-nearest Neighbor), Cubist, Random 
Forest (RF), and Support Vector Machines (SVM)
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Fig. 25  Prediction interval coverage probability (PICP) plots of Cation Exchange Capacity (CEC), AK (cmol  kg−1), TN (%), and SOM (%) con-
tent using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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