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Abstract

Acquiring comprehensive insights into soil properties at various spatial scales is paramount for effective land management, espe-
cially within small catchment areas that often serve as vital pastured landscapes. These regions, characterized by the intricate
interplay of agroforestry systems and livestock grazing, face a pressing challenge: mitigating soil degradation while optimizing
land productivity. This study aimed to analyze the spatial distribution of eight topsoil (0-5 cm) properties (clay, silt, sand, pH,
cation exchange capacity, available potassium, total nitrogen, and soil organic matter) in a small grazed catchment. Four machine
learning algorithms—Random Forest (RF), Support Vector Machines (SVM), Cubist, and K-Nearest Neighbors (KNN)—were
used. The Boruta algorithm was employed to reduce the dimensionality of environmental covariates. The model’s accuracy was
assessed using the Concordance Correlation Coefficient (CCC) and Root Mean Square Error (RMSE). Additionally, uncertainty
in predicted maps was quantified and assessed. The results revealed variations in predictive model performance for soil properties.
Specifically, KNN excelled for clay, silt, and sand content, while RF performed well for soil pH, CEC, and TN. Cubist and SVM
achieved accuracy in predicting AK and SOM, respectively. Clay, silt, CEC, and TN yielded favourable predictions, closely align-
ing with observations. Conversely, sand content, soil pH, AK, and SOM predictions were slightly less accurate, highlighting areas
for improvement. Boruta algorithm streamlined covariate selection, reducing 23 covariates to 10 for clay and 4 for soil pH and AK
prediction, enhancing model efficiency. Our study revealed spatial uncertainty patterns mirroring property distributions, with higher
uncertainty in areas with elevated content. Model accuracy varied by confidence levels, performing best at intermediate levels
and showing increased uncertainty at extremes. These findings offer insights into model capabilities and guide future research in
soil property prediction. In conclusion, these results urge more research in small watersheds for soil and territorial management.

Keywords Environmental covariate reduction - Predictive modelling - Spatial variability - Uncertainty assessment

Introduction

Catchments play a vital role in assessing various physical
and biological ecosystem processes and variables. These
hydrological catchments provide a comprehensive context
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within which numerous distinct ecological and hydrological
processes operate at local scales (Feng et al. 2013). Among
the many process-influencing as well as context-related envi-
ronmental factors, the soil properties can exhibit consider-
able variation within catchments, influenced by factors such
as land use, topography, and geology (Terefe et al. 2020).
Understanding the distribution of soil properties over these
areas is crucial for effective land management and decision-
making. Accurately mapping soil properties in small catch-
ments is, hence, vital for addressing localized environmental
challenges, designing appropriate land management strate-
gies, and promoting sustainable land use practices (Tang
et al. 2015). Soil mapping at small catchment scales can
provide valuable information when assessing soil health,
erosion-prone areas, nutrient leaching or runoff potential,
as some of the many issues of interest at these spatial scales
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(Altaf et al. 2014; Khosravi Aqdam et al. 2022; Pulleman
et al. 2000).

Nowadays, harnessing the power of machine learning
is pivotal for precise soil property mapping across vari-
ous scales. These innovative techniques, as exemplified by
Adeniyi et al. (2023), have become indispensable tools. By
maximizing the use of collected data, these techniques enable
the analysis of complex and non-linear patterns, as those of the
soil properties and many other environmental-related aspects,
that would otherwise be challenging to assess (Forkuor et al.
2017; Hastie et al. 2009). Machine learning allows for the
efficient processing of large volumes of geospatial data, such
as satellite imagery and topographic data, by integrating them
with existing field data (Poggio et al. 2021). This integration
facilitates accurate and detailed analysis of the influences of
multiple factors on soil properties and identify complex corre-
lations and relationships between variables, thereby enhancing
the modeling capabilities and improving the accuracy of the
resulting maps (Beguin et al. 2017; Khaledian & Miller 2020).
Some of the most used algorithms for mapping soil proper-
ties, such as soil organic carbon stocks (Mishra et al. 2020),
hydraulic conductivity (Araya & Ghezzehei 2019), pH (Xiao
et al. 2023), or soil aggregate stability (Bouslihim et al. 2021),
include regression trees, cubist, random forest (RF), gradient
boosting machines (GBM), multivariate adaptive regression
splines (MARS), and support vector machines (SVM). These
machine learning algorithms have proven to be useful in pre-
dictive soil mapping and have been applied in various studies
(Padarian et al. 2019).

However, it's imperative to quantify the uncertainty inher-
ent in soil maps, as highlighted by Ramcharan et al. (2018)
and Wadoux et al. (2020). When it comes to this topic, it's
worth noting that not all machine learning algorithms pro-
vide built-in mechanisms for uncertainty quantification.
Only select algorithms, such as the quantile regression for-
est (QRF) method (Poggio et al. 2021), offer uncertainty
quantification. In such cases, complementary techniques
like bootstrapping become indispensable. Bootstrapping, a
statistical resampling method, offers a robust approach to
estimate uncertainty in the context of machine learning algo-
rithms. Bootstrapping offers accurate results without making
assumptions about data distribution and allows flexibility
for different data types and models, providing estimation in
confidence intervals despite its computational cost for large
datasets (Malone et al. 2017; Szatmari & Pasztor 2019).

Despite the abundance of published literature and the
growing use of machine learning algorithms for soil prop-
erty mapping at different scales (Behrens et al. 2018), there
is still a lack of knowledge on the spatial distribution of soil
properties for certain areas at near-detail scales, such as the
small catchments. This is particularly noteworthy for environ-
mental contexts, as those of the Mediterranean catchments,
where different pressures, including climate change, are
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leading changes in land use and management, fostering soil
degradation and, therefore, compromising the sustainability
and resilience of the whole soil system (Montanarella et al.
2016). Therefore, even when studies exist that focuses on soil
property mapping, as soil thickness assessed in agricultural
catchments (Li et al. 2017), CO, emissions over large catch-
ments (Bailey et al. 2009), or soil erosion quantification (Fitria
& Kurniawan 2021; Wang et al. 2022); the cartography of soil
properties at the scale of small catchments in the Mediterra-
nean region has received limited attention, despite its signifi-
cant importance. So far, several studies have been carried out
in the catchments located within agroforestry areas of Extrem-
adura. These studies have focused on examining the spatial
distribution of soil moisture and, more importantly, investigat-
ing the soil degradation issues that these environments suffer
from due to inadequate soil management practices (Alfonso-
Torrefio et al. 2021; Gémez Gutiérrez et al. 2009; Lavado
Contador et al. 2006). This situation underscores the urgent
need to acquire a more profound insight into the spatial dis-
tribution of soil properties in these degraded environments
and to better comprehend the environmental determinants
influencing their distribution. However, it is worth noting that
previous research addressing the spatial distribution of other
soil properties, such as total nitrogen (TN), P (phosphorus),
available potassium (AK), or SOM (%) (SOM), is currently
limited to a regional level.

The scarcity of research in this area has resulted in a sig-
nificant gap in our understanding of the spatial distribution
and variability of soils within this specific context. Consid-
ering the critical role of soils in Mediterranean ecosystems
and their profound influence on the sustainability of agro-
silvopastoral systems, which are particularly abundant in the
southern Mediterranean region, there is a pressing need for
obtaining accurate and detailed soil property maps in these
areas. In regions such as Extremadura, a substantial part of
the regional surface is occupied by small agroforestry catch-
ments with livestock farming, which is also a common feature
in various other Mediterranean countries. Understanding the
spatial behavior of soil properties in these intricate and eco-
logically significant environments is paramount for address-
ing soil conservation, enhancing productivity, and developing
tailored management strategies that promote sustainability.

Given the limited research conducted in the mentioned
agroforestry systems, especially regarding detailed soil prop-
erty mapping at the scale of small catchments, this study
represents a valuable effort to bridge this significant knowl-
edge gap. It aims to provide comprehensive maps of eight
essential soil properties within the topsoil layer (0-5 cm) in
a specific study area encompassing a small catchment within
an agroforestry system situated in Extremadura, Spain.
To achieve this, four distinct and state-of-the-art machine
learning algorithms, namely k-Nearest Neighbors (KNN),
Random Forest (RF), Cubist, and Support Vector Machines
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(SVM), were deployed. The specific objectives of the study
were: a) to evaluate the accuracy of each of the proposed
machine learning algorithms in predicting soil properties,
b) to quantify the uncertainty associated with the predictive
maps, and c) to identify the key environmental covariates
influencing the predicted models.

Materials and methods

Study area, soil survey and environmental covariate
analysis

This study was conducted in a small catchment located in
the southwestern region of Spain known as Extremadura
(Fig. 1a). The catchment belongs to the agroforestry system
called "dehesa" (Fig. 1b-1c). Both the catchment and the entire
farm follow a livestock approach under a conventional manage-
ment system, without designed rotation plans and with high
livestock stocking rates (1.59 Animal Units ha™") (Pulido et al.
2018). The catchment covers a total area of 99.5 hectares and
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exhibits typical topographic characteristics of the Trujillano-
Cacerefia Peneplain where it is located. The average slope is
8%, although the valley bottoms can be completely flat, while
the steeper slopes can reach a 12% slope. The predominant soils
are classified as Cambisols and Leptosols, with some Regosols
found in the valley bottoms (IUSS Working Group WRB 2015).
These soils are generally shallow and have low nutrient and
organic matter concentrations. The prevailing climate in this
area is Mediterranean continentalized (Csa) (Peel et al. 2007),
characterized by mild winters with average temperatures above
0 °C and hot summers with average temperatures above 22 °C.
The average annual temperature is 16 °C. Rainfall is scarce
and mainly concentrated in autumn and spring, with an average
annual rainfall in this catchment of 513 mm.

The soil properties considered for mapping were clay, silt,
sand percentage (%) pH, CEC (cmol kg'l), AK (cmol kg'l),
TN (%), and soil organic matter (SOM). A comprehensive
representation of the catchment heterogeneity was ensured
through simple field random sampling by a man. These sam-
ples were subsequently transported to the laboratory, where
they underwent meticulous analysis following the processes
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Fig. 1 Location of the Extremadura region within the Iberian Peninsula (a). Study area and sampling points (b) and photography of the catch-

ment (c)
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of drying and sieving. In line with prior research, sampling
was specifically carried out within the 0—5 cm depth interval.
Other studies in the shallow soils of Extremadura's range-
lands have consistently revealed that this top layer (0-5 cm)
holds the highest concentration of essential nutrients (Pulido
et al. 2018). Therefore, focusing on this interval is para-
mount for capturing changes influenced by factors such as
tillage, fertilizer application, or crop rotation. The total num-
ber of soil samples for topsoil layer was 80.

In this study, 23 environmental covariates were calcu-
lated for the digital mapping of different soil properties
(Table 1). Using the digital elevation model (DEM) and
satellite images, 19 geomorphological indices and 3 veg-
etation indices were computed. The DEM was downloaded
from the National Center of Geographic Information (https://
centrodedescargas.cnig.es/) with a spatial resolution of 5 m
x 5 m. The SAGA (System for Automated Geoscientific
Analyses) software (Gerstoft 2001) was then used to calcu-
late various topographic and geomorphological parameters.
Sentinel satellite images (Level-2A product) were utilized
for the calculation of vegetation indices, and the Google
Earth Engine platform was employed for data processing.
The mean values of the Normalized Difference Vegetation
Index (NDVI), Soil-adjusted Vegetation Index (SAVI), and
Enhanced vegetation index (EVI) for the past 5 years were
calculated for the study area. Additionally, to harmonize the

spatial resolution with other variables for seamless integra-
tion into the digital mapping of soil properties, the satel-
lite image underwent resampling using the ArcGIS Pro's
resample tool. It's essential to note that while this resam-
pling operation did not introduce additional information, it
ensured that all variables shared the same spatial resolution,
a critical requirement for the mapping process.

Covariates selection process

Before executing the predictive models, a preliminary envi-
ronmental covariates selection process was conducted using
the Boruta algorithm implemented with the Boruta package
in R (Kursa & Rudnicki 2010). This algorithm is particu-
larly well-suited for feature selection in predictive modeling
tasks. Boruta operates by comparing the importance of each
predictor variable to that of a shadow variable, essentially a
randomized version of the original variable. Variables that
significantly outperform their shadow counterparts in terms
of predictive power are retained, while those that do not
meet this criterion are discarded. This approach not only
ensures that only the most informative covariates, those
that genuinely contribute to predicting the target property,
are included in the subsequent modeling process but also
indirectly helps mitigate multicollinearity by eliminating
redundant or highly correlated variables.

Table 1 List of environmental Environmental Covariates

Abbreviation Data source

covariates used in the predictive
models Altitude

Aspect

Slope

Profile Curvature
Plan Curvature
Maximum Curvature

Minimum Curvature

Multiresolution Index of Valley Bottom Flatness
Multiresolution Index of Ridge Top Flatness

LS Factor

Terrain Ruggedness Index
Valley Depth

Topographic Wetness Index
Topographic Position Index
Total Catchment Area
Relative Slope Position
Convexity

Convergence Index
Channel Network Distance
Analytical Hillshading

Normalized Difference Vegetation Index

Soil-adjusted Vegetation Index
Enhanced Vegetation Index

Altitude DEM
Aspect DEM
Slope DEM
Profile Curvature DEM
Plan Curvature DEM
Maximum Curvature DEM
Minimum Curvature DEM
MRVBF DEM
MRRTF DEM
LS Factor DEM
TRI DEM
Valley Depth DEM
TWI DEM
TPI DEM
TCA DEM
RSP DEM
Convexity DEM
Convergence Index DEM
CND DEM
AH DEM
NDVI Sentinel-2A
SAVI Sentinel-2A
EVI Sentinel-2A
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Statistical analysis

Statistical parameters like minimum, maximum, mean,
and standard deviation were employed to characterize the
available dataset for spatial analysis of the study properties.
The computations were conducted using RStudio software.
Likewise, ArcGIS Pro software was used to calculate the
statistical parameters for the various final maps generated
for each property.

Machine learning models

Four widely known machine learning algorithms, namely
Random Forest (RF), Support Vector Machines (SVM),
Cubist, and k-Nearest Neighbors (kNN), were utilized in this
study to spatially predict eight soil properties. The selection
of these algorithms was based on their effectiveness with
small datasets. RF mitigates overfitting in small datasets by
employing an ensemble of decision trees. These trees are
constructed based on different subsets of the data, reduc-
ing the risk of overfitting (Aqdam et al. 2022). RF further
enhances its performance by randomly selecting features
at each node, effectively addressing dimensionality issues
in small datasets while prioritizing informative features.
This adaptability enables RF to capture intricate relation-
ships even when working with limited data. SVM leverage
wide margins to identify the hyperplane that optimally sepa-
rates classes while maximizing the margin (Li et al. 2009).
In small datasets, SVM is adept at finding well-separating
hyperplanes without overfitting, making it an excellent choice
for delineating clear class boundaries. Moreover, SVM excels
in low-dimensional spaces, making it effective for datasets
with fewer features. Cubist introduces an advanced modeling
approach well-suited for small datasets. It provides interpret-
able coefficient estimates, facilitating a deeper understanding
of the relationships between predictors and soil properties
(Quinlan 1992). This interpretability is particularly valuable
in scenarios with limited data. kNN, a non-parametric algo-
rithm, does not assume a specific data distribution, making
it flexible and suitable for small datasets that do not meet
the assumptions of other models. Additionally, KNN makes
decisions based on the nearest instances, which can be advan-
tageous in small datasets by leveraging all available informa-
tion and capturing local patterns effectively. All models were
implemented using the caret package in RStudio.

Model deployment and uncertainty quantification

In all the models developed to predict the soil properties
of interest in this study, the dataset underwent a random
division into calibration and validation subsets. The training
subset, constituting 90% of the data, was utilized to con-
struct multiple models through resampling (bootstrap) with

25 iterations (Malone et al. 2017; Sharififar 2022) following
a preliminary covariate selection using the Boruta algorithm.
In this case, 70 samples were assigned to the training set,
while 10 were designated for validation. In each iteration, a
random subset of the training set was sampled with replace-
ment, generating a diverse set of models trained on different
data subsets. This approach effectively addresses the chal-
lenge of limited data availability in small datasets and miti-
gates the risk of overfitting.

Furthermore, a randomized search for optimal hyper-
parameters was performed in each model (Table 2). Each
model was fitted to the prediction formula using a selection
of predictor variables, including vegetation indices, and a
series of topographic and geomorphological parameters.
Additionally, variable importance metrics were employed
to evaluate the relative contribution of each predictor in pre-
dicting each soil property. The importance analysis allowed
for the identification of the most relevant features in the
prediction process and highlighted which topographic, geo-
morphological parameters or vegetation indices significantly
influenced the studied soil properties.

After training the models, their performance was assessed
using key goodness-of-fit metrics, namely the coefficient of
determination (R?), Lin’s concordance correlation coeffi-
cient (CCC), and root mean squared error (RMSE). These
metrics provided a comprehensive evaluation of the models'
fit to both the training and validation datasets, enabling a
robust measurement of accuracy and generalization capabil-
ity. In determining the superior model, the focus was solely
on achieving the highest CCC value and the lowest RMSE
value, thus prioritizing models with the strongest explana-
tory power and the smallest prediction errors.

To quantify the uncertainty in spatial predictions of soil
properties, a multi-step process was employed. Firstly,
predictions of soil properties for the testing dataset were
retained across 25 replications. Subsequently, the standard
deviation of these predictions was calculated, incorporating
the average Generalized Mean Squared Error (GMSE) across
the bootstrapped models. The GMSE represents the overall
variance between the predicted values and the observed val-
ues. The standard deviation was then multiplied by quantiles
of the normal distribution to determine the upper and lower

Table 2 List of environmental covariates used in the predictive mod-

els

Model Abbreviation = Hyperparameters

Random Forest RF mtry, splitrule, min.node.
size

Cubist none committees, neighbors

Support Vector Machine SVM sigma, C

k-nearest neighbor kNN k
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prediction limits for various confidence levels. Specifically,
these limits were calculated as the predicted mean value +z
* standard deviation, where z corresponds to the quantiles.
This approach provided prediction intervals for each confi-
dence level (e.g., 90% confidence level).

To assess the quality of the uncertainty estimates, the pro-
portion of measured soil values falling within these prediction
intervals (referred to as Prediction Interval Coverage Prob-
ability or PICP) was calculated for each confidence level. A
higher PICP indicates better-quality uncertainty estimates.

Results and discussions
Descriptive statistics

The data reveal a relative variability in the soil properties as
present in the descriptive statistics (Table 3) analyzed in this
study. For example, clay content exhibits remarkable vari-
ability, ranging from a minimum of 1.7% to a maximum of
22.96%. This variability underscores the significance of con-
sidering the spatial distribution of clay in the management of
Extremadura's dehesas. Higher clay values can enhance water
and nutrient retention in the soil. This finding aligns with
previous research emphasizing the spatial variability of clay
in various watersheds (Tesfahunegn et al. 2011; Wei et al.
2008). Similarly, the content of silt and sand, though with
different variabilities, plays a crucial role in soil structure
and water infiltration. Silt varies from a minimum of 19.37%
to a maximum of 62.7%, while sand ranges from a mini-
mum of 25.3% to a maximum of 71.35%. Wang et al. (2010)
demonstrated that the granular and less cohesive nature of
sand could lead to a more even distribution in the soil. In
this study, the soil texture (loam) with a higher clay content
slightly differs from the texture found in previous studies
in similar environments where soils were characterized by
higher sand and silt content, resulting in a loamy sand texture
(Pulido-Fernandez et al. 2013; Reyna-Bowen et al. 2020).
The soil pH exhibits a mean value of 5.48 with a CV of
19.12%, indicating relative stability and falling within the
acidity range of soils in this environment due to their par-
ent material primarily composed of sandstones and granites
(Gazol et al. 2021; Schnabel et al. 2013). On the other hand,
CEC content displays a wide range, ranging from 0.81 to 24.1
cmol kg™!, showing significant variability in the soil's ability to
retain and release cations, which may be linked to its relation-
ship with clay content (Saidi et al. 2022; Seybold et al. 2005).
The AK spans a substantial range (0.03 — 3.51 cmol kg-1),
as reflected by the CV (119%), indicating the high variability
of this property in such environments (Pulido et al. 2017).
This behavior may be influenced by historical management
practices, as well as the spatial characteristics of vegetation
and topography. The TN (%) content shows relatively low
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Table 3 Descriptive statistics of soil properties included in the study

Property Unit Min Max Mean CV (%)
Clay % 1.70 22.96 15.02 39.60
Silt % 19.37 62.70 38.62 30.54
Sand % 25.30 71.35 46.37 21.12
Soil pH 4.68 7.00 5.48 19.12
CEC cmol kg™! 0.81 24.10 10.64 41.61
AK cmol kg™! 0.03 3.51 0.37 119.60
TN % 0.02 0.65 0.20 55.90
SOM % 0.28 9.08 3.34 51.56

Min Minimum value, Max Maximum value, CV Coefficient of Vari-
ation.

mean values (0.20%), which is a characteristic situation of
the dehesas soils (Plieninger et al. 2003). Also, the TN (%)
content shows a notable range, with values ranging from
0.02% to 0.65%. The CV for N is 55.9%, suggesting rela-
tively high variability in the distribution of this nutrient. This
could be due to areas of TN (%) accumulation resulting from
animal resting areas or N scarcity on slopes due to leach-
ing processes (Hassan-Vasquez et al. 2022; Lassaletta et al.
2021; Pulido-Fernandez et al. 2013). Regarding SOM (%), it
exhibits moderate mean values (3.34%) for this type of envi-
ronment, suggesting that the soils in this study area have a
certain amount of SOM compared to others in similar systems
(Pulido-Fernandez et al. 2013; Reyna-Bowen et al. 2020).
However, the high CV (51.56%) indicates significant vari-
ability in organic matter concentration, which could influence
soil fertility and water retention capacity (Simon et al. 2013).

Model performances

The evaluation of model performance provides valuable
insights into the predictive capabilities of different machine
learning algorithms for soil properties. In this study, we
assessed four distinct models—KkNN, Cubist, RF, and SVM—
across eight soil properties (Table 4). Among these prop-
erties, clay content emerged as particularly challenging to
predict accurately. However, the kNN model demonstrated
notable success with a CCC value of 0.61, emphasizing its
ability to capture fine-scale variations, especially in clay-rich
regions. Silt content also saw commendable performance
with a CCC of 0.63 by the kNN model, highlighting its
capacity to capture variations in silt distribution. Conversely,
sand content presented more difficulty for all models, with
the kNN model achieving a CCC of 0.30. These findings
underscore the challenge of predicting sand content, which
may be influenced by more complex factors beyond spatial
patterns. The superior performance of the k-NN model can
be attributed to its effective capture of local spatial patterns,
which is particularly advantageous in the presence of a strong
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spatial autocorrelation, and its non-parametric nature, mak-
ing it well-suited for soil texture predictions. Nevertheless,
like clay, our results differ from those reported by Kasraei
et al. (2021) in terms of the effectiveness of the KNN model
for soil particle size predictions.

Regarding pH and CEC predictions, it's noteworthy that
these properties showed different model performance charac-
teristics. RF model exhibited the highest R* and CCC values for
pH, with a R? of 0.06 and CCC of 0.19. These values indicate
arelatively low accuracy in predicting pH, which is consistent
with the intrinsic variability of pH in soil. The R* and CCC of
the SVM model for pH were 0.15 and 0.15, respectively, show-
casing a slightly better variability explanation than RF. Addi-
tionally, the R? values for all models are relatively low, indicat-
ing that none of the models can explain more than 20% of the
spatial variability in soil pH. Similar results were obtained by

Kasraei et al. (2021) for predicting soil pH. On the other hand,
for CEC, RF emerged as the top-performing model, achieving a
R?of 0.73 and a CCC of 0.61. This strong performance can be
attributed to the ability of RF to capture complex relationships
in the data, which may be more prominent in CEC variations.
Similar results were found by Zeraatpisheh et al. (2019), where
they identified RF as the top-performing model for predicting
CEC in Iranian soils. Cubist also performed well, with a R?
of 0.56 and CCC of 0.60 for CEC, showcasing its capacity to
model the non-linear nature of this property.

In the prediction of AK (cmol kg‘l) levels, the Cubist
model demonstrated the highest performance among the
models, achieving a CCC of 0.21. This implies a moderate
level of accuracy in forecasting K content. RF and SVM
closely trails behind with a CCC of 0.21 and 0.20, indicat-
ing a comparable degree of precision. Sharififar (2022) also

Table 4 Validation criteria

e N ¢ Calibration Validation
for predicting soil properties
in calibration and validation Property Unit Model R2 CCC RMSE R2 CcCC RMSE
datasets from best to worst
performance, The most accurate Clay % kNN 0.44 0.56 4.50 0.74 0.61 2.82
method highlighted in bold Cubist 0.87 0.88 2.09 0.61 0.55 3.08
RF 0.85 0.86 2.55 0.63 0.48 3.85
SVM 0.77 0.81 2.63 0.35 0.39 3.81
Silt kNN 0.53 0.65 8.17 0.75 0.63 5.65
RF 0.88 0.87 4.81 0.78 0.57 5.61
Cubist 0.82 0.88 5.15 0.45 0.41 7.23
SVM 0.58 0.64 7.51 0.47 0.40 6.92
Sand kNN 0.41 0.54 7.85 0.23 0.30 5.33
SVM 0.53 0.56 6.81 0.31 0.27 4.39
Cubist 0.64 0.75 6.11 0.20 0.26 5.24
RF 0.79 0.79 5.25 0.22 0.20 4.77
Soil pH RF 0.68 0.51 0.79 0.06 0.19 0.55
SVM 0.21 0.13 1.03 0.15 0.15 0.47
kNN 0.10 0.16 1.04 0.06 0.13 0.51
Cubist 0.60 0.64 0.64 0.05 0.08 0.52
CEC cmol kg~! RF 0.78 0.79 2.33 0.73 0.61 2.32
Cubist 0.61 0.72 2.83 0.56 0.60 2.79
SVM 0.46 0.52 3.26 0.58 0.53 2.35
kNN 0.24 0.39 393 0.03 0.11 4.65
AK Cubist 0.43 0.51 0.32 0.16 0.21 0.21
RF 0.55 0.54 0.33 0.10 0.21 0.22
kNN 0.12 0.22 0.43 0.07 0.20 0.22
SVM 0.32 0.37 0.40 0.06 0.16 0.23
TN % RF 0.66 0.70 0.06 0.64 0.49 0.12
Cubist 0.51 0.63 0.07 0.56 0.44 0.14
kNN 0.29 0.45 0.08 0.44 0.32 0.15
SVM 0.54 0.61 0.07 0.33 0.26 0.16
SOM SVM 0.44 0.45 1.38 0.16 0.26 0.87
kNN 0.20 0.32 1.60 0.10 0.23 0.99
RF 0.76 0.75 0.97 0.08 0.19 1.23
Cubist 0.71 0.81 0.95 0.01 0.06 1.94
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found that Cubist, RF, and SVM exhibited similar accuracy
in predicting K content in Australian soils. On the other
hand, RF exhibited the best performance in predicting TN
(%)with a CCC value of 0.49, indicating a relatively strong
ability to predict N levels. Cubist also delivered commend-
able performance with a CCC of 0.44, suggesting solid accu-
racy. Furthermore, both models explain more than 50% of
the spatial variability with R2 values of 0.64 and 0.56. These
results align with those obtained by Parsaie et al. (2021),
where RF and Cubist outperformed other models in predict-
ing nitrogen content in the topsoil.

The prediction of SOM (%) content posed a particular
challenge due to its intricate nature. Among the models, SVM
model exhibited the most robust performance, with an R? of
0.16 and a CCC of 0.26. These results suggest that the SVM
model could capture a portion of the spatial variability in SOM
content, which often reflects complex organic matter distribu-
tion patterns influenced by vegetation cover, land management
practices, and soil formation processes (Forkuor et al. 2017;
Khlosi et al. 2016). Similarly, Morellos et al. (2016) also found
that SVM provided the best performance in predicting soil

N N

A A

organic carbon. However, it's important to note that the rela-
tively low performance metrics indicate the inherent difficulty
in predicting SOM content accurately. The substantial vari-
ability in SOM levels, as indicated by a CV of 51.56%, under-
scores the heterogeneity of organic matter distribution within
the study area and in other studies carried out in similar envi-
ronments (Andivia et al. 2015). This heterogeneity arises from
factors like land use history and localized inputs of organic
material, making SOM a complex property to predict spatially.

Prediction maps of soil properties
and environmental covariates importance

The maps generated by the models with the highest perfor-
mance for each of the study soil properties are presented in
Fig. 2. Howeyver, predictive maps for each soil property using
the models employed are provided in the Appendix section,
specifically in Figs. 6-13.

The kNN model, excelling in predicting clay, silt, and sand
content, uncovers distinct spatial patterns. Clay accumulates
in lower valleys, silt in mid-slope areas, and sand dominates

N N

A A

KNN KNN KNN
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Fig.2 Maps produced by the models with the best performance for each study property
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higher regions, influenced by topography. This spatial pattern
could be attributed to the dynamics of soil particle size trans-
port and sedimentation influenced by topographic factors, as
demonstrated in previous studies (Gallant & Dowling 2003).
Topographic indices like the topographic roughness index
(TRI) and valley depth play crucial roles, as shown in Fig. 3.
Previous studies also stress their significance (Mishra et al.
2009; Zeraatpisheh et al. 2019). On the other hand, covari-
ate importance for each soil property and predictive model is
presented in the Appendix section, in Figs. 14 and 15.

In terms of predicted values, all models, except Cubist,
tend to overestimate minimum values and underestimate
maximum values when compared to descriptive statistics
(Table 3). This suggests that models perform well in capturing
mid-range spatial variability but struggle with extreme values.
This trend should be considered when interpreting predictive
maps, especially in areas with wide soil property value ranges.

The soil pH predictive map, generated using the RF
model, reveals higher pH values around channels and in the
upper catchment areas. The mean predicted pH value (5.51)
shows minimal variation compared to other models (Table 5),
confirming the prevalent acidic nature of Extremadura's
rangeland soils, as reported previously (Ceballos & Schnabel
1998). Topographic attributes, such as altitude and maximum
curvature, are significant drivers of soil pH variation, align-
ing with earlier research (Mosleh et al. 2016). This under-
scores the role of land surface features in shaping soil pH
levels. Similarly, the CEC predictive map generated by the
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<
2

Altiude
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LS _Faclr Importance Importance
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2
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URRTF "
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RF model exhibits patterns resembling soil pH, with higher
values in depressed catchment areas. However, it tends to
overestimate minimum values (5.17 cmol kg-1) while under-
estimating maximum and mean values (17.26 and 9.92 cmol
kg-1, respectively) compared to dataset values (Table 3).
The importance of covariates in predicting CEC highlights
topographic attributes like altitude, TPI (Topographic Posi-
tion Index), and valley depth as influential factors. Previous
research consistently shows the strong correlation between
these topographic attributes and soil CEC, explaining a sub-
stantial portion of its spatial variability (Khaledian et al.
2017). The models' tendency to overestimate minimum and
underestimate maximum values for both pH and CEC sug-
gests their effectiveness in capturing mid-range variability
while encountering challenges with extreme values.

For soil available potassium (AK) prediction, the Cub-
ist model outperformed others with a range of 0.04 to 1.61
(Table 5). While the mean values closely match the dataset,
Cubist exhibits a wider variability range in soil AK, suggest-
ing its ability to capture diverse patterns in the study area.
Terrain convexity emerges as the primary factor influencing
K distribution (Figs. 2 and 3), impacting water flow and AK,
as shown by Bui et al. (2019) and Arabameri et al. (2019).

Regarding total nitrogen (TN) prediction, the RF model
produced values ranging from 0.10 to 0.33, deviating from
dataset values of 0.02 to 0.65 (Table 5). Despite slight dif-
ferences in minimum and maximum values across mod-
els, mean values remain consistent. Higher TN values
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Fig.3 Importance of environmental covariates in predicting the different soil properties using the model with the best performance
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Table 5 Descriptive statistics
for soil properties prediction
and 90% prediction interval by
predictive model

Soil property ~ Unit Model  Soil Prediction Maps 90% Prediction Interval Maps
Min Max Mean SD Min Max Mean SD
Clay % kNN 896 2131 1247 234 958 985 9.65 0.05
Cubist  2.15 2354 1247 382 1023 12.14 1061 0.24
RF 690 2127 1222 2.03 1281 13.06 1291 0.04
SVM 5.04 2193 1232 243 1280 17.06 1291 0.11
Silt % kNN 26.25 51.50 4350 498 1949 2045 19.73 0.08
RF 2595 56.04 4295 3.69 18.80 19.11 1899 0.04
Cubist 20.97 7544 4402 636 2416 2576 2441 0.13
SVM 2592 5743 4172 372 2349 2777 2377 0.22
Sand % kNN 3232 5589 4476 522 18.08 18.88 1822 0.13
SVM 3476 6156 4623 3.15 1531 19.07 1558 0.23
Cubist 1745 7422 4363 7.04 1749 1822 17.81 0.09
RF 30.82 59.72 4442 397 1614 1672 1633 0.07
pH RF 495 7.80 551 018 236 2.68 241 0.02
SVM 5.07 589 537 006 219 258 219  0.01
kNN 502 6.16 558 0.21 2.25 2.37 230 0.02
Cubist  5.11 6.56 541 026 231 246 233 0.03
CEC cmolkg™! RF 517 1726 992 111 751 794 7.68 0.03
Cubist  2.07 18.71 9.81 1.81 9.31 10.17 9.52  0.06
SVM 632 1422 931 1.04 8.02 856 8.13 0.04
kNN 749 1433 1034 2.01 1542 1554 1547 0.03
AK cmolkg™!  Cubist  0.04 1.61 032 019 0.71 1.70  0.80 0.07
RF 0.16 1.19 033 014 0.76 1.01 0.82 0.04
kNN 0.17 0.65 040 0.17 079 092 085 0.05
SVM -0.35 134 028 014 077 096 0.82 0.03
N % RF 010 034 016 0.03 047 056 050 0.01
Cubist  0.01 044  0.16 0.05 0.45 064 053 002
kNN 0.13 029 0.16 0.03 0.55 0.60 056 0.01
SVM 004 031 0.16 0.03 058 062 059 0.01
SOM % SVM 139 519 292 044 286 576 329 0.11
kNN 219 495 305 030 339 370 349 0.03
RF 1.53 654  3.12 053 426 469 436 0.04
Cubist  0.66  9.17 324 093 6.43 6.71 6.53 0.04

In bold, the best-performing model

Min Minimum value, Max Maximum value, SD Standard Deviation.

concentrate in valleys' bottoms, while lower values occur in
flow areas and steep slopes. Topographic indices like TRI,
aspect, slope, and altitude (Fig. 3) play crucial roles in pre-
dicting soil TN, reflecting landscape features that influence
nutrient dynamics. Luizdo et al. (2004) and Hawthorne and
Miniat (2018) have previously illustrated how these attrib-
utes affect water retention, drainage patterns, and microbial
activity, ultimately influencing TN availability.

For soil organic matter (SOM) content, the SVM model
predicted values ranging from 1.39% (minimum) to 5.19%
(maximum), with an average of approximately 2.92%
(Table 5). These predictions differ from the initial dataset
values, which ranged from 0.28% to 9.08%, averaging 3.34%
(Table 3). SVM tends to provide higher predictions for SOM.

@ Springer

The predicted maps highlight higher SOM values in valley
bottoms and flatter areas, with key variables being analyti-
cal hillshading, valley depth, altitude, and convexity. These
terrain attributes capture topographic and geomorphological
characteristics influencing SOM distribution and accumu-
lation (Adhikari et al. 2018; Guo et al. 2019; Taghizadeh-
Mehrjardi et al. 2016). For example, analytical hillshading
reflects local slope and orientation, impacting microclimates,
soil moisture, and organic matter decomposition rates (Guo
et al. 2019). Valley depth indicates landscape morphology,
affecting water and organic matter retention in lower-altitude
areas, influencing SOM content. High convexity or concavity
areas alter water flow dynamics, nutrient distribution, and
subsequently, SOM content (Mahmoudzadeh et al. 2020).
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Fig.4 Uncertainty maps displaying the 90% prediction interval using the best-performing model for each studied soil property

The analysis of variable importance (Fig. 3) underscores
the dominance of topographic and geomorphological attrib-
utes over remote sensing data in model generation, following
variable selection with the Boruta algorithm. These attributes
exhibit greater influence, particularly at smaller scales, in
capturing subtle landscape variations. While remote sensing
data, such as satellite imagery, offer valuable insights at larger
scales, they may struggle to detect microtopographic features,
especially in regions with intricate surface heterogeneities
(Cresto Aleina et al. 2015). To address the spatial variability of
small-scale soil processes effectively, consideration of higher-
resolution spatial information, including vegetation indices,
becomes crucial. This finer-grained data allows for a more
comprehensive characterization of the landscape's influence on
soil properties, with previous studies highlighting the intricate
connection between small-scale soil parameter variability and
geological, climatic, and biological processes, with vegetation
playing a significant role (Agam et al. 2007; Isermann 2005).

Additionally, the implementation of the Boruta algorithm
significantly reduces the number of variables in the models,
streamlining model complexity while preserving predictive
accuracy. For example, the variable count for clay content

decreased from 23 to 10, and for pH and AK, it reduced to
4. This highlights the importance of the selected attributes
in achieving accurate predictions.

Uncertainty estimation and assessment

Uncertainty maps for each soil property were generated with a
90% prediction interval (Fig. 4), and the quality of uncertainty
was assessed using PCIP plots (Fig. 5). Detailed uncertainty
maps and plots for each property and model are available in
the Appendix (Figs. 16-25). Generally, uncertainty values cor-
respond to the spatial patterns in the predicted maps, with higher
uncertainty in areas with elevated property values and lower
uncertainty in regions with lower values. Areas with higher
property content often involve more complex interactions and
factors, posing challenges for prediction models. These high-
uncertainty zones require additional attention, data collection,
and model refinement to enhance the reliability of predicted
maps. Variations in uncertainty maps exist among different
models, with relatively consistent prediction intervals across soil
properties. However, differences in interval widths are observed
(Table 5). Notably, Cubist exhibits a broader range between the
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Fig.5 Prediction interval coverage probability (PICP) plots for uncertainty estimates of soil properties analyzed using the best-performing model

minimum and maximum values for potassium uncertainty (0.71
to 1.70 cmol kg™!). SVM stands out with a substantial range of
2.90% for SOM uncertainty, reflected in a high standard devia-
tion (SD) value of 0.11, the highest among the models. These
differences in uncertainty estimation highlight the variability in
model performance and emphasize the importance of selecting
an appropriate model for specific soil properties.

The assessment of uncertainty quality, evaluated through
Percent Interval Prediction (PCIP) plots (Fig. 5), demonstrates
a generally consistent trend across all models. As model accu-
racy improves, there is a noticeable enhancement in fitting.
However, it's noteworthy that for percentiles above 80%, the
models tend to adopt a moderately conservative approach.
Around 87.5% of actual observations fall within the prediction
intervals at these confidence levels, reflecting a reliable abil-
ity to quantify uncertainty while erring on the side of caution.
An intriguing shift occurs at the 60% percentile, where mod-
els exhibit a slightly lower rate of real observations within the
intervals, approximately 75%. This indicates that models are
more accurate and less conservative in this confidence range,
suggesting increased reliability in their predictions. However,
as percentiles decrease towards 60% and below, the models
indicate growing uncertainty and imprecision in their estimates.

Conclusions
In conclusion, this study represents a valuable effort in

unraveling the intricate spatial dynamics of eight pivotal soil
properties within a grazed small catchment nestled within

@ Springer

the agroforestry system known as 'dehesas' in the region of
Extremadura, Spain. The analysis has unveiled a rich tapestry
of spatial variability in these properties, shedding light on
the complex interplay of factors shaping soil characteristics
in this environment. This innovative approach underscores
the paramount importance of comprehending these spatial
intricacies for the purpose of reasonable and sustainable land
management practices.

The machine learning algorithms employed exhibited
varying levels of performance. k-Nearest Neighbors (kNN)
performed exceptionally well in predicting soil particle size
(clay, silt, and sand) due to its capacity to capture local spatial
patterns effectively, which is advantageous in the presence
of strong spatial autocorrelation in these properties. On the
other hand, Random Forest (RF) models outperformed others
in predicting soil pH, Cation Exchange Capacity (CEC), and
nitrogen content, thanks to their ability to capture complex
relationships in the data. For these properties, RF's capacity
to handle intricate patterns proved beneficial.

Cubist emerged as the top performer for predicting available
potassium (AK), and Support Vector Machine (SVM) dem-
onstrated superior accuracy in predicting Soil Organic Matter
(SOM) content. Challenges were observed in predicting certain
properties, such as sand content, soil pH, potassium, and SOM,
particularly in capturing extreme values. These challenges
highlight the complexity of these properties and the need for
further research and data collection in these areas.

The low variability observed in soil properties such as
pH and texture composition in this study can be attributed
to the specific characteristics of the study area, which is
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characterized by 'dehesas' in Extremadura, Spain. These
agroforestry systems often have relatively homogeneous
environmental conditions, including similar land use prac-
tices, common parent material (sandstones and granites),
and similar regional climate patterns. This may explain the
limited range of values for certain soil properties.
Regarding the suitability of a lower or higher CV% for
predictive models, it depends on the specific objectives and
context of the study. A lower CV% indicates less variability
in the data, which can be advantageous in predictive mod-
eling when the goal is to achieve more precise and accurate
predictions. In such cases, models can perform well because
there is less variation to account for, leading to more stable
predictions. This is especially true for properties like pH,
where relatively consistent values can be expected in specific
environments. On the other hand, a higher CV% suggests
greater variability in the data, which can be challenging for
predictive models. However, higher variability could also be

Appendix
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a characteristic of certain properties in diverse landscapes,
reflecting the complexity of soil processes. In such cases,
models need to be robust and capable of accurately capturing
a wide range of values.

Environmental covariates, particularly topographic and
geomorphological attributes, played a significant role in
model generation. The Boruta algorithm's variable selec-
tion helped streamline model complexity by reducing the
number of variables, emphasizing the importance of these
selected attributes. Uncertainty assessment revealed that
models effectively quantify uncertainty, with their degree
of conservatism varying with confidence levels. Models
exhibited greater accuracy at intermediate confidence lev-
els and a more cautious approach at higher percentiles.
This comprehensive analysis advances our understanding
of soil property prediction, highlighting the importance of
selecting appropriate models based on the specific proper-
ties of interest and the underlying spatial patterns.
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Fig.6 Predictive maps of clay content (%) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig.7 Predictive maps of silt content (%) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)

KNN Cubist
Sand (%) Sand (%)
32.32-38.23 17.45-348

1 38.24-4202
I 42.03-45.16
B 35.17 - 50.07
Il s0.08 - 55.89

1 34.81-4126
N 41.27 - 36.83
B 46.84 - 53.18
B 54.15 - 74.22

RF
Sand (%) SVM
30.82 - 40.9 Sand (%)
34.76 - 44.11

[0 40,91 - 4419
B 44.2-48.04
B 48.05-536
Il 53.61-59.72

00 44.12-4631
N 46.32-49.78

300 600 m B 49.70-54.2 300 600 m
B 54.21-61.56

Fig. 8 Predictive maps of sand content (%) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig.9 Predictive maps of soil pH using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 10 Predictive maps of Cation Exchange Capacity (CEC) using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector

Machines (SVM)
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Fig. 11 Predictive maps of AK (cmol kg™!) content using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 12 Predictive maps of TN (%) content using kNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig. 13 Predictive maps of SOM (%) content using KNN (k-nearest Neighbor), Cubist, Random Forest (RF), and Support Vector Machines
(SVM)
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tent with k-Nearest Neighbor (kNN), Cubist, Random Forest (RF), and Support Vector Machine (SVM)
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Fig. 16 Uncertainty maps of clay content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random For-

est (RF), and Support Vector Machines (SVM)
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Fig. 17 Uncertainty maps of silt content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random Forest

(RF), and Support Vector Machines (SVM)
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Fig. 18 Uncertainty maps of sand content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random For-

est (RF), and Support Vector Machines (SVM)

N

A

KNN 90% PI
Soil pH

Il 2.25- 2.27
B 2.28-2.29
Bl 23-231
W 232-234
Il 2.35-237

RF 90% PI
Soil pH

B 236-24
B 2.41-2.42
B 2.43-245
I 2.46-2.49
Bl 25-268 0 300 600 m
e E— |

N

A

Cubist 90% PI

Soil pH

B 231231

N 232-2.32
-233
-2.38 0 300 600 m
- 2.46

SVM 90% PI
Soil pH

I 219-219
22-22
221221
N 222-2.27
N 228258 0 300 600 m
{ I

Fig. 19 Uncertainty maps of soil pH showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random Forest

(RF), and Support Vector Machines (SVM)
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Fig.20 Uncertainty maps of Cation Exchange Capacity (CEC) showing the 90% prediction interval generated using kNN (k-nearest Neighbor),

Cubist, Random Forest (RF), and Support Vector Machines (SVM)
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Fig.21 Uncertainty maps of soil AK (cmol kg™!) content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cub-

ist, Random Forest (RF), and Support Vector Machines (SVM)

@ Springer



Earth Science Informatics (2023) 16:3811-3838

3833

KNN 90% PI
N (%)

B o0.56-0.56
B 0.57-057
I 0.58-0.58
Il o.59 - 0.59

Bl o6-06
300 600 m

RF 90% PI
N (%)

I 0.48-0.49
Bl o5-05
N 0.51-051
Il 0.52-052
Bl 0.53-056

300 600 m
A —

»

Cubist 90% P!
N (%)

B 0.46-0.5
I 0.51-0.52
I 0.53-0.54
I 0.55-0.56
Il 0.57-0.64

300 600 m

SVM 90% PI
N (%)

I 059 - 0.59
Il 06-06
I 0.61-06
Il 0.61-0.61
Il 0.62-0.62

A Ny

300 600 m
e —|

Fig.22 Uncertainty maps of soil TN (%) content showing the 90% prediction interval generated using KNN (k-nearest Neighbor), Cubist, Ran-

dom Forest (RF), and Support Vector Machines (SVM)
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Fig. 23 Uncertainty maps of SOM (%) content showing the 90% prediction interval generated using kNN (k-nearest Neighbor), Cubist, Random

Forest (RF), and Support Vector Machines (SVM)
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Fig. 24 Prediction interval coverage probability (PICP) plots of clay, silt, sand, and soil pH using kNN (k-nearest Neighbor), Cubist, Random
Forest (RF), and Support Vector Machines (SVM)
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