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Abstract
Sediment grain size and its spatial distribution is a very important aspect for many applications and processes that occur in 
the coastal zone. One of these is coastal erosion which is strongly dependent on sediment distribution and transportation. 
To highlight this fact, surficial coastal sediments were collected from a densely populated coastal zone in Western Greece, 
which suffers extensive erosion, and grain size distribution was thoroughly analysed, to predict the spatial distribution of 
the median grain size diameter  (D50) and produce sediment distribution maps. Four different geostatistical interpolation 
techniques (Ordinary Kriging, Simple Kriging, Empirical Bayesian Kriging and Universal Kriging) and three deterministic 
(Radial Basis Function, Local Polynomial Interpolation, and Inverse Distance Weighting) were employed for the construc-
tion of the respective surficial sediment distribution maps with the use of GIS. Moreover, a comparative study between the 
deterministic and geostatistical approaches was applied and the performance of each interpolation method was evaluated 
using cross-validation and estimating the Pearson Corellation and the coefficient of determination  (R2). The best interpola-
tion technique for this research proved to be the Ordinary Kriging for the shoreline materials and the Empirical Bayesian 
Kriging (EBK) for the seabed materials since both had the lowest prediction errors and the highest  R2.
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Introduction

Coastal zones are one of the most complex and dynamic 
systems since their landform changes rapidly (timeframe of 
days and weeks) due to the combined action of tidal flows, 
currents and waves on coastal sediments (Raper et al. 2005). 
Moreover, grain size analysis and textural characteristics of 
surficial coastal sediments provide useful information to 
define and reveal the hydrodynamic condition as well as 
the deposition process. The modelling of many environ-
mental and engineering applications in the coastal zone as 
well as for risk assessment against coastal hazards requires 
the knowledge of the grain size and the distribution of the 
surficial coastal sediments. As a result, measurements of 
grain size parameters are important for the understanding 

and calculation of sediment transport and critical param-
eters for modelling coastal erosion and vulnerability (Boum-
boulis et al. 2021), offshore and geotechnical engineering 
(Zananiri and Vakalas 2019), coastal zone management and 
coastal protection works such as beach nourishment. Hence, 
maps of surficial sediment spatial distribution in coastal and 
nearshore zone are important to provide information about 
the processes and mechanisms of the environment for sus-
tainable management and protection.

However, the collection of sediment samples is impos-
sible to be carried out along the entire coastline and a lack 
of information regarding the coastal sediment distribution 
is created. For this reason, it is necessary to predict the 
grain size of the sediments in all unsampled positions. To 
overcome this constraint the application of spatial interpo-
lation and geostatistical techniques has been recommended 
in varied scientific fields for parameter distribution, espe-
cially in rainfall and precipitation data (Vicente-Serrano 
et al. 2003; Moral 2010; Borges et al. 2016; Pellicone et al. 
2018; Ananias et al. 2021), hydrogeology and groundwater 
analysis (Elumalai et al. 2017; Charizopoulos et al. 2018; 
Karami et al. 2018; A. Antonakos A., Lambrakis 2021) 
environmental and ecological research (Kalivas et al. 2013; 
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Zarco-Perello and Simões 2017; Tziachris et  al. 2017; 
Qiao et al. 2018), engineering geology and soil liquefac-
tion (Boumpoulis et al. 2021; Kokkala and Marinos 2022) 
and soil sciences (Brus et al. 1996; Bourennane et al. 2000; 
Bishop and Mcbratney 2001; Robinson and Metternicht 
2006). Geostatistical methods for spatial distribution are 
also recommended for mapping and prediction of sediment 
properties and the generation of coastal and seabed sediment 
maps (Verfaillie et al. 2006; Goff et al. 2008; Stephens et al. 
2011; Lark et al. 2012; Liu et al. 2012). Meilianda et al., 
(2012), implemented multivariate geostatistics named for the 
production of a high-resolution median grain size distribu-
tion map with bathymetry as auxiliary information. (Jerosch 
2013), developed a Cokriging model with three parameters 
(slope, bathymetry, and cost distance) to construct a predic-
tive multi-parametric sediment type map. Bockelmann et al., 
(2018) applied kriging with external drift (KED) to interpo-
late estimates on relative proportions of the grain size frac-
tion of mud and median grain size  (D50) in surface sediments 
in the North Sea. Although there is a plethora of studies on 
the spatial distribution of sediments, almost all of them were 
carried out on the seabed and not near the shoreline, where 
most of the natural hazards have impacts and human activi-
ties occur. In this context, this study focuses on a zone which 
is close to the shoreline (extended from the backshore area 
to the 5-m sea depth contour) to produce maps which can be 
used in different applications that occur in the coastal zone.

All the aforementioned publications agree that the kriging 
geostatistical method in its various forms, has high predic-
tion accuracy in sediment distribution maps, especially if 
combined with other highly correlated variables (Cokriging 
or Kriging with an External Drift). Contrary to the straight-
forward principle implemented for the deterministic meth-
odologies, geostatistical techniques, have the advantage that 
they are including the parameter of randomness (stochastic) 
in the model. Another advantage of kriging is that it takes 
into account the spatial autocorrelation between neighbour-
ing observations for calculating the interpolated surfaces 
and predicting values at unsampled places (Goovaerts 1999; 
Bockelmann et al. 2018). Recently, more advanced and com-
plex methodologies have been developed for interpolation, 
such as Machine Learning (ML) (Bélisle et al. 2015; Appel-
hans et al. 2015; Tziachris et al. 2020; Sekulić et al. 2020; 
Didkovskyi et al. 2022), but a thorough review of this these 
techniques is beyond the scope of this paper.

In most of the research papers, in which a compara-
tive study between spatial interpolation methods has been 
applied, geostatistical techniques (Kriging) outperformed 
the deterministic methodologies. Among the different Krig-
ing techniques, the most efficient turned out to be the mul-
tivariate Co-Kriging (COK) methodology. However, if the 
variables used as auxiliary information in the Co-Kriging 
model are not correlated, then univariate Kriging models 

have better accuracy and performance than Co-Kriging. In 
any case, it is important to estimate the optimal spatial inter-
polation technique each time applied in a dataset for the best 
possible result.

The main objective of this study is the comparison of 
the predictive performance of different spatial interpolation 
methods, for surficial sediment distribution of the median 
grain size  (D50) in the coastal zone of a model area existing 
in Western Greece. For this reason, four univariate geosta-
tistical and three deterministic techniques were performed to 
produce sediment distribution maps. These methods include 
Ordinary Kriging (OK), Simple Kriging (SK), Bayesian 
Kriging (EBK), Universal Kriging (UK), Radial Basis 
Function (RBF), Local Polynomial Interpolation (LPI) and 
Inverse Distance Weighting (IDW). The prediction accuracy 
of those interpolation models was evaluated with a cross-
validation method (RMSE: Root Mean Square Error and 
ME: Mean Error) and using the coefficient of determination 
 (R2) between the measured and predicted values. The imple-
mentation and production of those maps can be provided 
and used as a raster file, for the calculation of many other 
parameters that affect coastal erosion, such as the geotechni-
cal parameter for the calculation of the Coastal Vulnerability 
Index (CVI).

Study area

The model area of this research is the Gulf of Patras which 
extends from the Rio-Antirio Bridge in the Eastern part to 
the cape of Araxos in the Western part and is located in 
Northwest Peloponnese, Western Greece (Fig. 1). On the 
West, it is connected to the Ionian Sea and on the East with 
the Gulf of Corinth. The total length of the shoreline of the 
study area is around 30 km. The Gulf of Patras is a densely 
populated coastal zone, which suffers extensive erosion over 
time (Nikolakopoulos et al. 2019; Depountis et al. 2023) 
and is expected to be worst in the future not only due to 
climate change but also due to anthropogenic factors and 
urban development.

The gulf of Patras constitutes a shallow marine system 
(Piper and Panagos 1979) with a maximum depth of water 
arising at 130 m. The main rivers discharging in the gulf 
are the Acheloos and Evinos rivers in the north and Peiros 
in the South. The Gulf of Patras is a Plio-Quaternary gra-
ben (Ferentinos et al. 1985) and the evolution of the gulf 
in the Quaternary occurred due to the interaction between 
the tectonic subsidence (rates at 3–5 mm/year at the central 
graben), global sea level rise and the river sediment supply 
(Chronis et al. 1991).

In this research, the coastal zone of the study area was 
divided into two zones: Sampling Zone 1 (Shoreline materi-
als), which is extended between the backshore and foreshore 
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and Sampling Zone 2 (Seabed materials), which is extended 
from the foreshore until the 5-m depth contour (Fig. 1). Sam-
pling Zone 1 is mainly consisted of coarse sands and gravelly 
sands, while Sampling Zone 2 has fine sands and silty sands. 
Furthermore, sampling zone 1 and 2 were divided into 3 dif-
ferent sub-regions for better map visualization and simplifica-
tion of results: 1) Sub-region of Vrachnaika-Roitika-Kaminia, 
2) Sub-region of Alissos-Kato Achaia-Niforeika and 3) Sub-
region of Kalamaki-Ioniki Akti-Karnari (Fig. 1).

Research methodology

The main aim of this research is the assessment of the 
optimal spatial interpolation technique for sediment dis-
tribution maps comparing different spatial distribution 

methodologies. To accomplice this a stepwise methodo-
logical approach was followed: 1) Data collection-sedi-
ment sampling-grain size analysis, 2) Spatial interpolation 
analysis in a GIS environment and 3) Construction of sedi-
ment distribution maps utilizing the optimal interpolator. 
As shown in Fig. 2 the methodology starts with the collec-
tion and sampling of coastal sediments in the study area, 
which is subjected to grain size analysis in the laboratory, 
providing with this way useful information to define and 
reveal the depositional environment.

Subsequently, grain size analysis results were inserted in 
a GIS environment and specifically the median grain size 
 (D50) to produce spatial interpolation maps applying geo-
statistical and deterministic methodologies. Cross-validation 
of the interpolated results is required to find the optimal 
spatial interpolator. Errors, Pearson Correlation and  R2 are 

Fig. 1  Study area (Gulf of Patras in Western Greece) with the positions of the sediment sampling. The coordinates correspond to the Hellenic 
Geodetic Reference System
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calculated for each different interpolator and the one with the 
higher appropriateness index (AI) value will be considered 
the optimal.

Data collection‑grain size analysis and depositional 
environment

A total of one hundred fifty-one (151) samples of coastal 
sediments from seventy-five (75) different positions were 
collected along the coastline, which were taken from the top 
0 to 10 cm at each sample position. Seventy-five (75) sam-
ples were taken from Sampling Zone 1 and seventy-six (76) 
from Sampling Zone 2. A global Positioning System (GPS) 
was used to accurately record the sampling positions. Sam-
pling in several areas was difficult due to the morphology 
of the coast (pebbles, full coverage with algae, etc.) and its 
difficult access to the sample positions due to the existence 
of various structures and houses near the coastline.

The collected samples of surficial coastal sediments were 
subjected to grain size analysis with the dry sieving meth-
odology and were classified according to the ASTM stand-
ards. The calculated parameters of sediments, which were 
extracted from the grain size distribution curve and used 

for the soil classification are the  D50,  D30, and  D10 particle 
size, the uniformity coefficient  (Cu) and the curvature coef-
ficient  (Cc). These are the geometric properties of a grading 
curve, which describes a particular type of soil. Statistical 
parameters such as mean, sorting, skewness and kurtosis 
using the GRADISTAT V.4 software and the Folk and Ward 
(1957) logarithmic method (Blott and Pye 2001) were also 
calculated.

The depositional environment of the sediment samples 
was estimated with the linear discrimination function (Bas-
anta K. Sahu 1964), which is used in many research papers 
for revealing the deposition environment (Alsharhan and El-
Sammak 2004; Theodorakopoulou et al. 2012; Baiyegunhi 
et al. 2017; Emmanouilidis et al. 2018). To discriminate the 
depositional environments of the aeolian and beach the fol-
lowing equation was used:

where M = mean,  r2 = Sorting, SK = Skewness and 
KG = Kurtosis. If Y1 is <  − 2.7411, the suggested environ-
ment is the aeolian and if Y1 is >  − 2.7411, the deposition 
environment is the beach (Basanta K. Sahu 1964).

(1)Y1 = −3.5688M + 3.7016r2 − 2.0766SK + 3.1135KG

Fig. 2  Flowchart showing the methodological approach used in this study
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To distinguish the depositional environments between the 
beach and shallow marine depositions the following equa-
tion was used:

If Y2 < 65.3650 beach deposition is indicated and if 
Y2 > 65.3650 a shallow marine environment is suggested 
(Basanta K. Sahu 1964).

Spatial interpolation analysis in GIS‑Semi‑variogram 
and Kriging interpolation

The initial step before the interpolation with geostatistical 
methods is the calculation of the experimental variogram 
(semi-variogram) from the data set. The semi-variogram 
graph explains the relationship between the point samples' 
distances and their possible semi-variogram values (Meil-
ianda et al. 2012). The equation that describes the semi-
variogram is:

where γ(h) is the estimated values of the semi-variogram, 
which symbolize the variance of the observation values sep-
arated by a distance h,  xi is the position of the samples Z(xi) 
and  (xi + h) are the positions of the samples Z(xi + h), N(h) 
is number of Z(xi) pairs of measurements separated by h.

When the distance of a pair of a sample is low, the dif-
ference between sampled values is also expected to be low. 
This means that samples located nearby are very possible to 
have similar values, but samples located at a larger distance 
from each other are expected to have different values, which 
are increasing as the distance is higher.

The semi-variogram diagram is consisted of and is 
described by three key parameters, the nugget, the sill and 
the range. Nugget  (C0) represents the measurement and 
data errors or random spatial sources of variation at dis-
tances smaller than the sampling interval or both and rep-
resents the value of the initial variability. Range (a) is the 
distance where the semi-variogram reaches the total sill 
 (C0 +  C1) and after that distance, there is no spatial corre-
lation of the data. Sill is the value that the semi-variogram 
reaches the range and represents the maximum variability, 
while partial sill is the sill minus the nugget  (C1—C0). 
The use of the nugget-sill ratio  (C0/C0 +  C1) was applied 
for the estimation of the spatial dependence of the vari-
ables (Jerosch 2013; Adhikary and Dash 2017; Tziachris 
et al. 2017). A ratio of less than 25% means strong spatial 
dependence, while a ratio between 25 and 75% indicates a 
moderate spatial dependence and a ratio over 75% shows a 
weak spatial dependence (Cambardella et al. 1994).

(2)
Y2 = 15.6534M + 65.7091r2 + 18.1071SK + 18.5043KG

(3)�(h) =
1

2N(h)

N(h)
∑

i

[Z(xi)
− Z(xi + h)]

2

Spatial interpolation analysis in GIS‑Interpolation 
methods

Four geostatistical techniques (OK, UK, SK and EBK) and 
three deterministic (IDW, RBF and LPI) algorithms were 
implemented to interpolate the median grain size  D50 in 
the coastal zone of the gulf of Patras, with the Geostatisti-
cal Analyst tool of the ArcGIS 10.8 software. Generally, 
deterministic approaches use either the degree of smooth-
ing (LPI and RBF) or the distance between the points, such 
as the IDW. Geostatistical models are based on the statisti-
cal properties of the data and in the semi-variogram. Krig-
ing as a geostatistical interpolator can be described with 
the acronym of BLUE-Best Linear Unbiased Estimator and 
rely on an assumption of a linear relationship between the 
response and explanatory variables (Aalto et al. 2013; Bur-
rough and McDonnell, 1998; Goovaerts 1999). It is con-
sidered the best because the expected squared difference 
between the estimated value and the known is the minimum 
for all possible linear estimators. Linear since the estima-
tor is formed by linear weighing of the available samples. 
Unbiased estimator because it defines that the expected 
error is equal to zero. Finally, Kriging is mentioned as 
an extract estimator due to that estimates a value in an 
unknown position where there are no data and samples.

Inverse Distance Weighting (IDW)

IDW is one of the most used methods among determinis-
tic interpolation techniques. This method assumes that the 
measured values at a closer distance have greater weight 
than those further away. The influence of a known value is 
inversely related to the distance from the unknown data point. 
Consequently, this method gives greater weights to values 
closest to the prediction position and the weights reduce as 
a function of distance. IDW determines cell values using a 
linearly weighted combination of a set of sample points.

where Z(xo) is the estimated unknown value, x is the set of 
spatial coordinates  (x1,  x2), and r is the weight related to the 
distances  dij which is the distance between the estimation 
point of the n data points.

Local Rolynomial Interpolation (LPI)

Local Polynomial Interpolation (LPI) is a determinis-
tic interpolation technique, which fits many polynomials 
mathematical functions, in contrast with Global Polynomial 

(4)Z(xo) =

∑n

i=1

xi

dr
ij

∑n

i=1

1

dr
ij
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Interpolation (GPI) which fits a unique polynomial function 
to the entire surface (Johnston et al. 2001). Therefore, LPI 
fits the specified order (zero, first, second and third) using all 
points only within the defined overlapping neighbourhood, 
which is used as a value for each prediction in the fitted poly-
nomial at the centre of the neighbourhood (Johnston et al. 
2001). GPI is useful for identifying long-range trends in the 
dataset, whereas LPI can produce surfaces that capture the 
short-range variation.

Radial Basis Function (RBF)

The Radial Basis Function (RBF) is an interpolator which is 
based on a form of artificial neural networks i.e. input layer, 
hidden layers, and output layer (Johnston et al. 2001; Ali 
et al. 2021). In RBF, the generated surface requires pass-
ing through each measured point while minimizing the total 
curvature of the surface (Johnston et al. 2001). In addition, 
RBF can predict values above the maximum and below the 
minimum. The interpolator basis functions that are covered 
by the RBF include a thin-plate spline, tension-based spline, 
completely regularized spline, multi-quadric function and 
inverse multi-quadric spline.

Ordinary Kriging (OK)

The OK interpolation method is the most common and sim-
ple among the Kriging techniques, which incorporates sta-
tistical properties of the measured data (spatial autocorrela-
tion) (Bhunia et al. 2018). Ordinary kriging is also described 
by the acronym BLUE, as mentioned above. OK assumes 
that the constant mean is unknown and defined as the mean 
of samples (local mean). As mentioned above, the first step 
for the application of Kriging is the estimation of the semi-
variogram. The equation used for OK interpolation is:

where  ZOK(xo) is the interpolated value for point  (xo), Z(xi) is the 
known value, λi is the OK weight for the Z(xi) value. In addition, 
λi values must be evaluated to obtain an unbiased estimation and 
to minimize the error variance (Pellicone et al. 2018).

Simple Kriging (SK)

In contrast with OK, the application of Simple Kriging (SK) 
presupposes the assumption of stationarity. SK considers 
μ to be known and constant all over the study area, unlike 

(5)ZOK(xo) =

N
∑

i=1

��Z(xi)

(6)
N
∑

i=1

�� = 1

with the OK type, where the μ is unknown and is considered 
to fluctuate locally, maintaining the stationarity within the 
local neighbourhood (Moral 2010). The equation used for 
SK interpolation is:

where μ is a known stationary mean

Universal Kriging (UK)

Universal Kriging is an interpolation method with a changing 
mean and the trend is modelled as a linear combination of 
functions of the spatial coordinates. The UK also uses a lin-
ear trend function μ(xi) rather than relying on a constant trend 
function μ, like the other Kriging interpolators. It is similar 
to OK because it considers that the trend (μ) is not constant 
over the whole field but depends on the spatial position of 
the observation. According to Goovarets (1997), the UK is a 
univariate method, but some studies classify it as multivariate 
because it uses coordinate information (Li and Heap 2014).

Empirical Bayesian Kriging (EBK)

According to (Krivoruchko and Gribov 2019) EBK consists of 
two geostatistical models: the intrinsic random function krig-
ing (IRFK) and the linear mixed model (LMM). In EBK, the 
stochastic spatial process is represented locally as a stationary 
or nonstationary random field and the parameters of the locally 
defined random field are allowed to vary across space (Gri-
bov and Krivoruchko 2020). Empirical Bayesian kriging also 
differs from other kriging methods by considering the error 
introduced by estimating the underlying semivariogram. Clas-
sic Kriging techniques obtained semi-variogram is evaluated 
from known data positions and is considered as the single, true 
semi-variogram and it is used to make predictions at unknown 
positions by not taking the uncertainty in the semi-variogram 
estimation into account, thus underestimating the standard 
errors of predictions (Schneider and Martinoni 2001; Pellicone 
et al. 2018). EBK is a geostatistical interpolation method that 
automates the most difficult aspects of building a valid kriging 
model through a process of subsetting the study area, coupled 
with multiple simulations to obtain the best fit (Krivoruchko 
and Gribov 2019). This process finally creates a spectrum of 
semi-variograms and each of these is an estimate of the true 
semi-variogram for the subset (Pellicone et al. 2018).

Optimal interpolation‑cross validation methods

The cross-validation method was applied for the evaluation 
and the prediction accuracy in the unknown values of the 
different interpolation techniques to find the optimal one. 

(7)ZSK(xo) =

N
∑

i=1

��Z(xi) +

(

1 −

N
∑

i=1

��

)

�
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Consequently, the objective of cross-validation is to give 
information about which model provides the most accurate 
predictions and how well the prediction works (Schneider 
and Martinoni 2001).

In the present study, the prediction accuracy of the cross-
validation method was evaluated using the statistical param-
eters of Mean Error (ME), Mean Squared Error (MSE), 
Mean Absolute Error (MAE) and Root-Mean-Square-Error 
(RMSE). In an accurate model that provides good results 
and predictions, the ME must be close to 0 and RMSE 
should be as small as possible The two most commonly 
used for cross-validation are RMSE and ME. Statistical 
parameters of the errors were calculated using both the 
Geostatistical Analyst Tool in the ArcGIS software and the 
statistical software R.

Mean Error is the measure of the bias of the prediction and 
can be calculated with the following equation:

RMSE measure the difference between the predicted and 
the observed values and estimates the standard deviation of 
the residuals. It can be calculated by the following equation:

In addition, for the cross validation the Pearson correla-
tion (P. Correlation) and the coefficient of determination  (R2) 
between the observed and predicted values were used. The 
spatial dependence of the variables in the semi-variogram 
was estimated by the sill-nugget ratio.

In order to simplify the evaluation of the optimal inter-
polator selection, an appropriateness index (AI) (Ali et al. 
2021) was applied in the calculated cross-validation param-
eters. The computation of AI requires the normalization of 
the values into non-dimensional using the minimum–maxi-
mum normalization method. The methodology of the appro-
priateness index (AI) is described in Ali et al. (2021).

(8)ME =

∑n

i=1
[Z∗

xi
− Zxi]

n

(9)RMSE =

�

∑n

i=1
[Z∗

xi
− Zxi]

2

n

Results

Grain size analysis

As it was mentioned before, the coastal sediment samples 
were divided into two different zones (Zone 1 and 2), which 
represent the shoreline (Zone 1) and the seabed materials 
(Zone 2). The descriptive statistics of the coastal sediments 
from the grain size analysis in Zones 1 and 2 are presented 
in Table 1.

Grain size analysis, classification, and statistical param-
eters indicate that Sampling Zone 1 is mainly consisted of 
coarse and gravelly sands, with  D50 = 1.97 mm. On the other 
hand Sampling Zone 2 mainly consisted of fine and silty 
sands, with  D50 = 0.63 mm.

Sediments of Ζone 1 are poorly to very poorly sorted, 
with a coarse to symmetrical skewness and very platykur-
tic to leptokurtic kurtosis. On the other hand Sediments 
of Ζone 1 are poorly to moderately sorted and well-sorted, 
with a coarse to very fine skewness and platykurtic to 
very leptokurtic kurtosis. An example of the geometrical 
parameters required for the classification and description 
of the sediment samples according to the ASTM standards 
is presented in Table 2 while the interrelationship between 
the grain size parameters (sorting, mean, skewness and 
kurtosis) of the two sampling zones is presented in bivari-
ate plots in Fig. 3.

In Sampling Zone 1 (shoreline materials), the grain 
size analysis shows that the coarser sediments (gravels 
and cobbles) are located in Sub-region 2 in the mouth of 
the Peiros River with a grain size of 4.5 to 5.5 mm. Coarse 
sediments (coarse sands and gravelly sands) are also exist-
ing in all sub-regions, especially in Vrachnaika, Kaminia, 
the western part of Alissos, Niforeika and a small part of 
Karnari. The rest of Sampling Zone 1 consists of medium 
to coarse sands with a grain size of around 1 to 2.5 mm. 
On the contrary, Sampling Zone 2 (seabed materials) is 
mainly covered by fine sediments with a grain size of 
around 0.2 to 0.7 mm, except in a few areas such as the 

Table 1  Descriptive statistics 
of coastal sediments derived 
by the grain size analysis 
 (D50: arithmetic and  LogD50: 
logarithmic)

Zone 1  (D50 mm) Zone 2  (D50 mm) Zone1  (LogD50 
mm)

Zone 2 
 (LogD50 
mm)

Count 76 77 76 77
Mean 1.97 0.63 0.23 -0.48
Median 1.80 0.21 0.26 -0.68
Min 0.42 0.13 -0.38 -0.90
Max 6.1 5.5 0.79 0.74
St. Deviation 1.007 1.005 0.24 0.43
Skewness 0.665 3.227 -0.352 1.152
Kurtosis -0.360 11.163 -0.428 0.408
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Peiros River and small parts of Alissos, Kaminia and Kar-
nari, which appear with coarser sediments.

Implementation of Basanta K. Sahu, (1964) functions for 
the differentiation of the deposition environments between 
aeolian/beach and beach/shallow marine depositions show 
that most of the sediment samples belong to the beach/shal-
low marine environment (Fig. 4).

The statistical normal distribution of the sampling den-
sity was tested by plotting histograms in an arithmetic scale 
(Fig. 5a and 5c), applying the Q-Q plots which represent 
the data distribution against the expected theoritical nor-
mal distribution as well as the Kolmogorov–Smirnov tests 
which examine the null hypothesis that a set of data becomes 
from a normal distribution. According to these tests, for both 

Table 2  Grain size analysis and 
classification of the Sub Region 
1: Vrachnaika-Tsoukaleika-
Kaminia

Sample Name D50 (mm) Cu Cc Classification 
(ASTM)

Description

NS1(1) 3.50 8.75 2.62 SW Well Graded Sand with Gravel
NS1(2) 0.13 1.88 0.83 SP Poorly Graded Sand
NS1(3) 0.13 2.00 0.78 SP Poorly Graded Sand
NS2(1) 0.78 2.97 0.71 SP Poorly Graded Sand
NS2(2) 0.14 2.00 0.95 SP Poorly Graded Sand
NS2(3) 0.12 1.92 0.84 SP Poorly Graded Sand
NS3(1) 1.85 3.93 1.54 SP Well Graded Sand with Gravel
NS4(1) 0.90 3.06 1.17 SP Poorly Graded Sand
NS5(1) 1.10 3.19 0.70 SP Poorly Graded Sand
NS6(1) 0.92 5.36 0.40 SP Poorly Graded Sand with Gravel
NS6(2) 0.14 2.08 0.98 SP-SM Poorly Graded Sand with Silt
NS6(3) 0.16 2.25 1.00 SP-SM Poorly Graded Sand with Silt
NS7(1) 1.50 2.22 1.05 SP Poorly Graded Sand
NS7(2) 0.15 2.07 1.03 SP Poorly Graded Sand
NS7(3) 0.14 2.00 0.94 SP-SM Poorly Graded Sand with Silt

Fig. 3  Bivariate plots between the statistical parameters (Mean, Sorting, Skewness and Kurtosis) of the two Sampling Zones
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Zones 1 and 2, the sampling data sets are not normally dis-
tributed. Even though Kriging can provide good interpola-
tion results in non-normal data, the optimal results can be 
interpolated when the data are normal or close to normal 
distributions. Hence, the sampling data sets were log-trans-
formed to achieve distributions as much closer to normal 
(Fig. 5b and 5d). After the log transformation, the sampling 
data set of Zone 1 is normally distributed (Kolmogorov test: 
p-value = 0.742), while the sampling data set of Zone 2 is 
not (Kolmogorov test: p-value < 0.05).

A co-kriging interpolation with auxiliary parameters was 
also applied, using the depth of water (m) and the mud con-
tent (%). However, the Pearson correlation coefficient, which 
is the linear correlation between two datasets, for those two 
variables to the median grain size  (D50 mm) showed a very 
low correlation and the run of a co-kriging model was not 
feasible to give a better interpolation solution for the cur-
rent study.

Semi‑variogram modeling

The construction of a semi-variogram requires the selection 
of input data, which are affecting significantly the final inter-
polating results. Those inputs are the number of minimum 
and maximum search neighborhood especially for the geo-
statistical methodologies, the order of polynomial for LPI, 
kernel function for RBF and the power for IDW (Table 3). 
The selection of the final values of each input was decided 

so that the final results obtained the lowest possible errors 
in the cross-validation outputs.

The number of minimum and maximum search neigh-
borhood is five (5) and (10) respectively, while the power 
function (p) for IDW is equal to 2 (p = 2). The special 
environment of the coastal zone makes difficult the inter-
polation of long distanced samples either because there are 
no beaches in several areas due to erosion or because the 
 D50 values vary per area across the coastline. This is the 
reason of the selection of those specific values for search 
neighborhood and power function (p). Therefore, in order 
to make the interpolation as realistic as possible, a rela-
tively small number of search neighbors and a power equal 
to 2 were chosen (for IDW), giving a greater weighting to 
the closest points. The selection of Completely regularized 
Spline as kernel function and the selection of a first order 
polynomial in LPI interpolator was finally decided because 
they had the lowest errors in cross validation.

Furthermore, based on the inputs data of Table 3 and for 
each geostatistical interpolation method (except EBK), the 
omnidirectional semi-variogram parameters nugget, par-
tial sill, and range along with the nugget-sill ratio were 
calculated (Table 4).

In LogSK_Zone 1 the nugget-sill ratio is 10.74% whereas 
in LogSK_Zone 2 is 59.18%, indicating a strong and mod-
erate spatial dependence, respectively. LogUK_Zone 1 and 
LogUK_Zone 2 have the highest ratio with 28.79% and 55.75% 
respectively, indicating a moderate spatial dependence. LogOk 

Fig. 4  Differentiation of deposition environment in the study area
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Zones 1 and 2 were estimated with the best nugget-sill ratio of 
10.42% and 19.00%, respectively, showing a strong depend-
ence between the variables. The range of Sampling Zone 1 
was lower (780.34 to 2712.19 m) compared with the range of 
Sampling Zone 2 (1467.7 to 4737.06 m). Therefore, LogOK_
Zone 1 was calculated with the lowest range (780.34 m) and 
LogOK_Zone 1 with the highest (4737.06 m).

In all cases, the spherical model was chosen because 
it yielded the smallest errors among the other models 

(spherical, exponential and Gaussian). The omnidirectional 
semi-variogram for the OK method and their fitted models 
can be seen in Fig. 6.

Sediment distribution and prediction maps

The produced sediment distribution map using determin-
istic and geostatistical methods, for both Ζones 1 and 2 
and the three sub-regions (Vrachnaika-Roitika-Kaminia, 

Fig. 5  Frequency distribution of a)  D50 mm and b)  LogD50 mm, of sediments in Sampling Zone1 and c)  D50 mm and d)  LogD50 mm in Sampling 
Zone 2
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Alissos-Kato Achaia-Niforeika, Ioniki Akti-Karnari-Araxos) 
are presented in Figs. 7 and 8. Generally, the visual examina-
tion of the sediment distribution maps indicates similar and 
smooth spatial patterns with minor differences between the 
different spatial interpolation techniques.

In the deterministic distribution maps of  LogD50 (Fig. 7), 
the main differences observed are: 1) parts of the Vrachnaika 
seabed materials, were estimated with higher grain size val-
ues among the different deterministic interpolation tech-
niques (higher values in RBF in comparison with IDW and 
LPI method), 2) IDW indicates higher values from RBF and 
LPI interpolation in Tsoukaleika, Kaminia, Alisos and Pei-
ros River areas (seabed zone), 3) in Alikes area the shoreline 
materials were calculated with higher grain size with the 
LPI and lower with the RBF and IDW method, 4) IDW and 
RBF has higher values in comparison with LPI in Kalamaki 
shore materials, 5) in Ioniki akti area for seabed zone the 
IDW and LPI has higher values of  D50 than RBF and, 6) in 
Karnari area the IDW predicted with higher grain size and 
lower with RBF and LPI (shoreline zone).

In the geostatistical prediction maps of  LogD50 (Fig. 8), 
the depicted grain sizes of the distributed sediments, 
reveal fewer differences than the deterministic ones. The 

most significant differences between the maps are: 1) in 
the Vrachnaika-Tsoukaleika-Kaminia area all the inter-
polations show similar behaviour in the distribution and 
prediction of  D50 (mm), with small variations only in the 
western part of Kaminia and Alisos area, where the OK 
method calculated with higher values compared to EBK, 
SK and UK, 2) SK shows lower  D50 values and UK higher 
compared to the other methods in Peiros River zone 2, 
3) OK, EBK and SK indicate similar behaviour in Kato 
Achaia, Niforeika, Kalamaki and Ioniki akti for both 
zones, except the UK, which depicted with small vari-
ations in the rest of the area and, 4) in Karnari the OK, 
EBK and SK show similar trends and are characterized 
with higher sediment grain size in comparison with the 
UK spatial interpolation.

Cross validation

Comparison between deterministic and geostatistical 
methods

A cross-validation method was applied to compare the per-
formance of the different interpolation methods used in this 

Table 3  Selection value of input data for each interpolator

Name Min Neigh-
bors

Max Neigh-
bors

Sector Type Kernel Function Power Order of polynomial

SK_Shore 5 10 4 Sectors - - -
EBK_Shore 5 10 4 Sectors - - -
OK_Shore 5 10 4 Sectors - - -
UK_Shore 5 10 4 Sectors - - -
IDW_Shore 5 10 4 Sectors - - -
LPI_Shore 5 10 4 Sectors - p = 2 Exponential/First
RBF_Shore 5 10 4 Sectors Completely regularized Spline - -
SK_Bed 5 10 4 Sectors - - -
EBK_Bed 5 10 4 Sectors - - -
OK_Bed 5 10 4 Sectors - - -
UK_Bed 5 10 4 Sectors - - -
IDW_Bed 5 10 4 Sectors - - -
LPI_Bed 5 10 4 Sectors - p = 2 Exponential/First
RBF_Bed 5 10 4 Sectors Completely regularized Spline - -

Table 4  The semi-variogram 
parameters for each 
interpolation method with the 
Nugget-Sill ratio

Model Nugget  (Co) Partial Sill  (C1) Range (a) (m) Nugget-Sill ratio

LogSK_Zone 1 Spherical 0.006 0.05 1049.5 10.74%
LogSK_Zone 2 Spherical 0.087 0.06 1467.7 59.18%
LogUK_Zone 1 Spherical 0.019 0.047 2712.19 28.79%
LogUK_Zone 2 Spherical 0.097 0.077 3627.85 55.75%
LogOK_Zone 1 Spherical 0.005 0.043 780.34 10.42%
LogOK_Zone 2 Spherical 0.038 0.162 4737.06 19.00%
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Fig. 6  Omnidirectional semi-
variogram for Ordinary Kriging 
(OK) for spherical, gauss and 
exponential model for Zone 1

Fig. 7  Sediment distribution map of  LogD50 (mm) with the deterministic approaches
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study for Zone 1 and 2. The results of cross-validation are 
presented in Table 5.

The result shows that geostatistical methods outper-
form the deterministic. Statistical errors are lower almost 
in all geostatistical methods in comparison with the deter-
ministic methods except UK, which has the highest error 
among all the spatial interpolation techniques. In addi-
tion, the Pearson Correlation and the coefficient of deter-
mination  (R2) in the linear regression model between the 

measured versus the predicted values was higher in the 
geostatistical (kriging) interpolations compared with the 
deterministic, with the exception again of the UK which 
has low values of  R2.

The optimal interpolation method based on AI for Zone 
1 proved to be the OK method, while in position 2 and 3 
were the EBK and SK, respectively. Correspondingly, the 
optimal interpolation method for Zone 2 proved to be the 
EBK method, followed by the deterministic technique RBF 

Fig. 8  Sediment distribution map of  LogD50 (mm) with the geostatistical approaches
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in position 2 and SK in position 3 (Table 5). Despite that 
RBF is deterministic method, proved to be in the second 
place in Zone 2, since the calculated errors are low and the 
P. Corellation and  R2 values are high. The cross-validation 
results can also be observed in the heatmap of Fig. 9, where 
can be ssen the optimal performance of the OK_Shore and 
EBK_Bed (with yellow color) compared to the other inter-
polation methods.

The scatter plots between the measured versus the pre-
dicted values of the sediment median grain size  (LogD50) 
are presented in Fig. 10 for both the deterministic and the 
geostatistical interpolations, respectively.

Comparison between deterministic methods

The optimal interpolation from the deterministic methodolo-
gies for both zones 1 and 2 has the RBF interpolation, which 
has the lowest errors, the highest P. Correlation,  R2 and AI 
(0.698 in Zone 1 and 0.813 in Zone 2) in both zones. IDW 
and LPI in Zone 1 have similar behaviour in errors values, 
however IDW has a better performance in P. Correlation and 
 R2 and as a result the AI index ranked it in higher position. 
On contrary, in Zone 2 LPI proved to be more efficient since 
has the smallest ME and RMSE errors and higher P. Cor-
relation,  R2 and AI (IDW = 0, LPI = 0.745). In any case, the 

Table 5  Cross-Validation results 
of  LogD50 (mm) predictions 
for Zone 1 (Shore) and 2 
(Bed). The presented values 
in the table are normalized 
using the minimum–maximum 
normalization method

Name ME RMSE MAE MSE P. Correlation R2 AI Rank

SK_Shore 0.147 0.966 0.889 1.000 1.00 0.94 0.701 3
EBK_Shore 1.000 0.804 0.667 0.875 0.71 0.63 0.772 2
OK_Shore 0.624 1.000 1.000 1.000 1.00 1.00 0.924 1
UK_Shore 0.000 0.000 0.000 0.000 0.14 0.19 0.000 6
IDW_Shore 0.060 0.554 0.500 0.625 0.43 0.49 0.360 5
LPI_Shore 0.497 0.059 0.167 0.000 0.00 0.00 0.000 6
RBF_Shore 0.350 0.889 0.722 0.875 0.86 0.68 0.698 4
Name ME RMSE MAE MSE P. Correlation R2 AI Rank
SK_Bed 0.518 1.000 0.767 1.000 0.714 0.790 0.780 3
EBK_Bed 1.000 0.900 0.884 0.919 1.000 1.000 0.949 1
OK_Bed 0.892 0.746 0.814 0.757 0.714 0.648 0.758 4
UK_Bed 0.502 0.000 0.000 0.000 0.000 0.000 0.000 6
IDW_Bed 0.000 0.188 0.907 0.216 0.429 0.362 0.000 6
LPI_Bed 0.827 0.904 0.814 0.919 0.571 0.534 0.745 5
RBF_Bed 0.835 0.894 1.000 0.919 0.714 0.590 0.813 2

Fig. 9  Heatmap with the normalized values (from 0 to 1) of cross-validation methodology for each statistical parameter and spatial interpolation 
technique
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Fig. 10  Scatter plots of Measured vs Predicted  LogD50 values for the interpolations
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error values for the three different deterministic approaches 
were very close and agrees with the small differences which 
were found during the visual examination of the maps.

Comparison between geostatistical methods

According to Table 4, in the shoreline Zone 1, the lowest 
RMSE, MSE, MAE, P. Correlation and  R2, and as a result 
the highest AI index (0.924) has the Ordinary Kriging (OK). 
While in the seabed Zone 2, the lowest ME, P. Corellation 
and  R2, and the highest AI index (0.949) has the Empirical 
Bayesian Kriging (EBK). Despite that SK was not the best 
interpolator for sediment distribution for none of the two 
zones, it indicates similar RMSE and  R2 with OK in Zone 
1 and higher  R2 than OK in Zone 2. Therefore, the error 
values obtained from the cross-validation method are very 
close in all interpolations except the UK which had the worst 
interpolator in all cases.

Results and calculated values from the cross-validation 
agree with the visual examination of the distribution maps, 
especially in the SK, OK and EBK interpolations, which 
depict similar distributions with negligible differences 
(except in a few parts of the study area). This fact is con-
firmed by cross-validation since the calculated prediction 
errors are very close in those three interpolations. On the 
contrary, the UK method has significant differences in both 
the distribution maps and the error parameters compared 
to the other three methods. Therefore, the best and more 
accurate prediction for Zone 1 is the OK and for Zone 2 is 
the EBK interpolation.

Discussion‑Conclusions

The performance of different spatial interpolation methods 
for the production of sediment distribution maps is exam-
ined in this research, with the ultimate goal of using the 
respective maps in coastal vulnerability index calculations 
and applications related to coastal management.

For this purpose four geostatistical (OK, UK, SK and 
EBK) and three deterministic techniques (IDW, RBF and 
LPI) were applied in the coastal sediments of the Gulf of 
Patras in Western Greece, to interpolate the median grain 
size  D50 (mm) and choose the optimal technique for this par-
ticular area. The final results indicate that the geostatistical 
interpolations outperform the deterministic ones.

Many researchers have investigated in the past which 
interpolation technique has better performance in several 
other geoenvironmental cases. In most of them results 
showed that the geostatistical methods usually have a bet-
ter performance than the deterministic ones (Li and Heap 
2011; Yao et al. 2014), especially if combined with auxiliary 

parameters (Moral 2010; Kalivas et al. 2013; Pellicone et al. 
2018; Ananias et al. 2021). Nevertheless, in some stud-
ies, deterministic methods outperformed the geostatistical 
ones. According to Adhikary and Dash (2017) and Wen 
et al. (2022) RBF outperform the OK method (similar to 
the Sampling Zone 2 of the current research) in the predic-
tion of groundwater table. Zarco-Perello and Simões, (2017) 
estimated that the IDW outperform the OK method in the 
prediction of distribution of the habitat sessile organisms in 
marine ecosystems. Qiao et al., (2018) recommended that 
the prediction accuracy of IDW was higher than OK in the 
spatial prediction of As concentration in the soils of Beijing.

Comparing the deterministic interpolations in already 
published papers has been observed that the calculated 
optimal interpolator for each study was different. In this 
study RBF was calculated as the optimal interpolator 
among the other deterministic interpolation methods (LPI 
and IDW). Wang et al., (2014) compared LPI, RBF and 
IDW interpolations for estimating the spatial distribution 
of precipitation in Ontario, Canada and showed that LPI 
was the best method, while Bhunia et al., (2018) proved 
also that LPI had higher prediction accuracy than IDW 
and RBF in the spatial distribution of soil organic carbon 
(SOC). Wu et al., (2019) compared LPI, RBF and IDW 
interpolations for estimating spatial distribution of the 
historical hydrographic data of the Mississippi River and 
found that RBF outperformed IDW and LPI, while Adhi-
kary and Dash, (2017) showed that RBF performance was 
higher compared to IDW. Chen et al (2016) recommend 
that IDW is a better interpolator rather than LPI for deter-
mining fishery resources density in the Yellow Sea.

In this study the geostatistical spatial interpolations pro-
vide similar results regarding which one of them generates 
higher prediction accuracy. The general trend indicates 
that OK and EBK have the best performance. However, the 
optimal interpolator is not always the same. Bhunia et al., 
(2018), made a comparison between OK and EBK for the 
distribution of soil organic carbon (SOC) and found that OK 
has lower errors and the highest  R2, while Daya and Bejari, 
(2015) calculated that OK is more efficient as an interpolator 
compared with the SK when modelling the Cu concentra-
tion in Chehlkureh deposits, in SE Iran. Ali et al., (2021) 
calculated the normal annual rainfall in Pakistan based on 
different interpolation methods and revealed that EBK and 
empirical Bayesian kriging regression prediction (EBKRP) 
methods are more efficient than the OK, SK and UK. How-
ever, the results of the geostatistical analysis show that it is 
possible to generate similar spatial distribution maps with 
different Kriging interpolation methods (OK, UK, SK, EBK) 
with small differences and similar error and  R2 values, simi-
lar to this research. Moral, (2010) showed that if using OK, 
SK and UK, the generated precipitation maps are similar 
both in visual comparison and prediction errors.
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For the production of sediment distribution maps, the 
majority of research papers implement multivariate meth-
ods (Co-Kriging, KED etc.) with the use of bathymetry and 
mud content as auxiliary information (Verfaillie et al. 2006; 
Stephens et al. 2011; Meilianda et al. 2012; Bockelmann 
et al. 2018; Zananiri and Vakalas 2019). Jerosch, (2013), 
developed a Co-kriging (COK) model with three parameters 
(slope, bathymetry, and cost distance from river) to construct 
a predictive multi-parametric sediment type map and com-
pared OK-COK for sediment distribution recommending the 
use of a combination of both. Verfaillie et al., (2006) and 
Stephens et al., (2011), generated seabed sediment predic-
tion maps with the implementation of OK and KED with 
bathymetry Digital Elevation Model (DEM) as an auxiliary 
variable and the KED proved to be better than OK. However, 
if the auxiliary variables are not correlated, the interpola-
tion is not better compared to univariate geostatistics and 
that was the reason for not using the Co-Kriging method 
in this study. This happens because the interpolation in the 
shore materials of the study area (sampling Zone 1) was 
performed without big proportions of mud content and shal-
low water until the 5-m depth contour (sampling Zone 2), 
since the production of the maps was carried out for coastal 
erosion purposes and not for seabed sediment distribution, 
where a bathymetry parameter can be used for Co-Kriging 
interpolation.

In any case, spatial interpolation of any value depends on 
the data set, sampling density, case study, and the scientific 
field that is applied (e.g. sediment distribution, precipitation 
etc.). Hence, the comparative study between the different 
interpolator methods is recommended before any final deci-
sion can be made on which spatial interpolation technique 
is better to implement with the highest predictive power and 
the smallest prediction errors. In this way, it is feasible to 
find the most appropriate method for a given data set to gen-
erate the most accurate prediction maps (Al-Mamoori et al. 
2021; Wen et al. 2022). Those maps and their results can 
be implemented in a plethora of other applications; e.g. for 
modelling many environmental and engineering applications 
in the coastal zone. In addition, these maps can be incorpo-
rated as inputs in risk assessment analysis against coastal 
hazards (sea level rise, coastal erosion etc.), especially in 
models such as the Coastal Vulnerability Index (Boumboulis 
et al. 2021).

The output map of this study can be used in the assess-
ment and calculation of the Coastal Vulnerability Index 
(CVI) of the Gulf of Patras. Thus, it was very important to 
find which interpolation method may give the best predic-
tion regarding the distribution of the median  (D50 mm) grain 
size of the surficial coastal sediments, since it is a significant 
input parameter for the calculation of CVI. Furthermore, 
the data and the produced maps can be used by the local 
authorities in further assessments towards the understanding 

of processes, planning and management of the coastal area 
of the Gulf of Patras.

Future research for the enhancement of the results of this 
study could be a) the application of spatial interpolation 
techniques with different and more advanced methodologies 
such as Machine Learning (ML) and b) the development of 
a comparative study between the spatial interpolation tech-
niques and the influence of those parameters in the final 
interpolated results and the cross-validation values (RMSE, 
ME etc.). In addition, different cross-validation techniques 
could be implemented like Monte Carlo and k-fold, to assess 
the potential error difference between those methods.
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