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Abstract
In recent years, artificial intelligence in geosciences is spreading more and more, thanks to the availability of a large amount 
of data. In particular, the development of automatic raingauges networks allows to get rainfall data and makes these tech-
niques effective, even if the performance of artificial intelligence models is a consequence of the coherency and quality of 
the input data. In this work, we intended to provide machine learning models capable of predicting rainfall data starting from 
the values of the nearest raingauges at one historic time point. Moreover, we investigated the influence of the anomalous 
input data on the prediction of rainfall data. We pursued these goals by applying machine learning models based on Linear 
Regression, LSTM and CNN architectures to several raingauges in Tuscany (central Italy). More than 75% of the cases show 
an R2 higher than 0.65 and a MAE lower than 4 mm. As expected, we emphasized a strong influence of the input data on 
the prediction capacity of the models. We quantified the model inaccuracy using the Pearson's correlation. Measurement 
anomalies in time series cause major errors in deep learning models. These anomalous data may be due to several factors 
such as temporary malfunctions of raingauges or weather conditions. We showed that, in both cases, the data-driven model 
features could highlight these situations, allowing a better management of the raingauges network and rainfall databases.
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Introduction

Climate change is one of the most relevant issues for human-
ity in the Anthropocene era (Malhi et al. 2020). The aver-
age temperature on the mainland in the years 2006–2015 

was 1.53 °C higher than that of the years 1850–1900 (IPCC 
2019). It is now well known that higher temperature is caus-
ing severe changes in precipitation regimes as well, with 
increasingly extreme events (Hardwick Jones et al. 2010; 
Myhre et al. 2019; Tramblay et al. 2020; Luppichini et al. 
2023b). It is also causing an alteration of the beginning and 
end of growing seasons, causing a general decrease in the 
regional crop yields and freshwater availability (Minoli et al. 
2022). The biodiversity is further stressed and tree mortality 
increases (IPCC 2019). Understanding and modelling the 
past, present, and future climate are of fundamental impor-
tance to the issue of climate change and variability. Effec-
tive climate models represent one of our primary tools for 
projecting and adapting to climate change (Schmidt 2011).

Moreover, climate change has direct repercussion on 
the hydrogeological systems and groundwater resources, 
and the hydrogeological models are consequently part of 
the climate models (Amanambu et al. 2020; Li et al. 2022). 
Rainfall data, and precipitation in general, their variability, 
intensity, and duration, have paramount importance for the 
hydrogeological models (Sattari et al. 2017). Independently 
from the used model, several problems can still affect the 
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input rainfall datasets. These issues often concern missing 
or incorrect information that can lead models to misleading 
results. It is worth noting that the geographical distribution 
of raingauges is generally not uniform (e.g., for some areas 
there is a deficiency or lack of raingauges). Furthermore, 
the completeness of the time series is not always guaranteed 
due to, for example, non-continuous operation of raingauges 
during the monitoring period (Lebay and Le 2020).

Many physically based methods simplify the natural sys-
tem features to predict its behaviour (Antonetti and Zappa 
2018). However, the natural systems are inherently hetero-
geneous (Marçais and de Dreuzy 2017) and the physically 
based methods may show inherent limitations in reproduc-
ing natural phenomena. In recent years, the use of artificial 
intelligence (AI) and graphical processing units (GPUs) have 
enabled remarkable advances in machine learning (and espe-
cially in deep learning) applications such as techniques based 
on multilayer artificial neural networks (ANNs). Deep learn-
ing models have been successfully applied in many forecast-
ing situations, including time series forecasting (Zheng et al. 
2019; Yi et al. 2019; Fawaz et al. 2020; Nigro et al. 2022). 
Time series typically have chaotic and noisy problems and 
deep learning approaches are the most effective techniques 
for solving them (Livieris et al. 2020). Several authors use 
the rainfall dataset to create deep learning models avail-
able to replicate run-off processes (van Loon and Williams 
1976; Marçais and de Dreuzy 2017; Kratzert et al. 2018; 
Boulmaiz et al. 2020; Sit et al. 2020; Tien Bui et al. 2020; 
Chattopadhyay et al. 2020; Luppichini et al. 2022a, 2023a). 
Long short-term memory (LSTM) and convolutional neural 
networks (CNNs) are two of the most popular, efficient, and 
used deep learning techniques (Zheng et al. 2019; Yi et al. 
2019; Fawaz et al. 2020). In the last period, some works 
combined LSTM and CNN models for time series predic-
tion (Kimura et al. 2019; Baek et al. 2020; Van et al. 2020; 
Xu et al. 2020). The benefits of the combined CNN-LSTM 
models are a consequence of the characteristic of LSTM of 
acquiring efficiently the information of sequence patterns, 
thanks to their peculiar architecture. The CNN layers filter 
out the noise in the input data to extract the most significant 
features needed for the final prediction model. Furthermore, 
standard CNN can identify spatial autocorrelation between 
data but is usually not suitable for a correct analysis of a 
complex temporal dependence over long times (Bengio et al. 
2013; Livieris et al. 2020). Several works used deep learning 
models based on the LSTM networks to create run-off simu-
lations (Kratzert et al. 2018; Le et al. 2019; Boulmaiz et al. 
2020; Li et al. 2020; Liu et al. 2020; Nguyen and Bae 2020; 
Hu et al. 2020), whereas others based on CNN (Li et al. 
2018; Huang et al. 2020; Kim and Song 2020; Hussain et al. 
2020) or a combination of both (CNN-LSTM) (Kimura et al. 
2019; Baek et al. 2020; Van et al. 2020; Xu et al. 2020). The 
performance of encoder-decoder LSTM layers (LSTM-ED) 

is great with sequential data like a time series. This architec-
ture consists of two blocks: one to read the input sequence 
and encode it into a fixed-length vector, and a second one 
to decode the fixed-length vector and transmit the intended 
sequence (Sutskever et al. 2014).

Among several applications in hydrological modelling, 
deep learning models are also used for several additional 
applications, such as reconstructing missing data and pre-
dicting rainfall data (Gers et al. 2001). In these models, the 
input data must obviously be of high quantity and good 
quality. Furthermore, machine learning models are used to 
apply statistical regionalization procedures, which constitute 
a set of methodologies used to divide a geographical area 
into statistically homogeneous regions. The main aim of 
statistical regionalization is to simplify data understanding 
and analysis, allowing analysts to attain a more detailed and 
meaningful insight into local dynamics. Among the most 
common methodologies are cluster analysis, which groups 
similar geographic units based on relevant variables, and 
principal component analysis, which identifies common pat-
terns of variation among the units (Yin et al. 2016; Alem 
et al. 2019; De Luca and Napolitano 2023).

This work intends to use machine learning models to 
predict rainfall data taking advantage of a network of sen-
sors. The models recreate precipitation time series by using 
data from nearby raingauges as inputs. The training data 
lacks temporal information, but each record is referred to 
a specific time. This allows the missing data to be entered 
into a rainfall database, allowing to complete time series 
for applying several types of study requiring the time series 
continuity (e.g., statistical methods, trend analysis, etc.). We 
also wanted to analyse the errors of the models investigating 
the role of anomalous data that can influence the perfor-
mance of deep learning models. Indeed, all meteorological 
databases can have anomalous data caused by rare natural 
phenomena or anthropic factors (e.g., malfunctions of the 
sensor network). Understanding the answer of the machine 
learning models to the presence of these data is a key point 
for future applications of AI techniques in hydrological and 
meteorological studies.

We applied three machine learning models: the first one 
is a linear regression (LR), whereas the second and the third 
ones are based on CNN and LSTM. The first architecture of 
the deep learning models relies on a combination of CNN 
and LSTM layers (CNN-LSTM), whereas the second one 
relies on ED-LSTM. The dataset used is derived from 349 
raingauges located in Tuscany (central Italy; Fig. 1), char-
acterized by an extensive monitoring network and a wide 
variability of the mean annual precipitation (MAP), which 
is influenced by the morphology of the territory (Cantù 
1977; Rapetti and Vittorini 1994; Fratianni and Acquaotta 
2017). Tuscany is indeed very heterogeneous from a mor-
phological and a geological point of view, characterized by 

3718 Earth Science Informatics (2023) 16:3717–3728



1 3

mountain ranges, extensive hilly areas, and some relatively 
large plains (Carmignani et al. 2013; Baroni et al. 2015). In 
summary, the study area allows to apply the methodology 
and the investigations in an area characterized by a great 
climate variability and with a great number of raingauges. 
The manuscript is composed by the following paragraphs: 
material and methods, where we explain the methodology 
and the data used; results, where we show the products of 
this work; and finally, discussion and conclusions, where we 
analyse the results, and we propose the main consequences 
of this work.

Materials and methods

Database and data input pre‑processing

The dataset used is provided by the Tuscany Region Hydro-
logic Service (SIR) and contains data acquired from sev-
eral meteorological stations (https://​www.​sir.​tosca​na.​it/​
consi​stenza-​rete). We collected the daily rainfall data by 

developing an automated download procedure through codes 
written in Python and HTTP protocol. The database derived 
from this procedure has also been used in different studies 
resulting reliable (Bini et al. 2021; Luppichini et al. 2021, 
2022a, b, 2023b).

The monitoring activity in Tuscany started in 1910 and 
the entire rainfall dataset is today composed of 1103 time 
series. The number of raingauges increased from around 
100 in the early 1900s to 350 in the 1940s, when the war 
slowed this growth. From the post-war period until the 
early 2000s the number of active raingauges was about 
300 per year. In the last 20 years the network reached a 
peak of about 400 raingauges distributed on a region of 
almost 23,000 km2. Each raingauge obviously has a dif-
ferent period of activity and some data may be missing 
within the time series. The territorial authority assigned a 
specific unique code to each sensor and when they move 
or change a sensor, they assign a different unique code. 
For this reason, each time series is assigned to a specific 
geographical condition and a specific sensor. The rainfall 
data used in this study are daily data, referring from 09:00 

Fig. 1   Tuscany Region. The 
red points indicate the 349 
raingauges managed by the 
Regional Hydrologic Service 
(SIR) and used in this work

3719Earth Science Informatics (2023) 16:3717–3728

https://www.sir.toscana.it/consistenza-rete
https://www.sir.toscana.it/consistenza-rete


1 3

am to 09:00 am of the following day. The rainfall dataset 
is composed of validated and non-validated data (by SIR). 
The validated data is a subset derived from processing 
and checks that allow to remove any sampling errors and 
reduce the presence of inconsistency in the dataset. The 
non-validated data are raw measurements that have not 
yet been checked for integrity and correctness. In this 
work, we chose to use only the validated data to minimize 
errors. Some raingauges have time series with an insuf-
ficient amount of data available for the creation of a deep 
learning model. From tests carried out, we decided to use 
only raingauges which provide time series of at least six 
years. Each deep learning model predicts the missing data 
of the output raingauge using three (an arbitrary number) 
input raingauges. For each output raingauge, we chose 
the input raingauges based on the geographical distance 
and the difference in elevation between the sensors. The 
maximum distance and the maximum difference in alti-
tude considered among the output raingauge and input 
raingauges was 10 km and 100 m, respectively. When 
more than three selected input raingauges were present, 
we did a manual screening choosing the best combination 
of input raingauges, representing a reasonable compro-
mise between data completeness and the extensiveness 
of the dataset.

After this procedure, we selected 349 output raingauges 
distributed in the study area. Figure 1 shows how the density 
of the stations is higher in northwestern Tuscany than in 
southeastern one, due to the greater variability of rainfall, 
which needs a more effective monitoring network.

The mathematical expression of the models, representa-
tive of all the investigated raingauges, can be defined as:

where R is the predicted output raingauge rainfall at time t; 
R1t,R2t and R3t are the rainfall values of the three input rain-
gauges at time t . An example of the input dataset is shown 
in Table 1. 

Model development

To accomplish the deep learning models of this study, we 
mainly used the open-source framework Tensorflow (Abadi 
et al. 2015) and the libraries Numpy, Pandas, Scikit-Learn, 
and Keras (Chollet 2015) in Python language. The LR 
model is developed using the scikit-learn framework. We 
specifically selected two model architectures. The first one 
is composed of two CNNs layers of 64 and 128 filters (with 
a kernel size of 2 and stride length of 1), respectively, fol-
lowed by a Max Pooling layer with size 1, an LSTM layer of 
200 units, a dense layer of 50 neurons, and an output layer 
of one neuron (Fig. 2A). Usually, CNNs layers precede a 

(1)R̂ = f
(
Xt

)
= f (R1t,R2t,R3t)

pooling layer, which helps to reduce the size of the infor-
mation while keeping the information unblemished. One 
pooling technique often used in CNN design is the Max 
Pooling (Zhou and Chellappa 1988). The second selected 
architecture is an encoder-decoder LSTM, with two LSTM 
nodes. Both the encoder and the decoder consist of a pair 
of sequence layers (LSTM) of 32 and 16 units followed by 
a repeat vector node for the encoder and 16 and 32 units 
for the decoder followed in turn by a time-distributed dense 
node (Fig. 2B). Each first LSTM layer returns the whole 
output sequence to the second one, instead the last ones 
return only the last hidden state. To evaluate the discrep-
ancy between predicted and actual values, ​​we used a loss 
function measured on each observation, which allowed 
us to calculate the cost function. We needed to minimize 
the cost function by identifying the optimized values ​​for 
each weight. Thanks to multiple iterations, the optimiza-
tion algorithms transfer the identification of the weights 
that minimize the cost function. In our implementation, we 
used the Adam optimizer (Kingma and Ba 2014), which 
is an adaptive learning speed method, namely it computes 
individual learning rates for several parameters (Kingma 
and Ba 2014). The activation function used for CNN-LSTM 
and ED-LSTM models is rectified linear units (ReLU) func-
tion (Agarap 2018). To stop the training, we used API of 
Keras and specifically the "early stopping" method, setting 
a number of epochs with no improvement after which the 
training is stopped at 200. This method allows the training 
procedure to stop when the monitored metric has stopped 
improving. The monitored metric was the value of the cost 
function. Given all the possible hypotheses, we wanted to 
find the best one (called "optimal"), namely the one that 
allowed us to make more precise estimates, always based 
on data in our possession. For each model, the input dataset 
is divided into three subsets called training, validation, and 
test datasets. The training and validation datasets are used 

Table 1   Example of data input: Input raingauge 1 (Empoli), Input 
raingauge 2 (San Miniato) and Input raingauge 3 (Vinci) (R1, R2, 
R3) are used to predict the rainfall of the Output raingauge (Cerreto 
Guidi) (R0)

Data Input rain-
gauge 1

Input rain-
gauge 2

Input rain-
gauge 3

Output 
raingauge

05/06/2013 0.2 0.0 5.8 0.0
06/06/2013 0.0 0.0 0.0 0.6
07/06/2013 0.0 0.0 0.0 0.0
08/06/2013 0.0 0.0 0.0 0.0
09/06/2013 4.4 4.6 4.8 0.0
24/02/2021 0.0 0.0 0.0 0.0
25/02/2021 0.0 0.0 0.0 0.4
26/02/2021 0.0 0.4 0.0 0.2
27/02/2021 0.0 0.0 0.0 0.0
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during the learning phase. The test dataset is used after-
wards to evaluate the quality of the model. In this way, we 
can determine the ability of the model to predict new cases 
not used during the learning phase. The training dataset is 
60% of the primary dataset, whereas the test and validate 
datasets include the remaining 20% and 20%, respectively. 
This type of splitting is commonly used in the supervised 
training of deep learning models, allowing sufficient data 
for training and model quality verification (Gholami et al. 
2015). The models were fitted using a division for batches. 
For the training of the LR models we used the same training 
and test datasets used to the CNN-LSTM and ED-LSTM 
models. In this way, we can compare the results of the three 
models. In our models, the cost function used was the mean 
absolute error (MAE) calculated on the training dataset 
during the resolution of each batch and on the validation 
dataset at the end of each epoch. This procedure allowed to 
minimize the overfitting effect on the training set.

Evaluation of models
Each model is associated with some errors, the evalua-
tion of which provides information on the performance 
of the model itself. In this work, we used the Mean 
Absolute Error (MAE). The MAE is an arithmetic mean 
of the absolute errors, and is one of the methods used to 
assess the model performance (Willmott and Matsuura 
2005):

In addition to the MAE, the average relative error was 
calculated for each raingauge:

The models were moreover evaluated by the parameter 
R2, an index measuring the link between the variabil-
ity of data and correctness of the statistical model used. 
Another method was used to estimate the performance of 
the models, which also made it possible to try to under-
stand the cause of the errors of the prediction models. 
This method consists of taking the models errors for each 
raingauge:

and correlating them with the value derived from the average 
of the rainfall at the three input raingauges ( R1 , R2,R3 ) minus 
the rainfall amount of the output raingauge ( R0 ) for the same 
day of the model errors:

(2)MAE =

∑n

t=1

���
R̂t − R0t

���
n

(3)RMAE =
1

n
×
∑n

t=1

|
|||
||

R̂t − R0t

R̂t

|
|||
||

(4)X = R̂t − R0t

Fig. 2   Architecture of the deep 
learning models used in this 
study. A) CNN-LSTM; B) ED-
LSTM
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To get this correlation, the Pearson Correlation Coeffi-
cient (PCC, Kirch 2008), which highlights any linear rela-
tionship two statistical variables, was used:

According to the Cauchy–Schwarz inequality, PCC 
ranges between + 1 and -1, where + 1 corresponds to perfect 
positive linear correlation, 0 corresponds to no correlation, 
and -1 corresponds to perfect negative linear correlation 
(Lee Rodgers and Alan Nice Wander 1988).

Results

Figure 3A shows the boxplots of MAE of the deep learning 
models of the 349 raingauges time series simulated. The 
median of the errors is about 3 mm for CNN-LSTM and 
ED-LSTM models, while LR model has a median of about 
1 mm.

The R2 values are reported in Fig. 3B in which we can 
recognize that the two deep learning models have similar 
R2, while LR model shows the best values of error met-
ric. Figure 3C shows the average relative error for six daily 
rainfall bands considering all raingauges (0–1 mm, 1–3 mm, 
3–5 mm, 5–10 mm, 10–30 mm, 30–50 mm). The figure 
shows the relative errors for the three model architectures 
are also very similar in these cases.

(5)Y =

(
R1t

+ R2t
+ R3t

3

)

− R0t

(6)�XY =
�XY

�X�Y

The analysis of the spatial distribution of errors does 
not denote a clustering or a specific spatial distribution 
(a case of MAE of CNN-LSTM models is reported in 
Fig. 4).

The errors on the training and validation dataset are 
monitored during the training time, but we can compare the 
MAE calculated on the test and validation dataset (training 
dataset for the LR model; Fig. 5), during the post-training 
phase, to evaluate if the models are not subject to overfit-
ting. The MAEs calculated on the validation dataset and on 
the test dataset are comparable; the difference is present in 
a small range around 0, indicating a low degree of overfit-
ting (Fig. 5).

Model errors are higher when the difference among input 
and output data is higher. Each model shows a strong cor-
relation (median PCC values of 0.9) between the difference 
among the input and output values and the absolute error 
(Fig. 6).

Discussion

The errors of CNN and ED architectures are very simi-
lar, but the LR model is the best. If we compare the 
MAE of the two architectures for each raingauge, we 
can observe that they almost overlap (Fig. 7). The cor-
relation between the two errors by the Pearson method 
gives a value of 0.93.

Comparing the errors of the models proposed in this 
study with those derived from other AI-based works or 
different approaches (e.g., mathematical, statistical) is 

Fig. 3   Absolute and relative 
errors of CNN-LSTM and 
ED-LSTM models: A) Mean 
absolute error (MAE); B) R2; 
C) Relative Mean Absolute 
Error (RMAE). The boxes 
represent the interval between 
the 25th and 75th percen-
tiles (Q1 and Q3). IQR is the 
interquartile range Q3-Q1. 
The upper whisker will extend 
to the last datum lower than 
Q3 + 1.5 × IQR. Similarly, the 
lower whisker will reach the 
first datum higher than Q1 – 
1.5 × IQR
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Fig. 4   Spatial location of Mean 
Absolute Errors (MAE) of the 
CNN-LSTM

Fig. 5   Difference in MAEs calculated on the test dataset and on the 
validation dataset for CNN-LSTM and ED-LSTM while for LR the 
MAEs are calculated using test dataset and training dataset

Fig. 6   Boxplots represent the distribution of Pearson Correlation 
Coefficient calculated by comparing the absolute errors and the dif-
ference at the same time (t) of the mean input rainfall and the rainfall 
output

3723Earth Science Informatics (2023) 16:3717–3728
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very complex. The differences depend on several fac-
tors such as the features of the study area, the spatial 
distribution of the raingauges, and the rainfall distribu-
tion and amount (de Silva et al. 2007). However, con-
sidering this, we compared our model errors with those 
derived from other methods (Beauchamp et al. 1989; 
Gyau-Boakye and Schultz 1994; Abebe and Price 2003; 
Coulibaly and Evora 2007; Caldera et al. 2016; Balcha 
et al. 2023), recognizing a reasonable comparability. 
For example, Coulibaly and Evora (2007) compared six 
ANN structures to predict missing precipitation data 
using three input raingauges, and their models have 
MAE in the range 1.5–2 mm and an R2 of 0.75. On the 
other hand, using statistical methods Balcha et al. (2023) 
obtained a MAE ranging from 2 to 8 mm. Analyzing 
these cases, we recognized that AI techniques could have 
higher accuracy than traditional methods. This result 
could be attributed to the non-stationary behaviour of 
rainfall models and to the capacity of AI models to work 
with not linear relations (Creutin et al. 1997).

We can divide the models into two groups considering 
the spatial relationship between input and output rain-
gauges: group A is composed of the cases for which the 

output raingauges are located out of the triangle; group 
B is composed of the cases for which the output rain-
gauges are spatially located in the triangle with the input 
raingauges as vertices (see Fig. 8). The analysis of the 
two cases allows us to understand if the MAE values 
are related to these two configurations of the input and 
output. Group A counts 26% of the raingauges, whereas 
group B includes the remaining 74%. Both groups have 
an average MAE of about 3.2 mm, and the percentage of 
raingauges with an error greater than 5 mm is 12% for 
both cases. This analysis shows that the model errors are 
not related to the two types of relative positions between 
the output and input raingauges.

The errors of the model are strongly correlated with 
the difference between the mean rainfall of the input 
raingauges and the value of the output raingauges 
(Eq. 5). The greater the difference between input and 
output data, the greater is the model prediction error, 
as shown in Fig. 6. Deepening this result (de Silva et al. 
2007) in each of the time series used, we can find some 
records exhibiting a high difference between the input 
and output values at the same time t. In other cases, these 
differences are also in the input dataset. For each time 
series, we identified and counted the records in which 
one of the following conditions occurs:

i)	 the output raingauge measured more than 5 mm (rainy 
day) and all three input raingauges measured 0 mm (no 
rainy day);

ii)	 the output raingauge measured 0 mm (no rainy day) and 
the input raingauges measured more than 5 mm (rainy 
day);

iii)	 the output raingauge recorded 0 mm and the average 
rainfall of the three input raingauges is greater than 
5 mm (rainy day).

The procedure highlighted that each time series has 
a number of these cases, variable with a maximum 
number of more than 8%. We defined these as anoma-
lous cases because it is very complex to understand the 
causes of these measured differences. We remember that 
the data used in this work are validated by the SIR, the 

Fig. 7   The plot shows the ratio between the MAE obtained for the 
two types of model architectures

Fig. 8   Relation between input 
raingauges area (yellow) and 
respective output raingauges 
outside (A) and inside (B)
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meteorological service which provided them. We cannot 
assert that these records are wrong because we cannot 
exclude a meteorological factor influencing the meas-
ure. At the same time, we are not sure that the cause 
is, at least completely, due to meteorological conditions 
because the stations are spatially very near and with a 
little difference in altitude.

The models show a higher error concerning the number 
of anomalous cases (Fig. 9). This relation is quantified by 
a PCC value of 0.71 for both the used architectures. This 
result highlights the data-driven behaviour of AI techniques 
and can be used to emerge these particular cases from the 
database.

This research will allow the creation of a control pro-
cedure on the time series to improve their knowledge and 
understand if the causes are meteorological or instrumental 
and improve the management of the database.

Conclusions

This work demonstrates that deep learning models can 
predict rainfall values using the time series of nearby 
raingauges as input. The errors of the models are com-
parable to those obtained by other works which used 
similar or different techniques. These models can be 
applied in the analysis of the rainfall time series, for 
instance, to compute the missing data. This problem is 
one of the main issues that afflict the meteorological 
time series, such as other types of environmental moni-
toring parameters.

However, this study also demonstrated that the deep 
learning model performances are strongly influenced by 
the input data, confirming the data-driven behaviour of 

these techniques. Major errors correspond to major dif-
ferences among the input data or with the output values. 
The causes of these anomalies can be different. We cannot 
exclude meteorological factors, but we suppose that the 
main cause could be linked to raingauges malfunctions, 
given the specific selection of the input. This problem 
can affect all rainfall networks and improving knowledge 
on the identification of these anomalous data can allow 
a better management of the measurement network and 
validation procedures.
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