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Abstract
Lithology identification is critical in the interpretation of well-logging data for petroleum exploration and development.
However, the limited availability of labeled well-logging data for machine learning model training can lead to compromised
accuracy in lithology classification models. Here, we propose a semi-supervised lithology identification model to overcome
this challenge. Our framework consists of Bayesian optimization for tuning ensemble algorithms, including random forest,
gradient boosting decision tree, extremely randomized trees, and adaptive boosting, to establish a high-quality baseline model
for semi-supervised learning. We also employ a self-training strategy to increase the number of labeled samples in the training
set and use the predicted label with the highest confidence as a pseudo-label to reduce the accumulation of deviation caused by
incorrect pseudo-labels. Our semi-supervised coarse-to-fine framework improves rock classification accuracy, particularly for
sandstone. Testing our model on well-logging data from two real regions, we found that the ExtraRF-based semi-supervised
model in the HGF area performs the best, with a maximum classification accuracy of 91.6%, which is 5% higher than the
original coarse-to-fine model without using Bayesian optimization and pseudo-labeling techniques.

Keywords Lithology classification · Ensemble methods · Semi-supervised learning · Bayesian optimization · Pseudo labels

Introduction

Lithology identification is a fundamental step in the inter-
pretation of well-logs, serving as a basis for reservoir and
basin evaluation. In petroleum exploration, well-logging is
the predominant method used for lithology identification.
This approach utilizes logging data to derive geological infor-
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mation, enabling the determination of petroleum and natural
gas reserves and the formulation of exploration plans for oil
and gas. Traditional techniques employed to identify lithol-
ogy involve cross-mapping, statistical methods, and imaging
logging, which entail manual estimation of rock type. How-
ever, such methods are known to suffer from low efficiency,
high cost, and significant dependence on the expertise of
evaluators, leading to subjective results and hindering accu-
racy improvement. Therefore, there exists an urgent need
to develop cost-effective and objective methodologies for
lithology identification.

In recent years, the utilization of machine learning tech-
niques for identifying lithology from logging data has
become ubiquitous. Multiple research studies have demon-
strated that supervised machine learning algorithms, such
as neural networks, support vector machines, and ensem-
ble methods, have proven to be beneficial for multi-class
lithology identification.Thedeep learningmodels’ character-
istics make them an ideal tool for the lithology identification
of rock images with high-dimensional feature spaces. Jiang
et al 2021 proposed geological constraints Imamverdiyev
and Sukhostat 2019 as features and then used recurrent
neural network (RNN) to train the lithology identification
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model. Liu et al (2021) introduced an image-based 3D-CNN
lithology identification model by combining hyperspectral
remote sensing images with the 1D-CNN model proposed
by Imamverdiyev. Imamverdiyev and Sukhostat (2019). Li
et al (2022) processed rock images with data enhancement
techniques and trained them with convolutional neural net-
work (CNN) models, which resulted in better performance
than the Fast R-CNN model without data processing (Xu
et al, 2021).

In addition, for low-dimensional logging data, ensemble
algorithms are deemed more appropriate. Xie et al (2018),
and Sun et al (2019) compared ensemble algorithms, arti-
ficial neural networks, and traditional supervised learning
models. The results show that the performance of lithology
identification of the ensemble algorithm is better than that of
the artificial neural networkwhen the feature space is limited.
Furthermore, Xie et al (2019) optimized Boosting algorithms
of ensemble methods based on the logging data, resulting
in improved lithology identification accuracy, but the iden-
tification of sandstones is still challenging. According to
this challenge, (Xie et al, 2020) proposed a coarse-to-fine
lithology identification supervised learning framework for
sandstone, which combined outlier detection with ensemble
algorithms to improve the accuracy of sandstone identifica-
tion.

Despite the usefulness of supervised learning algorithms
in building accurate classification models for lithology iden-
tification, they require a vast amount of labeled data for
model training, which is laborious and time-consuming.
Semi-supervised learning has emerged as a promising approach
to address the challenge of acquiring a large volume of
labeled training data. By utilizing both labeled and unla-
beled data, semi-supervised learning algorithms can achieve
outstanding performance in building classifiers with limited
labeled data. Consistency regularization, self-training meth-
ods, and entropy minimization are the most commonly used
semi-supervised learning approaches in practical applica-
tions Ouali et al (2020); Kim2021 (2021).

Researchers have recently applied semi-supervised learning
to lithology identification with deep learning and machine
learning. (Zhou et al, 2021) utilized self-training of semi-
supervised learning combined with cross-domain transfer
learning to solve the problemof lithology identification under
the logging data distribution discrepancy. (Li et al, 2019)
proposed a GAN model with a semi-supervised learning
approach, namely the SGAN-G model. The proposed model
achieves significant results based on logging curves. How-
ever, the training processes require 2,000 labeled data and
900,000 unlabeled data. It is not effortless to collect such
a large scale of experimental data. In addition, this method
only specifically identifies shales and sandstones, which has
limited practicality. Li et al (2023) proposed a CE-SGAN
model based on pseudo-labeling and the GAN algorithm.

The semi-supervised model test in the DGF-HGF areas and
Hugoton-Panoma fields, and the results only reached 88.68%
and 68.83%, respectively, which results limited by the num-
ber of training logging data.Deep learning is a popularway to
realize intelligent classification, but the number and dimen-
sions of training data restrict them. According to the case of
the small number of training data and low feature dimension,
the ensemble algorithms are more suitable Xie et al (2018).

Active learning incorporationwith semi-supervised learn-
ing is widely applied to lithology identification, assuming the
same distribution of logging data. (Ren et al, 2023) improved
the naive Bayes model as the baseline for generating pseudo
labels. In the iterative semi-supervised learning process,
active learning enhanced the baseline model’s performance
to improve the quality of the pseudo labels. The proposed
method achieves excellent results in experimental areas.
(Hong et al, 2022) aimed to reduce the expert cost of labeling
core data. Active learning experts label the experimental data
and combine it with semi-supervised learning. Such a frame-
work saves many expert costs while ensuring accuracy. The
supervised learning model is commonly used as a baseline to
realize the semi-supervised learning framework. Li et al 2020
proposed a semi-supervised learning algorithm LapSVM by
optimizing the SVMbaselinemodel with the data regulariza-
tion term. This method selected pseudo-labels of unlabeled
data based on feature similarity, strengthening the classifica-
tion model’s ability. However, despite these advances, these
semi-supervised learning approaches aim to strengthen the
data and ignore the optimization of the baseline model. Ouali
et al 2020 showed that the high-quality supervised baseline
model is essential for the accuracy of semi-supervised learn-
ing.

The performance of a model heavily relies on the selec-
tion of its parameters. Therefore, it is necessary to utilize
parameter optimization algorithms to achieve high-quality
baseline models. Local optimization techniques such as grid
search and random search are commonly used for parame-
ter optimization. The grid search algorithm has commonly
been adopted to tune the rock classification model Xie et al
(2018, 2019); Zou et al (2021), but this method relies on
brute force. It traverses all parameters group of the parameter
space to optimize, which is highly costly in the calcula-
tion process (Liashchynskyi2019, 2019). On the other hand,
random search randomly selects parameters from the param-
eter space, making it faster but less effective in achieving
the best results Liashchynskyi2019 2012, 2019. Liashchyn-
skyi2019 2019 compared grid search, random search, and
genetic algorithm. The result showed that the genetic method
is more appropriate for tuning too many parameters in the
ample search space. However, local optimization techniques
limit the probability of finding better quality parameters, and
global optimization algorithms are necessary. Commonly
used global optimization methods include particle swarm
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optimization (PSO), genetic algorithm (GA), differential
evolution optimization, and Bayesian optimization. These
methods have different applicable scenarios. Ren et al 2023
applied the PSO strategy to enhance the performance of the
Fuzzy ID3 rock classification model and achieve high accu-
racy. PSO and GA have similar principles and are suitable
for large search spaces to avoid getting trapped into local
optima, but they are time-consuming Hassan et al 2005.
Therefore, to guarantee optimal global parameters more effi-
ciently, Bayesian optimization is chosen to update the model
parameters. Sun et al (2020) proposed the Bayesian parame-
ter optimizationmethod to tune the parameters of the gradient
promotion algorithm and compared it with the differential
evolution optimization method Saporetti et al (2019). The
results showed that Bayesian optimization can optimize the
model parameters faster and improve the classification accu-
racy.

In this paper, we present a semi-supervised coarse-to-
fine framework for lithology classification using Bayesian
optimization, addressing the issue of accurately identify-
ing multiple lithologies, particularly sandstone, with limited
labeled training data. Our contributions focus on two key
aspects. Firstly, we apply Bayesian optimization to tune the
ensemble algorithm’s parametersmore efficiently, improving
the baseline model’s quality and reducing the pseudo-label
error rate. Secondly, we employ self-training’s pseudo-labels
to expand the training set, aiming to enhance the coarse-
to-fine lithology identification model’s accuracy. We apply
the semi-supervised framework to two actual areas of the
Daniudi Gas Field (DGF) and the Hangjinqi Gas Field
(HGF) and compare four ensemble methods, namely RF,
ExtraRF, GBDT, and AdaBoost. Results demonstrate that
Bayesian optimization and pseudo-labels can improve the
lithology identification prediction accuracy. Furthermore, the
semi-supervised framework, based on a Bayesian optimized
extremely random treemodel, achieves the best performance.

Methodology

Framework overview

This paper proposed a semi-supervised framework based on
a Bayesian-optimized coarse-to-fine approach for lithology
identification. The workflow of the semi-supervised frame-
work is displayed in Fig. 1. Logging data were collected
from various wells within the same region and preprocessed
using the LOF algorithm to eliminate outliers. The processed
logging data were then divided into training (80%) and test
(20%) samples, as shown in parts (B) and (C) of Fig. 1,
respectively. In this study, each sample was represented by a

feature vector Xi consisting ofwell-loggingmeasurements at
the corresponding depth. We also assigned a label yi to each
sample to indicate its rock type. The yi label was comprised
of two components: a general rock class from Ycoarse and a
fine sandstone class fromY f ine. TheYcoarse classwas defined
as coarse labels, which included sandstone (SS), carbonate
(CR), coal (C), siltstone (S), andmudstone (M). Furthermore,
the sandstone (SS) class was subdivided into fine sandstone
(FS), medium sandstone (MS), coarse sandstone (CS), and
pebbled sandstone (PS). The fine sandstone (FS), medium
sandstone (MS), coarse sandstone (CS), and pebbled sand-
stone (PS) were defined as fine labels from the Y f ine class.

In order to enhance the accuracy of the baseline model,
it is essential to optimize the parameter sets of the ensemble
method, such as the ExtraRF algorithm, prior to training.
Part (A) of Fig. 1 shows the workflow of the Bayesian
optimization algorithm. Bayesian optimization is a global
optimization scheme based on Bayes’ theorem, which is
suitable for optimizing black-box functions with complex
or unknown objective functions. The Bayesian optimization
mainly includes two core parts: the surrogate model and
the acquisition function. Firstly, the ensemble algorithm is
replaced with the surrogate model and the prior distribution
of the surrogate model is initialized. In the second step, the
sample point to be collected is selected based on the acquisi-
tion function, and the surrogate is updated by evaluating the
sample points to obtain the posterior distribution, which is
repeated until the maximum number of iterations is reached.
Finally, the Bayesian-optimized ExtraRF algorithm is deliv-
ered to part (B) of Fig. 1 for semi-supervised coarse-to-fine
framework training.

Part (B) of Fig. 1 illustrates the training process of a semi-
supervised coarse-to-fine model that involves labeled and
unlabeled data sets. In each iteration, theBayesian-optimized
coarse-to-fine model is trained on the labeled data and used
as the initial model. The initial model is then used to predict
the labels of the unlabeled data, and the prediction results
with high confidence are selected as pseudo-labels. To select
the predicted labels with high confidence, Ouali et al (2020)
pseudo-label selection rule is followed, which calculates the
actual probability of each predicted label and selects the top
10 results with a predicted probability above 95%. The train-
ing process of the coarse-to-fine model is divided into two
parts. In the first part, the coarsemodel is trained,whichmaps
the labeled training data with fine labels to coarse labels. The
ensemble model is then trained with the coarse-labeled data.
In the second part, only the fine-labeled data is used to train
the ensemble model for the fine model’s training. Finally,
the trained model is tested with the test data, and the partial
results of the logging curves and the confusion matrices are
displayed in part (C) of Fig. 1.
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Fig. 1 A semi-supervised coarse-to-fine frameworkwith Bayesian optimization formulti-class lithology identification.(A)the flowchart of Bayesian
optimization.(B) the training flow of the semi-supervised coarse-to-fine model.(C) testing model and display the partial results

Bayesian optimization

Snoek et al (2012) first proposed to apply the Bayesian opti-
mizationmethod to the parameter tuning ofmachine learning
algorithms, aiming to find the best parameter group of the
model through the Bayesian optimization method. Prior to
the advent of Bayesian optimization, grid search and random
search Liashchynskyi2019 (2012) were the dominant algo-
rithms used for parameter tuning. However, these methods
were computationally demanding, rendering themunsuitable
for fine-tuning complex ensemble models.

Bayesian optimization is a sequential algorithm compris-
ing two fundamental components. The initial stage involves
substituting the objective function with ensemble algorithms
through the use of a surrogatemodel. The prior distribution of
the surrogate model is established by constructing the sam-
pling function as a Gaussian process. In the second stage,
the maximum acquisition function is computed to select the
optimal sampling point, which leads to the updating of the
posterior distribution of the surrogate model.

Rasmussen et al (2003) applied the Gaussian processes
to a Bayesian optimization framework as a surrogate model.
A Gaussian process is a stochastic process that extends a
multivariate Gaussian distribution. Any finite random vari-
ables follow multivariate Gaussian distribution, and any
random variable follows a one-dimensional Gaussian dis-

tribution. The multivariate Gaussian distribution is defined
by the mean vector μ and the covariance matrix C , the
extension to the Gaussian process is defined by the mean
function μ(X) = E(F(X)) and the covariance function
c(X , X ′) = E((F(X) − μ(X))(F(X ′) − μ(X ′)). Defined
as Eq. 1 Rasmussen et al 2005.

F ∼ GP
(
μ (X) , c

(
X , X ′)) , (1)

In this paper, the notation X = (X1, X2, ..., Xn) in
Eq. 1 pertains to the amalgamation of various parameter
sets of the ensemble algorithm. Further, F = F(X) =
[F(X1), F(X2), ..., F(Xn)] denotes each set of parameters
that corresponds to the accuracy of the ensemble algorithm.

The acquisition function is an important component of
Bayesian optimization, which plays a vital role in striking
a balance between exploitation and exploration. Specifi-
cally, it aims to achieve a balance between local optima
and potential solutions with large uncertainties obtained
via global exploration. The acquisition function utilizes the
prior distribution of the Gaussian process to achieve this
objective. Getting the data sets before t iteration Dt =
(X1, f (X1), (X2, f (X2), ..., (Xt , f (Xt )) is used to compute
the maximum acquisition function αt (X) to select the next
parameter set Xt+1 to be sampled. Define as Eq. 2 Brochu
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et al 2010.

Xt+1 = arg max
X∈Dt

αt (X) , (2)

In this study, we examine the three most commonly utilized
acquisition functions: the maximum improvement proba-
bility method (PI) based on improvement, the expected
improvement method (EI), and the upper confidence limit
based on optimization (GP-UCB) Brochu et al (2010). As
reported by Gan et al (2010), the EI function is the predom-
inant acquisition function utilized in practical applications.
The basic principle underlying the EI function is to determine
the degree of improvement in the expected value at points
exceeding the current optimal point through calculation,
and subsequently selecting the point with the most substan-
tial improvement as the subsequent sampling point. This
approach emphasizes exploration by favoring and selecting
regions with a slight mean and significant variance.

Combined with the Gaussian process and the EI acqui-
sition function mentioned above, it is assumed that the
parameter tuning process of iterative Bayesian optimization
in iteration t is:

1. The data set obtained through the previous (t-1)
rounds of iteration Dt−1 = (X1, f (X1)), (X2, f (X2)), ....,

(Xt−1, f (Xt−1)) obtain the prior distribution of the Gaus-
sian process (Brochu et al, 2010). Wherein μ(X1:t−1) is the
mean vector made up of the expectation of f (Xi ), as shown
as μ(X1:t−1) = (E( f (X1)), E( f (X2)), ..., E( f (Xt−1))),
i = 1, 2, ..., (t − 1).

f (X1:t−1) ∼ GP (μ (X1:t−1) ,C1:t−1) , (3)

In accordance with Eq. 3, the symbol C1:t represents
the covariance matrix. The calculation formula for C1:t is
demonstrated in Eq. 4, wherein c(Xi , X j ) = E(( f (Xi ) −
μ(Xi ))( f (X j ) − μ(X j ))) denotes the covariance function
of (Xi , X j ), where i and j are integer indices within the range
of 1 to (t-1).

C1:t =
⎛

⎜
⎝

c (X1, X1) · · · c (X1, Xt−1)
...

...
...

c (Xt−1, X1) · · · c (Xt−1, Xt−1)

⎞

⎟
⎠ , (4)

2. The maximum acquisition function EI(Xt−1), namely
Eq. 6 (Brochu et al, 2010), is calculated by using the data
set Dt−1 from the previous (t-1) iteration to obtain the next
round of iteration sampling parameter set Xt , namely Eq. 5.
Inclusive f +

t−1 in Eq. 6 is the maximum prediction accuracy
in the previous (t-1) iteration. Moreover,�,φ is the standard
normal distribution’s distribution function and probability

density function.

Xt = arg max
X∈Dt−1

E I (Xt−1) , (5)

E I (Xt−1) = (
μ (Xt−1) − f +

t−1

)
�

(
μ (Xt−1) − f +

t−1

σ (Xt−1)

)

+σ (Xt−1) φ

(
μ (Xt−1) − f +

t−1

σ (Xt−1)

)

, (6)

According to the Gaussian process, f (X) correspond-
ing to any point X ∈ Dt−1 follows a one-dimensional
Gaussian distribution, namely Eq. 7. Therein μ(X1:t−1)

= E( f (Xt−1), and σ 2(Xt−1) = c(Xt−1, Xt−1).

f (Xt−1) ∼ N
(
μ (Xt−1) , σ 2 (Xt−1)

)
, (7)

3. To obtain a new data set Dt for the upcoming iteration
(t+1), the optimal point (Xt , f (Xt )) is included in the previ-
ously collected data set, Dt−1. The updatedGaussian process
is then used to generate the posterior distribution, which
serves as the prior distribution in the upcoming iteration.
This process is expressed by Eq. 8, wherein each variable’s
calculation formula remains the same as that of Eq. 3, with
the exception of the inclusion of the data set collected in
round t.

f (X1:t ) ∼ GP (μ (X1:t ) ,C1:t ) , (8)

Ensemblemethods

Ensemble algorithms are known for their superior generaliza-
tion capabilities in comparison to traditional classifiers. They
enhance the predictive accuracy ofmodels by combining sev-
eral weak learners with lower prediction accuracy to form
a robust learner Dietterich et al (2000). Boosting and Bag-
ging are two significant categories of ensemble algorithms.
Boosting algorithms reduce the ensemble classifier’s bias by
considering the influence of the preceding weak classifiers.
The principle of Bagging algorithms involves repeatedly
sampling the sample data and training each weak classi-
fier independently to diminish the integrated algorithm’s
variance. This study has employed four classic ensemble
algorithms, namely Adaptive Boosting (AdaBoost) Hastie
et al 2009, Gradient Boosting Decision Tree (GBDT) Fried-
man20012001,RandomForest (RF)Breiman20012001, and
ExtremelyRandomizedTrees (ExtraRF)Geurts et al 2006 for
comparative trials. The experimental results have shown that
the ExtraRF algorithm outperforms the other algorithms.

The concept of extreme random trees was initially pro-
posed by Geurts et al (2006), who constructed them in
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a top-down structure from decision trees similar to other
tree-based ensemble algorithms. Since each decision tree
collectively determines the ensemble algorithm’s general-
ization ability, the generalization ability of each decision
tree and the difference among decision trees will impact the
ensemble algorithm’s performance. An extreme random tree
selects cut points randomly to divide nodes, thereby enhanc-
ing the randomness of node partitioning and the difference
among decision trees. In contrast, Random Forest employs
the random method of replacement to obtain the training set,
resulting in repeated samples in each selected training set and
leading to overfitting. The extreme random tree addresses this
problem of repeated sampling. The training set of each deci-
sion tree is composed of all experimental data to improve
sample utilization and reduce prediction bias.

Experiments

Data sets

The Ordos Basin is a prominent and extensive superimposed
petroliferous basin, with its proven reserves of natural gas,
coal-bed gas, and coal, ranking first in China. This study
employs data collected from two distinct gas fields situated
in the northern region of the Ordos Basin, China. The first
field, known as the Daniudi Gas Field (DGF), is located in
the Tabamiao area on the northern slope of Yi-shan, while the
second field, the Hangjinqi Gas Field (HGF), is located in the
northern bulge of the Islamic Union. The geological compo-
sition of the DGF region is predominantly quartz sandstone
and sandstone,with smaller amounts ofmudstone, carbonate,
and coal. Conversely, the HGF region comprises primarily of
lithic sandstone, coarse sandstone, mudstone, among others.

This paper collected 867 and 1,238 logging data from
seven DGF and HGF wells and created two datasets. We
used the two datasets to train the proposed model, respec-
tively. We show the complete training process of each area
in Algorithm 1 and Algorithm 2. During the training pro-
cess, we randomly split the data into two datasets, which
take 80% as the training set and 20% as the test set. Table
1 shows the lithology classes and quantities collected in the
two areas. The coarse lithologies were mudstone (M), silt-
stone (S), coal rock (C), and sandstone (SS), which were
further divided into pebbled coarse sandstone (PS), coarse
sandstone (CS), fine sandstone (FS), and medium sandstone
(MS). In total, we collected 867 logging data in the DGF
area, comprising 114 CS data, 132 FS data, 120 PS data, 211
MS data, 53 S data, 133 M data, and 104 C data, and col-
lected 1238 logging data from the HGF, including 207 CS

data, 146 FS data, 370 PS data, 206 MS data, 47 S data, 248
M data, and 14 C data. Seven logging curves, namely Acous-
tic log (AC), Calliper log (CAL), Compensated Neutron log
(CNL), Density log (DEN), Gamma ray log (GR), deep for-
mation resistivity (LLD), and shallow formation resistivity
(LLS), were used as the feature space to classify lithology.
Each sample was composed of a 7-dimensional feature vec-
tor and a corresponding lithology class as the label.We tested
the performance of the lithology identification model using
log data from another well in each area, specifically 140 log
data of well D17 in the DGF area and 166 log data of well
J66 in the HGF area.

Coarse-to-fine framework based on bayesian
optimization

In this paper, we split two progresses to describe the training
process of the proposed semi-supervised model. The first
implementation process is the coarse-to-fine model based on
Bayesian optimization, as shown inAlgorithm1 and depicted
in Section 3.2. The second implementation process shown in
Algorithm 2 is the optimized coarse-to-fine framework based
on pseudo-labeling, depicted in Section 3.3.

Algorithm 1 illustrate the coarse-to-fine model based on
Bayesian optimization. Given the logging data of one area
(X ,Y ) shown in Table 1. The coarse classes were mudstone
(M), siltstone (S), coal (C), and sandstone (SS), defined
as Ycoarse = {SS,C, S, M}. The sandstone (SS) could be
refined into pebbly coarse sandstone (PS), coarse sandstone
(CS), fine sandstone (FS), and medium sandstone (MS). The
fine labels were defined as Y f ine = {FS,CS, PS, MS}.

To avoid the impact of inaccurate data on the model accu-
racy, we preprocessed the collected logging data using outlier
detection before the experiment. As Xie et al. Xie et al
(2021) demonstrated in their experiments with well-logging
data from the same area, the LOF outlier detection algo-
rithm could effectively deal with outlier data and improve the
model’s accuracy. Therefore, we used the LOF algorithm to
preprocess the experimental data (X ,Y ) as (Xlof ,Ylof ) before
trainingbegins.And thenwe randomly split the collecteddata
from one area into 80% training set (Xtrain ,Ytrain) and 20%
test set (Xtest ,Ytest ). Subsequently, Bayesian optimization
was employed to optimize the parameters of the ensemble
models, with the search range of parameters illustrated in
Table 2. The iterative process of Bayesian optimization con-
sists of two main parts. Firstly, the surrogate model (GP) is
used to replace the ensemble model (F). The prior distri-
bution of the surrogate model is used to build the sampling
function as the Gaussian process. Secondly, the next optimal
sampling point (xi ) is selected by calculating the maximum
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Table 1 The special simple
groups

Classes Descriptions Number of DGF Number of HGF

Coarse classes M mudstone 133 248

S siltstone 53 47

C coal 104 14

Fine classes PS pebbly coarse sandstone 120 370

(sandstone) CS coarse sandstone 114 207

FS fine sandstone 132 146

MS medium sandstone 211 206

acquisition function (maxEI(x∈Di−1)) and updating the
posterior distribution of the surrogate model by the next set
of sampling {Di−1,(xi ,yi )}.

In our study, we bifurcated the training process of the
model into two distinct stages. Firstly, we performed coarse
model training by leveraging the labels (MAP(Ytrain)) of
the training set and mapping them onto the coarse-labeled
data set (Xtrain ,Ycoarse). The Bayesian optimized ensem-
ble model was trained using this coarse-labeled data set to
obtain the Coarse model. Subsequently, for fine model train-
ing, we trained the Fine model using the fine-labeled data
set (X f ine,Y f ine) obtained from the training set. During the
testing phase, we employed the Coarse model to predict the
outcome for Xtest , generating Predc. We selected the SS
from Predc to test the performance of the fine model.

Pseudo labels

In the realm of semi-supervised learning, numerous methods
have been proposed and investigated over the years. Among
these, the most prominent and time-honored approaches
include consistency regularization, proxy-labelmethods, and
entropy minimization. Proxy-label methods, in particular,
utilize a trained model on the labeled set to generate addi-
tional training examples by labeling instances from the
unlabeled set based on certain heuristics. Self-training strat-
egy, which is one of the proxy-label methods, falls under
this category. In addition, entropy minimization serves as
a viable method for expanding the training set, compelling
the model to produce confident predictions while minimiz-
ing the entropy of the predictions. Furthermore, consistency
training can be considered a form of proxy-label method,
wherein the labels are predicted by calculating the distance
of the outputs Ouali et al 2020.

In this study, we opted to employ self-training methods to
realize semi-supervised learning, with pseudo-label serving
as a key strategy Amini et al 2021. To begin with, we trained
the Bayesian optimized coarse-to-fine model using labeled
data as the baseline model. In each iteration, the current
coarse-to-fine model was employed to predict the unlabeled
data, and the actual probability of each predicted label was

Algorithm 1 Coarse-to-Fine framework Based on
Bayesian optimized Ensemble model
Input : Logging Data(X,Y)={(x1,y1),(x2,y2),...,(xn ,yn)}

where Y=(Ycoarse
,Y f ine)=({SS,C,S,M},{FS,MS,PS,CS})

1 (Xlof ,Ylof ) ← LOF(X,Y) ;
2 (Xtrain ,Ytrain),(Xtest ,Ytest ) ← TrainTestSplit(Xlof ,Ylof ,0.8);
3 procedure Bayesian optimization;
4 for i from 1 to N do

Input : GP←Surrogate Model, EI ← Acquisition
Function

5 Di−1={(x1,y1),(x2,y2),...,(xi−1,yi−1)};
6 Use GP surrogate ensemble model as F ;
7 F(Di ) ∼ GP;
8 xi ← maxEI(x ∈ Di−1);
9 The optimized ensemble model yi ;

10 yi←F(xi−1)+δ;
11 Di← {Di−1,(xi ,yi )} ;
12 end
13 return Bayesian-optimized Ensemble model ;
14 end procedure;
15 procedure Training Bayesian-optimized Coarse-to-Fine

framework ;
16 Ycoarse ← MAP(Ytrain);
17 Coarse← Train(Xtrain ,Ycoarse);
18 Select Label=Y f ine from {Xtrain ,Ytrain};
19 Fine← Train(X f ine,Y f ine);
20 end procedure;
21 procedure Test Coarse-to-Fine framework;
22 Select Label=Y f ine from {Xtest ,Ytest} as test f ine;
23 Predc ← T estCoarse(test f ine);
24 if Predc=SS then
25 Pred f ← T estFine(test f ine);
26 end
27 Calculate the accuracy;
28 end procedure

computed. The top 10 results with a predicted probability
exceeding 95% were selected as the pseudo labels with high
confidence. Subsequently, we augmented the labeled data
set with the pseudo labels and their corresponding unlabeled
data, thereby forming a new labeled data set to serve as the
training data for the next round of iteration. This process was
continued until reaching the termination condition of the iter-
ation that we set.

The implementation process of the semi-supervised coarse-
to-fine framework is depicted in Algorithm 2. To conduct
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Table 2 Ensemble algorithms
tuning parameter

Ensemble Methods Tuned Parameters Search Range BO Parameters setting

RF Max depth [5,40] 18

Max features [1,7] 2

The number of estimators [50,300] 200

Min samples split [2,8] 3

GBDT Max depth [5,40] 28

Max features [1,7] 3

The number of estimators [50,300] 240

Learning rate [0,0.8] 0.50

ExtraRF Max depth [5,40] 39

Max features [1,7] 4

The number of estimators [50,300] 220

Min samples split [2,8] 3

AdaBoost Max features [1,7] 4

The number of estimators [50,300] 180

Learning rate [0,0.8] 0.78

experiments with the semi-supervised model, we excluded
the labels of the test data set, utilizing it instead as the unla-
beled data set (Xu). The semi-supervised learning process
involved five iterations. In each iteration, the coarse-labeled
model (Hc) was initially employed to train the unlabeled
data, thereby generating coarse labels. The top ten high-
confidence labels (95%) were selected as the coarse pseudo
labels (PLc). Next, the sandstone was selected from the pre-
dicted coarse labels, and the fine-labeled model was trained
on the sandstone (H f ). We predicted and selected the top ten
high-confidence fine labels as the fine pseudo labels (PL f ).
Finally, the pseudo labels were merged into the training data
set ({S, (XPL , PL)}).

Result analysis

To evaluate the efficacy of the Bayesian optimization and
pseudo labels method in enhancing the classification perfor-
mance of the coarse-to-fine model, we conducted an ablation
study to present the findings. To ensure the reliability of the
results and to examine the impact of different ensemble algo-
rithms on the coarse-to-finemodel, we applied four ensemble
methods, namely ExtraRF, RF, GBDT, and AdaBoost, in the
ablation study.

We utilized precision, recall, f1-score, prediction accu-
racy, and confusion matrices to evaluate the results of the
ablation study. Precision, recall, f1-score, and prediction
accuracy were determined using TP, FP, TN, and FN, where
P (Positive) and N (Negative) denote whether the predicted
class is positive or negative, and T (True) and F (False) rep-
resent whether the predicted result is accurate or not.

Algorithm 2 Bayesian optimized Ensemble model
Coarse-to-fine framework With Pseudo Labels
input : Xu ←Unlabeled Data , S=(Xtrain ,Ytrain)

Hc ← Coarse Model, H f ← Fine Model
1 procedure Pseudo Labels;
2 for i ter from 0 to 5: do
3 Train Hc on S;
4 probc← PredictProb Hc on Xu ;
5 if probc=OVER(0.95)∩ MAX [0:10] then
6 Xc∈Xu ;
7 PLc←Hc.predict(Xc)
8 end
9 Select X f ∈Xu where Hc.predict(Xu)=SS;

10 Train H f on S;
11 if prob f =OVER(0.95)∩ MAX [0:10] then
12 PL f ←H f .predict(X f )
13 end
14 XPL ←Xc∪X f ;
15 PL←PLc∪PL f ;
16 S← {S, (XPL , PL)}
17 end
18 end procedure

The precision, recall, F1-score, and accuracy are com-
monly used performancemetrics to evaluate the effectiveness
of a model. Precision measures the ratio of correctly pre-
dicted positive instances (TP) to the total predicted positive
instances (TP+FP), which represents the model’s accuracy
and is defined as Eq. 9. Recall, on the other hand, is the ratio
of correctly predicted positive instances (TP) to all actual
positive instances (TP+FN), representing the proportion of
retrieved positive instances. Its definition is shown in Eq. 10.
F1-score is a metric that balances the precision and recall
rates of a model and can be expressed as the harmonic mean
of the two values, defined as Eq. 11. Finally, accuracy is the
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percentage of correct predictions out of the total prediction
samples, which can be defined as Eq. 12.

precision = T P

T P + FP
, (9)

recall = T P

T P + FN
, (10)

f 1 − score = 2
1

recall + 1
precision

, (11)

accuracy = T P + T N

T P + FN + FP + T N
, (12)

To validate the generalizability of our results, logging
data from two distinct regions, namely DGF and HGF, were
selected as the experimental data. The results of the confu-
sion matrices can be found in Fig. 4,5,6,7,8,9,10, and 11
in Appendix A while the results of other measurements
are shown in Tables 3,4,5,6,7,8,9, and 10 of Appendix B.
By observing the tables and figures, we can conclude that
the ExtraRF-based model achieves the highest classification
accuracy, with 88.2% in the DGF area and 91.6% in the HGF
area. As mentioned earlier, the total number of training data
in the HGF area is higher than in DGF, which leads to better
prediction accuracy in HGF.

Ablation study

Table 3 in Appendix B presents a summary of the ExtraRF-
based coarse-to-fine model’s precision, recall, f1-score, and
prediction accuracy in theHGF area. Themost notable obser-
vation in the table is the improvement in accuracy. The
model in Table 3(b) achieved 91.6%, an increase of 4.9%
from 86.7% in the baseline model shown in Table 3(a) in
Appendix B. Table 3(c) and 3(d) in Appendix B show that
their accuracy is 87.6% and 88%, respectively. The accuracy
results indicate that the Bayesian optimization and pseudo
labels method can enhance the model’s multi-classification
ability and are considerably better than using them individ-
ually.

Apart from accuracy, precision, recall, and f1-score for
each rock class also show similar positive outcomes, as
demonstrated in Table 3 in Appendix B. Table 3(a) in
Appendix B shows that the classification precision of C and
S reached 100%, while CS has only 76%. Only C has a recall
of 100%, and the classes of MS, M, and S are less than the
precision. The lowest recall of CS is only 78%. Precision and
recall jointly affected the f1-score, so the lowest f1-score of
CS is 77%, the highest of C is 100%, and the other classes are
all around 80%-90%. Turning to Table 3(c) in Appendix B,
it is evident that CS has the most significant effect. The pre-
cision and recall of CS improve from 76% and 78% to 94%

and 89%, respectively, an increase of more than 10%. The
precision of MS also increased from 87% to 94% by 7%.
Meanwhile, the recall of MS also improved by 4%. Examin-
ing the experimental evidence in Table 3(d) of B, the recall
of S is significantly improved from 82% to 91%, balanc-
ing the difference between precision and recall, resulting in
an increase in the f1-score. Overall, the comparison shows
that the Bayesian optimization or pseudo labels method can
increase the efficiency of the multi-classification model.

Interestingly, the combination of the Bayesian optimiza-
tion parameter tuning and pseudo labels method has proven
to be effective in improving the model’s classification ability.
A comparison of Table 3(b) and Table 3(c) in B reveals an
8% increase in the recall of CS, resulting in a 3% increase
in the f1-score. The precision and recall of M have also
increased from 83% and 93% to 93% and 95%, respectively.
Additionally, the precision and recall of PS have increased
from 82% and 94% to 90% and 96%. By contrasting Table
3(b) and Table 3(d) in Appendix B, it is observed that the
precision of CS, FS, MS, and PS has been improved. CS
and FS have increased from about 80% to approximately
90%, resulting in an improvement of nearly 10%. MS and
PS have enhanced from 87% and 88% to 90% by 3% and
2%, respectively. Furthermore, the recall of CS and MS
has risen from 76% and 82% to 97% and 90%, respec-
tively, resulting in a remarkable increase in the f1-score
of CS from 79% to 94% by 15%. These results further
demonstrate that the combination of Bayesian optimization
parameter tuning and pseudo labels method can improve the
identification ability of the multi-classification model. This
conclusion has been verified by testing the other three ensem-
blemethods in theHGFarea, and the experimental results are
presented in Table 4-Table 6 of Appendix B.

Table 4 in Appendix B reveals that the model in Table 4(b)
outperforms the baseline model with an accuracy of 86.2%,
a 4% increase. The models in Table 4(c) and Table 4(d) also
exhibit higher accuracy than the baseline, with an increase of
3.1% and 1.4%, respectively, but still fall short of the Table
4(b) model. A comparison of Table 4(a) and Table 4(b) in
Appendix B illustrates an 8% improvement in the recall of
class M, contributing to a 6% increase in the f1-score. The
precision and recall of CS and PS also improve, resulting in a
2% increase in their f1-scores. Notably, FS exhibits the most
remarkable improvement, with precision increasing nearly
10%, from74% to 83%, and recall improvingmore than 20%,
from 71% to 92%. A comparison of Table 4(b) and Table
4(c) in Appendix B also shows a significant improvement in
FS, with recall increasing around 20% from 70% to 92%.
Similarly, the recall of FS and CS also increases by 17% and
7%, respectively, when comparing Table 4(d) and Table 4(b)
in Appendix B.

From the data presented in Table 5 ofAppendixB, it is evi-
dent that the accuracy of the Table 5(b) model in Appendix B
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is higher at 85.3% compared to the 81.8% achieved by the
Table 5(a) model in Appendix B. The accuracy of Table 5(c)
and Table 5(d) models in Appendix B are 84.9% and 84.5%,
respectively, which are both lower than that of Table 5(b) in
Appendix B but higher than Table 5(a) in Appendix B. This
result aligns well with previous studies. Comparing Table
5(a) and Table 5(b) in Appendix B, we observe a significant
increase in the recall of S from50% to 90%by 40%,while the
precision of FS and C improved from 70% and 50% to 95%
and 100% by 25% and 50%. The recall and precision of PS
increased from 81% and 79% to 95% and 83%, respectively.

Lastly, the AdaBoost-based coarse-to-fine model is pre-
sented in Table 6 of Appendix B. An analysis of Table 6 of
Appendix B leads to the same conclusion as above, with the
highest accuracy being 85.3%, which is 4% higher than the
base model. By optimizing the AdaBoost parameter using
Bayesian optimization and incorporating pseudo labels, the
recall of FS and S, which was around 60% in Table 6(a) of
Appendix B, improved to nearly 90%.

To substantiate the generalizability of our findings, we
conducted similar experiments in theDGF region. The results
of these experiments are presented in Table 7-Table 10 in
Appendix B. However, due to the limited availability of
experimental data in DGF, the accuracy of the models is
lower compared to HGF. A comparison of Table 7(a) and
Table 7(b) in Appendix B shows that the ExtraRF-based
model achieved a maximum accuracy of 88.2%, a significant
improvement of 6.2% over the baseline model. However, the
baseline model performed poorly in classifying CS and PS,
which was significantly improved by employing Bayesian
optimization and pseudo labels, especially for PS, which
increased to about 90%. The RF-basedmodel shown in Table
8 of Appendix B achieved an accuracy of 85.7% in Table
8(b), an improvement of 4.3% over the Table 8(a) model in
Appendix B. Comparing the two models revealed a signif-
icant increase in the precision and recall of CS, MS, and
PS. The accuracy of the GBDT-based model and AdaBoost-
based model increased to 83.1% and 83.9% in Table 9(b)
and Table 10(b) in Appendix B, respectively. Similarly, a
close examination of Table 9 and Table 10 in Appendix B
suggests that the Bayesian optimization and pseudo labels
method is highly beneficial in improving the identification
ability of fine classes. Overall, our experiments indicate that
the ExtraRF-based coarse-to-fine framework with Bayesian
optimization and pseudo labels has impressive capabilities
for lithology multi-classification, especially for fine classes.

Confusionmatrices

In this section, we present the confusion matrices for the
coarse-to-fine framework based on the untuned parameter
ensemble classifier, as depicted in Fig. 4,5,6,7,8,9,10, and 11

of Appendix A. Overall, the results suggest that the classi-
fication ability of the model, particularly for fine classes,
is not strong. For example, in the HGF area, Fig. 4,5,6,
and 7 in Appendix A illustrate these relationships. Fig. 4(a)
in Appendix newinlinkApp1app1A reveals that the baseline
model has an excellent classification effect of 100% for C;
however, there is still potential for improvement in the clas-
sification ability of other classes. Comparing Fig. 4(a) and
Figure 4(b) in Appendix A shows that the prediction accu-
racy of CS, MS, and M has increased by nearly 20%, 11.2%,
and 6.9%, respectively. However, in contrast, there is a sig-
nificant decrease in the accuracy of the C and S. There are
two main reasons for this result. One is that the imbalance
of the collected training data will enable the model to learn
insufficiently for the small number of rock categories in the
training process. Table 1 displays that the DGF area only has
53 S data, which is 6.1% of the DGF area’s total data. The
HGF area contains 47 logging data of S and 14 logging data
of C, which only account for 3.7% and 1.1% of the training
data in the HGF area, respectively. The other reason is the
accuracy deviation caused by the inevitable accumulation
of errors in the iterative process of pseudo-label technol-
ogy Ouali et al (2020). During training, the cumulative error
of pseudo-labels mixing the logging data with a small pro-
portion of categories may cause the accuracy of this class to
decrease.

Conversely, comparing Fig. 4(c) and 4(a) in Appendix A
demonstrates that the former had a more significant effect on
fine classes. The accuracy of CS and MS has significantly
improved, but the improvement amplitude is lower than that
of Fig. 4(b) of Appendix A. Furthermore, comparing Fig.
4(a) and Figure 4(d) inAppendixA reveals that the prediction
accuracy of PS, MS, and S classes has also increased, with S
experiencing a sharp rise to 90.9% from81.8%.Nevertheless,
the accuracy of other classes, except for FS, did not show a
noticeable improvement. Specifically, PS only improved by
1%, and FS increased by 6% from 82.8% to 88.9%.

In the HGF area, the other three ensemble algorithms also
yield similar conclusions, albeit with lower accuracy than
the ExtraRF-based model. Fig. 5 of Appendix A presents the
results of the RF-based model. Comparison of Fig. 5(a) and
Figure 5(b) in Appendix A reveals that the accuracy of FS
and M improved most significantly, with FS increasing from
71.4% to 92.3% by 20.9% and M from 82.9% to 94.9% by
12%. Fig. 5(c) in Appendix A shows that the accuracy of
CS and S can be improved by 9.2% and 12.2% compared
with Fig. 5(a) in Appendix A, while Fig. 5(d) in Appendix A
shows that S increased by 11.1%. Further analysis of Fig. 6(a)
and Fig. 6(b) in Appendix A shows that PS increased from
81.1% to 94.5% by 13.4%, and CS from 85.3% to 92.5% by
7.2%. S rose steeply from 50% to 90%, a significant increase
of 40%. Figure 7(a) and Fig. 7(b) in Appendix A exhibit
several differences. There is an upward trend in the accuracy

123

2294



Earth Science Informatics (2023) 16:2285–2305

ofMS, FS, and S,withMS increasing by 11.1%, PS by 22.5%
from 65.5% to 88%, and S leaping by 26.2% from 57.1%.

Additionally, similar experimental findings are obtained
in DGF. The confusion matrix of the ExtraRF-based model
is demonstrated in Fig. 8 in Appendix A. In particular, Fig.
8(b) shows that PS reaches a peak of 92.9%, an increase of
nearly 25% compared to the model shown in Fig. 8(a) of
Appendix A. Furthermore, the accuracy of CS increased by
16.7%, while M and C achieved 100% accuracy. By analyz-
ing the results from Figs. 9,10, and 11 in Appendix A, we
are more confident in the classification ability of the pro-
posed model. The model exhibits analogous classification
accuracy across different datasets and for each class. Overall,
our results indicate that the combination of Bayesian opti-
mization and pseudo labels with a coarse-to-fine framework
can effectively enhance the performance of lithology identi-
fication, particularly for fine classes.

Well-logging and testing

In this study, we have applied our lithology identification
model to two new wells, namely well J66 located in the HGF
area and well D17 situated in the DGF area, with the aim
of validating its ability. Subsequently, we have compared the
model’s predictions with the actual lithology, and have pre-
sented the outcomes along with log curves in Figs. 2 and
3. Our analysis of the aforementioned figures reveals that
both wells, D17 in the DGF area and J66 in the HGF area,
achieved a lithology identification accuracy of 98.6% and
95.2%, respectively, using ourmodel.Our test results demon-
strate that our model can effectively solve the challenge of
lithology identification in intelligent logging wells.

Conclusions

This paper presents a semi-supervised Coarse-to-Fine approach
with Bayesian optimization for lithology identification. Unla-
beled data was utilized to improve the accuracy of lithology
prediction. The results suggest that combining the coarse-to-
fine framework with semi-supervised learning can leverage
unlabeled data to enhance model accuracy, particularly for
sandstone classes. Additionally, the study demonstrates that
compared to traditional parameter optimization methods,
Bayesian optimization can improve optimization speed and
achieve global parameter optimization.

However, the practical implications of this research may
be influenced by factors such as geographic location and the
amount of available data. For this experiment, logging data
from HGF and DGF were selected, and high accuracy in
lithology identification was obtained. The proposed model

is expected to perform similarly in other areas. However,
the distribution of logging data may vary across different
regions, which may cause the accuracy of the lithology iden-
tification model to decrease, making it difficult to generalize
into a universal model. Furthermore, the model was trained
on a limited number of logging data (over 2000 logging data
from two areas) and only used seven logging curves as data
characteristics for each logging data. This limitation could
impact the diversity of model selection and the classification
accuracy.

The distinction in logging data distributions may result in
decreased accuracy and difficulty in establishing a universal
model. Future research directions can explore the combi-
nation of transfer learning and semi-supervised learning for
domain-adaptive lithology identification to address this issue.
The expected outcome of such research would be to ensure
classification accuracy and establish a universal lithology
identification model.
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Fig. 2 Logging Curves and
Prediction Results of ExtraRF
coarse-to-fine framework based
on BO and Pseudo Labels in
Well J66 Data of HGF

(a) ExtraRF coarse-fine framework
without BO and PL

(b) ExtraRF coarse-fine framework
with BO and PL

(c) ExtraRF coarse-fine framework
based on BO

(d) ExtraRF coarse-fine framework
based on PL

Fig. 3 Logging Curves and
Prediction Results of ExtraRF
coarse-to-fine framework based
on BO and Pseudo Labels in
Well D17 Data of DGF

(a) RF coarse-fine framework without
BO and PL

(b) RF coarse-fine framework with BO
and PL

(c) RF coarse-fine framework based on
BO

(d) RF coarse-fine framework based
on PL
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Fig. 4 Confusion matrices on
the HGF test set with ExtraRF

(a) GBDT coarse-fine framework
without BO and PL

(b) GBDT coarse-fine framework with
BO and PL

(c) GBDT coarse-fine framework
based on BO

(d) GBDT coarse-fine framework
based on PL

Fig. 5 Confusion matrices on
the HGF test set with RF

(a) AdaBoost coarse-fine framework
without BO and PL

(b) AdaBoost coarse-fine framework
with BO and PL

(c) AdaBoost coarse-fine framework
based on BO

(d) AdaBoost coarse-fine framework
based on PL
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Fig. 6 Confusion matrices on
the HGF test set with GBDT

(a) ExtraRF coarse-fine framework
without BO and PL

(b) ExtraRF coarse-fine framework
with BO and PL

(c) ExtraRF coarse-fine framework
based on BO

(d) ExtraRF coarse-fine framework
based on PL

Fig. 7 Confusion matrices on
the HGF test set with AdaBoost

(a) RF coarse-fine framework without
BO and PL

(b) RF coarse-fine framework with BO
and PL

(c) RF coarse-fine framework based on
BO

(d) RF coarse-fine framework based
on PL
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Fig. 8 Confusion matrices on
the DGF test set with ExtraRF

(a) GBDT coarse-fine framework
without BO and PL

(b) GBDT coarse-fine framework with
BO and PL

(c) GBDT coarse-fine framework
based on BO

(d) GBDT coarse-fine framework
based on PL

Fig. 9 Confusion matrices on
the DGF test set with RF

(a) AdaBoost coarse-fine framework
without BO and PL

(b) AdaBoost coarse-fine framework
with BO and PL

(c) AdaBoost coarse-fine framework
based on BO

(d) AdaBoost coarse-fine framework
based on PL
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Fig. 10 Confusion matrices on
the DGF test set with GBDT

Fig. 11 Confusion matrices on
the DGF test set with AdaBoost
s
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Appendix B

Table 3 Precision, recall, F1-score andprediction accuarcy forExtraRF
coarse-to-fine classifier on the HGF dataset

class precision recall f1 acc

(a) ExtraRF coarse-fine framework without BO and PL

C 1 1 1 0.867

CS 0.76 0.78 0.77

FS 0.86 0.89 0.87

M 0.95 0.86 0.9

MS 0.87 0.79 0.83

PS 0.86 0.94 0.9

S 1 0.82 0.9

(b) ExtraRF coarse-fine framework with BO and PL

C 1 0.75 0.86 0.916

CS 0.91 0.97 0.94

FS 0.92 0.83 0.87

M 0.93 0.95 0.94

MS 0.9 0.9 0.9

PS 0.9 0.96 0.93

S 0.86 0.67 0.75

(c) ExtraRF coarse-fine framework based on BO

C 0.75 1 0.86 0.876

CS 0.94 0.89 0.91

FS 0.87 0.84 0.85

M 0.93 0.83 0.88

MS 0.94 0.83 0.88

PS 0.82 0.94 0.87

S 0.75 0.86 0.8

(d) ExtraRF coarse-ne framework based on PL

C 1 1 1 0.88

CS 0.82 0.76 0.79

FS 0.8 0.89 0.84

M 0.97 0.86 0.91

MS 0.87 0.82 0.84

PS 0.88 0.97 0.93

S 0.91 0.91 0.91

Table 4 Precision, recall, F1-score and prediction accuarcy for RF
coarse-to-fine classier on the HGF dataset

class precision recall f1 acc

(a) RF coarse-fine framework without BO and PL

C 1 1 1 0.822

CS 0.81 0.79 0.8

FS 0.74 0.71 0.73

M 0.94 0.83 0.88

MS 0.73 0.83 0.78

PS 0.83 0.87 0.85

S 1 0.78 0.88

(b) RF coarse-fine framework with BO and PL

C 1 1 1 0.862

CS 0.83 0.81 0.82

FS 0.83 0.92 0.87

M 0.93 0.95 0.94

MS 0.81 0.74 0.78

PS 0.86 0.89 0.87

S 1 0.73 0.84

(c) RF coarse-fine framework based on BO

C 0.8 0.8 0.8 0.853

CS 0.86 0.88 0.87

FS 0.78 0.7 0.74

M 0.89 0.82 0.85

MS 0.76 0.81 0.78

PS 0.88 0.91 0.89

S 1 0.9 0.95

(d) RF coarse-fine framework based on PL

C 1 1 1 0.836

CS 0.8 0.74 0.77

FS 0.84 0.75 0.79

M 0.88 0.83 0.85

MS 0.77 0.83 0.8

PS 0.84 0.91 0.87

S 1 0.89 0.94
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Table 5 Precision, recall, F1-score and prediction accuarcy for GBDT
coarse-to-fine classier on the HGF dataset

class precision recall f1 acc

(a) GBDT coarse-fine framework without BO and PL

C 0.5 1 0.67 0.818

CS 0.81 0.85 0.83

FS 0.7 0.84 0.76

M 0.92 0.92 0.92

MS 0.82 0.72 0.77

PS 0.79 0.81 0.8

S 1 0.5 0.67

(b) GBDT coarse-fine framework with BO and PL

C 1 1 1 0.853

CS 0.86 0.93 0.89

FS 0.95 0.67 0.78

M 0.82 0.8 0.81

MS 0.82 0.76 0.79

PS 0.83 0.95 0.88

S 1 0.9 0.95

(c) GBDT coarse-fine framework based on BO

C 1 1 1 0.849

CS 0.71 0.86 0.78

FS 0.79 0.93 0.86

M 0.97 0.88 0.93

MS 0.8 0.72 0.76

PS 0.89 0.88 0.88

S 1 0.8 0.89

(d) GBDT coarse-fine framework based on PL

C 0.95 1 0.97 0.845

CS 0.67 0.76 0.71

FS 0.79 0.92 0.85

M 0.91 0.84 0.87

MS 0.84 0.91 0.87

PS 1 0.81 0.89

S 1 1 1

Table 6 Precision, recall, F1-score and prediction accuarcy for
AdaBoost coarse-to-fine classier on the HGF dataset

class precision recall f1 acc

(a) AdaBoost coarse-fine frame-work without BO and PL

C 1 1 1 0.813

CS 0.83 0.88 0.85

FS 0.73 0.66 0.69

M 0.87 0.74 0.8

MS 0.71 0.75 0.73

PS 0.85 0.91 0.88

S 0.8 0.57 0.67

(b) AdaBoost coarse-fine frame-work with BO and PL

C 1 1 1 0.853

CS 0.84 0.89 0.86

FS 0.76 0.88 0.81

M 0.93 0.79 0.85

MS 0.89 0.86 0.87

PS 0.82 0.87 0.84

S 1 0.83 0.91

(c) AdaBoost coarse-fine frame-work based on BO

C 1 0.5 0.67 0.827

CS 0.69 0.89 0.77

FS 0.8 0.64 0.71

M 0.95 0.8 0.87

MS 0.81 0.81 0.81

PS 0.82 0.91 0.86

S 1 0.75 0.86

(d) AdaBoost coarse-fine frame-work with BO and PL

C 1 0.75 0.86 0.831

CS 0.91 0.88 0.89

FS 0.75 0.72 0.74

M 0.81 0.83 0.82

MS 0.76 0.78 0.77

PS 0.87 0.89 0.88

S 0.83 0.71 0.77
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Table 7 Precision, recall, F1-score andprediction accuarcy forExtraRF
coarse-to-fine classier on the DGF dataset

class precision recall f1 acc

(a) ExtraRF coarse-fine frame-work without BO and PL

C 1 0.9 0.95 0.82

CS 0.61 0.5 0.55

FS 0.88 0.81 0.85

M 0.91 0.95 0.93

MS 0.72 0.89 0.8

PS 0.79 0.69 0.73

S 0.88 0.88 0.88

(b) ExtraRF coarse-fine frame-work with BO and PL

C 0.9 1 0.95 0.882

CS 0.71 0.67 0.69

FS 0.96 0.84 0.9

M 0.96 1 0.98

MS 0.79 0.84 0.82

PS 0.87 0.93 0.9

S 1 0.86 0.92

(c) ExtraRF coarse-fine frame-work based on BO

C 0.93 0.93 0.93 0.876

CS 0.83 0.75 0.79

FS 0.91 0.84 0.87

M 0.9 0.93 0.92

MS 0.78 0.88 0.83

PS 0.91 0.95 0.93

S 1 0.7 0.82

(d) AdaBoost coarse-fine frame-work with BO and PL

C 1 1 1 0.857

CS 0.75 0.64 0.69

FS 0.85 0.79 0.82

M 0.9 0.97 0.93

MS 0.74 0.8 0.77

PS 0.89 0.94 0.92

S 0.88 0.7 0.78

Table 8 Precision, recall, F1-score andprediction accuarcy forExtraRF
coarse-to-fine classier on the DGF dataset

class precision recall f1 acc

(a) RF coarse-fine framework without BO and PL

C 1 0.88 0.94 0.814

CS 0.75 0.65 0.7

FS 0.76 0.9 0.83

M 0.75 1 0.86

MS 0.77 0.81 0.79

PS 0.86 0.76 0.81

S 0.89 0.8 0.84

(b) RF coarse-fine framework with BO and PL

C 1 1 1 0.857

CS 0.81 0.68 0.74

FS 0.76 0.83 0.79

M 0.88 0.97 0.92

MS 0.83 0.85 0.84

PS 0.94 0.83 0.88

S 0.89 1 0.94

(c) RF coarse-fine framework based on BO

C 0.95 0.95 0.95 0.851

CS 0.76 0.73 0.75

FS 0.84 0.8 0.82

M 0.93 0.96 0.95

MS 0.81 0.81 0.81

PS 0.81 0.81 0.81

S 0.75 1 0.86

(d) RF coarse-fine framework based on PL

C 1 0.94 0.97 0.845

CS 0.88 0.65 0.75

FS 0.75 0.86 0.8

M 0.75 1 0.86

MS 0.8 0.86 0.83

PS 0.91 0.84 0.87

S 0.89 0.8 0.84
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Table 9 Precision, recall, F1-score and prediction accuarcy for GBDT
coarse-to-fine classier on the DGF dataset

class precision recall f1 acc

(a) RF coarse-fine framework without BO and PL

C 1 1 1 0.807

CS 0.89 0.59 0.71

FS 0.86 0.82 0.84

M 0.81 0.9 0.85

MS 0.63 1 0.77

PS 0.89 0.73 0.8

S 1 0.67 0.8

(b) GBDT coarse-fine framework with BO and PL

C 0.5 1 0.67 0.831

CS 0.91 0.85 0.88

FS 0.68 0.79 0.73

M 0.94 0.88 0.91

MS 0.81 0.77 0.79

PS 0.79 0.86 0.83

S 1 0.5 0.67

(c) GBDT coarse-fine framework based on BO

C 0.95 1 0.98 0.826

CS 0.57 0.71 0.63

FS 0.72 0.91 0.81

M 0.8 0.96 0.87

MS 0.9 0.65 0.75

PS 0.95 1 0.97

S 1 0.75 0.86

(d) GBDT coarse-fine framework based on PL

C 1 1 1 0.826

CS 0.9 0.62 0.73

FS 0.86 0.82 0.84

M 0.81 0.9 0.85

MS 0.66 1 0.79

PS 0.89 0.77 0.83

S 1 0.78 0.88

Table 10 Precision, recall, F1-score and prediction accuarcy for
AdaBoost coarse-to-fine classier on the DGF dataset

class precision recall f1 acc

(a) AdaBoost coarse-fine frame-work without BO and PL

C 0.9 0.93 0.92 0.795

CS 0.69 0.65 0.67

FS 0.76 0.84 0.8

M 0.8 0.73 0.76

MS 0.74 0.84 0.79

PS 0.87 0.77 0.82

S 0.75 0.67 0.71

(b) AdaBoost coarse-fine frame-work with BO and PL

C 0.88 1 0.94 0.839

CS 0.69 0.69 0.69

FS 0.84 0.9 0.87

M 1 0.75 0.86

MS 0.81 0.83 0.82

PS 0.89 0.8 0.84

S 0.64 0.88 0.74

(c)AdaBoost coarse-fine frame-work based on BO

C 1 0.9 0.95 0.832

CS 0.72 0.62 0.67

FS 0.8 0.77 0.78

M 0.96 0.96 0.96

MS 0.73 0.85 0.79

PS 0.95 0.79 0.86

S 0.73 1 0.84

(d) AdaBoost coarse-fine frame-work based on PL

C 0.94 1 0.97 0.826

CS 0.6 0.53 0.56

FS 0.88 0.79 0.83

M 0.8 0.91 0.85

MS 0.8 0.77 0.79

PS 0.95 0.77 0.85

S 0.67 0.89 0.76
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